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Abstract

Data intensive applications require massive amount of data to be transported over shared wide
area networks. Traditional network congestion control and routing schemes have proven inadequate
for fully utilizing available network resource for high-bandwidth data transport. In this work, we
explore the flexibility of control at the application layer and propose various application level data
relay schemes to largely improve the data throughput by optimally integrating application level
routing and transport layer control. The proposed algorithms can be easily implemented in overlay
networks. Preliminary experiments have shown that our relay schemes are efficient in utilizing
network resource for high-bandwidth data transport. The impact of application level relays on the
underlay network is also discussed.

1 Introduction

High-bandwidth data transport has become increasingly important with the emergence of data intensive
network applications, such as peer-peer applications and grid computing. At the same time, advances in
communication technology have made available physical network infrastructure that can support point
to point data transmission at the speed of tens of Gigabits per second. How to fully utilize network
capacity for high-bandwidth end-end data transport has generated considerable research on network
resource allocation. Network resource allocation is carried out by two mechanisms, namely routing and
congestion control, operating at different time scales. At a coarse time scale, a routing algorithm aims
at choosing routes for all data transport pairs so as to optimize the overall network performance [1, 2].
Largely due to the complexity of the topology and variability in traffic demand, the capability of traffic
engineering in the Internet is still very limited. At a finer time scale, congestion control schemes adjust
sending rates of data sources to avoid congestion along the paths provided by a routing algorithm. The
objective of network congestion control mechanisms, including transport control at the edge and queue
management inside the network core, is to maintain fair bandwidth sharing among competing users
and to ensure the stability of the network as a whole [3, 4]. Most existing transport control protocols
work in the so called “end-end” fashion. The end-end principle keeps the network core transparent to
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end users. However, traditional transport control protocols, such as TCP, have proven to be inefficient
at obtaining available bandwidth in high bandwidth-delay product networks. New end-end congestion
control protocols, such as HighSpeed TCP [5], FAST [6], XCP [7], have been proposed to achieve high
speed data transport.
Recently, there is an increasing trend to employ application level control to improve users’ performance
over shared wide area networks. The flexibility of control at the application layer helps to overcome
inefficiencies in underlay network routing and congestion control. For example, application level overlay
networks have emerged to provide services which cannot be embedded in the Internet [8, 9, 10, 11, 12,
13]. In overlay networks, all participating nodes collaborate at the application level and relay traffic for
each other. Application level routing enables end users to deviate from the end-end semantics and data
can be relayed from a source to a destination. In this paper, we study how to achieve high-bandwidth
data transport through application level relays.
Instead of setting up an end-end connection between the source and destination, an application relay
employs multiple relay nodes to sequentially relay data to its destination. Each relay node buffers
packets upon receipt and is responsible for reliable delivery of packets to the downstream relay node
(or the final destination). Between two neighboring relay nodes, data transmission is managed by
a transport control protocol. We choose the universally deployed TCP for data transport between
two relay nodes. However, our application relay framework is independent of the choice of TCP. Any
transport control protocol can be used as a primitive to build up the relay. We refer to a path along
which data is relayed as a relay path. A relay path may or may not follow the default route between its
source and destination provided by the underlay network routing. For example, in an overlay network,
a source node can specify a sequence of overlay nodes to relay traffic to a destination. Our focus is on
how to organize application relays to maximize the achieved end-end throughput. We start with the
assumption that application relays have negligible impact on the underlay network and demonstrate
how network users can greatly increase their throughput by employing relays of TCP connections for
their data transmission. Application level relays’ impact on the underlay network is discussed at the
end of the paper.
The paper is organized as follows: In Section 2, we briefly describe related work on utilizing application
level control to improve end users’ performance, such as Parallel TCP, overlay routing and multicast
overlay, etc. In Section 3, we study the application relay along the data path provided by the underlay
network. We show that by optimally organizing TCP connections, both sequentially and in parallel,
one can significantly improve the throughput of end-end data transport. How to organize TCP relay in
general overlay networks is investigated in Section 4. Specifically, the optimal TCP relay path problem
is studied as a multi-metric application level routing problem. Various algorithms are proposed to
find relay paths optimized for data transport performance metrics, such as throughput and hop-count,
as well as overlay network performance measures, such as the maximal workload on all relay nodes.
Preliminary experimental results are presented in Section 5 to demonstrate the efficiency of proposed
relay schemes. Section 6 is devoted to general discussions on application level relays’ impact on underlay
networks, especially the performance of regular users not employing application layer control. The
paper is concluded with future works in Section 7.

2 Related Work

There have been many efforts on improving data transport throughput through application level con-
trol. Concurrent downloads have been widely used in web applications, such as FlashGet [14], to
significantly speedup HTTP downloads. These applications parallelize the download of a web object
by opening multiple connections per object and downloading a different portion of the object on each
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connection. Concurrent downloads are also employed by popular peer-peer applications, such as Bit-
Torrent [15]. A peer-peer user sets up parallel TCP connections to multiple peers to concurrently
download different portions of requested data object. Concurrent downloads are also employed by a
variant of FTP, GridFTP [16], which has been proposed to guarantee high bandwidth data transfer
for grid applications. Studies in [17] have shown that concurrent downloads violate, at the application
level, the fairness that TCP tries to maintain at a connection level. A recent study [18] on parallel TCP
describes an approach to preserve the effectiveness when the network is under-utilized and prioritizes
the fairness with competing traffic when the network is fully utilized. Our work studies the performance
improvement of application level relay formed by sequential TCP connections.
Overlay routing allows end hosts to choose application level routes by themselves. It is shown that
overlay routing schemes are effective in dealing with some of the deficiencies in today’s IP routing. For
example, measurements from overlay routing projects RON [9] and Detour ( [8], [19]) have shown
that a large percentage of Internet flows can find better alternative paths by relaying among overlay
nodes, thereby improving their performance. It was shown in [10] that overlay networks can enhance
Quality-of-Service(QoS) perceived by users without any support from the underlying Internet. Recently,
application overlays have been proposed to support group communications [11, 12, 13]. It is shown in
[12] that overlay based group communication using TCP scales in both the obtained throughput and
the buffer required as the group size gets large. Optimal tree construction algorithms are discussed
to maximize the throughput of the multicast group. [13] proposes an overlay multicast architecture
which incorporates the use of loosely coupled TCP connections to deliver a scalable solution that better
accommodates a set of heterogeneous receivers. It is also pointed out that a chain of TCP connections
can achieve higher throughput than a single end-end TCP connection.
Our work focuses on how to set up application level relay paths optimized for data transport per-
formance metrics, such as throughput and hop-count, as well as overlay network performance mea-
sures, such as the maximal workload on all relay nodes. We study this as an application level multi-
metric routing problem. There is a rich literature on QoS routing to satisfy multiple performance
constraints [20, 21, 22, 23, 24]. Various algorithms have been proposed to find paths satisfying end-end
performance constraints, such as loss, delay and bandwidth, etc. It is not a surprise that our problem
has much in common with QoS routing. The unique nature of data relay in an overlay network makes
our work different from previous studies. Application level control provides us more flexibility in the
design and implementation of the proposed data relay schemes.

3 TCP Relay for Long-haul Data Transport

The performance of end-end transport protocols degrades in long-haul data transmission over lossy
links. Recent studies have shown TCP cannot obtain available bandwidth in high bandwidth-delay
product networks [5, 6, 7]. The fairness and throughput of TCP suffer when it is used in mobile ad
hoc networks (MANETs) [25]. One solution is to deviate from the end-end semantics and use multiple
relay nodes between a source and destination to relay traffic. By doing so, one breaks a long end-end
connection into multiple shorter connections to improve efficiency and fairness. In this section, we limit
ourselves to the case that the relay path aligns with the default route. We study how to optimally place
relay nodes along the default data path to improve end-end throughput. We start with the sequential
relay case, where TCP connections are concatenated as a pipeline to relay data. We show that TCP
pipelines greatly improve the throughput of data transport. Then we demonstrate how parallel TCP
can be employed efficiently to increase the bottleneck bandwidth of a TCP pipeline. The construction
of an optimal TCP relay is formulated and solved as dynamic programming problems.
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3.1 TCP Pipeline and Throughput Improvement
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Figure 1: TCP Relay for Long-haul Data Transport

Motivating example: Consider a path on which n− 1 nodes lie between a sender src and receiver
dst (Figure 1). Denote by vi the ith node on the path, with src = v0 and dst = vn. Let pi denote
the packet loss probability on link Ei =< vi−1, vi >, and di the two way packet delay between node
vi−1 and vi (two way propagation delay, plus possible queueing delays due to congestion). When {pi}
are small, the throughput of a TCP connection between node i and node j(> i) can be approximately
characterized by [26]

B(i, j) =
C

∑j
k=i+1 dk

√

∑j
k=i+1 pk

(1)

In the simplest case, all links are homogeneous: pi = p and di = d. Then the throughput of a end-end
TCP connection is B(0, n) = C

nd
√

np
. On the other hand, if all the nodes commit to application level

packet forwarding, the user can set up n sequential TCP connections, one between each adjacent node
pair (vi−1, vi), to relay packets from src to dst. Each such relay TCP connection will achieve throughput
B(i, i +1) = C

d
√

p
. The end-end throughput is the minimum of all relay TCP connections. In this case,

it is still C
d
√

p
, which is n

√
n times larger than the throughput of the single end-end TCP connection

and is
√

n times larger than the aggregate throughput of n parallel end-end TCP connections between
src and dst.
We refer to the set of sequential TCP connections used to relay packets from the source to the destina-
tion as a TCP pipeline. Formally, a TCP pipeline with m sequential connections is a m-partition, A, of
a n-hop path [0, n] such that 0 = A(0) < A(1) < A(2) < · · · < A(m− 1) < A(m) = n and the ith TCP
connection runs from node vA(i−1) to vA(i). According to (1), the throughput on the ith segment of
the pipeline is B(A(i− 1), A(i)). The end-end throughput of a TCP pipeline A, T (A), is the minimal
throughput of all constituent segments:

T (A) = min
1≤i≤m

B(A(i− 1), A(i))

Since A is a partition of [0, n], it is easy to verify that

T (A) ≤ min
1≤i≤n

B(i− 1, i),

That is to say the throughput of a pipeline of sequential TCP connections is bounded from above by
the “slowest” link between src and dst. Obviously, the upper bound will be achieved when the pipeline
consists of n sequential connections and A(i) = i, 0 ≤ i ≤ n.

3.2 How to Set Up a Pipeline Optimally?

Application relays alleviate the discrimination against long-haul connections and the achieved data rate
scales with the number of links along a path. It also improves the efficiency of data retransmissions. A
packet lost on one relay segment is retransmitted locally on just that segment. It avoids unnecessary
retransmission on all links along the path and lost packets are recovered faster. At the same time, data
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relay incurs overhead in application level operations. Multiple TCP connections have to be established
for one unicast data transport. Along the relay path, all packets are sent in a store-forward manner and
experience additional processing delays at intermediate relay nodes. Due to the rate mismatch between
TCP connections on different relay segments, packet buffers coupled with back-pressure schemes are
necessary to avoid flooding the slowest relay segment. When setting up the pipeline, one has to trade
off the throughput gain against memory and computation consumption.
To bound these overhead, we can limit the number of segments on a relay path. Then the question
becomes: given at most m TCP connections, how to setup the pipeline to maximize end-end through-
put? This is equivalent to the problem of optimally placing m − 1 nodes to relay traffic from src to
dst. For example in Figure 2, if the third link is the slowest link and we are allowed to use only 2 relay
nodes, we may want to place the two relay nodes on both ends of the slowest link. Formally, we want
to find an optimal m-partition A of [0, n] such that T (A) is maximized:

T ∗ = max
|A|=m

min
1≤i≤m

B(A(i− 1), A(i))

A∗ = argmax
|A|=m

min
1≤i≤m

B(A(i− 1), A(i))
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Figure 2: Optimal TCP Pipeline with 3 Segments

This optimal pipeline problem can be solved by dynamic programming. Let A∗[k,m] be an optimal
m-connection pipeline between v0 and vk, and T ∗[k,m] be its throughput. We have

T ∗[n,m] = max
m−1≤k≤n−1

min
{

T ∗[k,m− 1], B(k, n)
}

k∗ = argmax
m−1≤k≤n−1

min
{

T ∗[k,m− 1], B(k, n)
}

A∗[n,m] = A∗[k∗,m− 1]⊕ {n}

The algorithm to find the optimal m-pipeline between v0 and vn is

for i = 1 upto n do

T ∗[i, 1] = B(0, i);A∗[i, 1] = {0, i};
end for

for j = 2 upto m do

for i = j upto n do

T ∗[i, j] = min
{

T ∗[j − 1, j − 1], B(j − 1, i)
}

;

k∗ = j − 1;
for k = j upto i− 1 do

if T ∗[i, j] > min
{

T ∗[k, j − 1], B(k, i)
}

then

T ∗[i, j] = min
{

T ∗[k, j − 1], B(k, i)
}

;

k∗ = k;
end if
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end for

A∗[i, j] = A∗[k∗, j − 1]⊕ {i}
end for

end for

The complexity of solving this dynamic programming problem is O(n2m). T ∗[n,m] is a non-decreasing
function of m and is bounded from above by T [n, n] = min1≤i≤n B(i−1, i). When solving the dynamic
problem in a bottom-up way, we can find the smallest m∗ which achieves T ∗[n,m∗] = T [n, n]. If
m∗ < n, adding more than m∗ sequential TCP connections won’t improve the end-end throughput,
which is throttled by the slowest link. At the same time, multiple parallel TCP connections helps
achieve high throughput across congested link. This motivates us to think about how to optimally
combine sequential and parallel TCP connections to achieve higher throughput. For the network in
Figure 2, we can use multiple parallel connections to cover the slowest link as shown in Figure 3.

a�b�c�d�e�f g�h i�j k�l m�n�o�p q�r�s�t u"v
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Figure 3: TCP Relay with Sequential and Parallel Connections

3.3 Combining TCP Pipelining and TCP Striping

For very congested relay segments, TCP striping can be employed to increase the bandwidth of the bot-
tleneck on the whole relay path. Data is striped by a sending relay node over parallel TCP connections
to a receiving relay node. The receiver reassembles data segments received from different connections
and relays them to its downstream neighbor. Data striping and reassembly also incurs memory and
computation overhead and introduces additional packet delay. Too many parallel connections can
cause more congestion to those already congested links and can degrade the network performance as a
whole [27]. In this section, we limit the number of parallel and sequential TCP connections that users
can possibly use and study how to organize them optimally to achieve the maximal bandwidth.
As in the previous section, we still partition the path from src to dst into m segments as 0 = Q(0) <
Q(1) < Q(2) < · · · < Q(m − 1) < Q(m) = n. Between nodes vQ(i−1) and vQ(i), there are s(i) ≥ 1
parallel connections and with the constraint

∑m
i=1 s(i) = N . The optimization problem is:

max
{m,Q,s}

min
1≤i≤m

s(i)B(Q(i− 1), Q(i)),

Given m and Q, it becomes an integer programming problem:

max
|s|=m

min
1≤i≤m

s(i)B(Q(i − 1), Q(i)),

subject to s(i) ≥ 1 and
∑m

i=1 s(i) = N
If m and Q are not fixed, it can still be solved as the following dynamic programming problem. Let
{Q∗[k, l], s∗[k, l]} be an optimal organization of l TCP connections between v0 and vk, T ∗[k, l] be its
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throughput. It satisfies

T ∗[n,N ] = max
1≤k≤n−1
1≤j≤N−1

min
{

T ∗[k, j], (N − j)B(k, n)
}

{k∗, j∗} = argmax
m−1≤k≤n−1

1≤j≤N−1

min
{

T ∗[k, j], (N − j)B(k, n)
}

Q∗[n,N ] = Q∗[k∗, j∗]⊕ {n}
s∗[n,N ] = s∗[k∗, j∗]⊕ {N − j∗}

The complexity of solving this problem is O(N 2n2). The detailed algorithm is:

for i = 1 upto n do

T ∗[i, 1] = B(0, i);Q∗[i, 1] = {0, i}; S∗[i, 1] = {1};
end for

for j = 2 upto N do

for i = 1 upto n do

T ∗[i, j] = T ∗[i, j − 1]
for k = 1 upto i− 1 do

for l = 1 upto j − 1 do

if T ∗[i, j] > min
{

T ∗[k, l], (j − l)B(k, i)
}

then

T ∗[i, j] = min
{

T ∗[k, l], (j − l)B(k, i)
}

;

k∗ = k; l∗ = l;
end if

end for

end for

Q∗[i, j] = Q∗[k∗, l∗]⊕ {i};
s∗[i, j] = s∗[k∗, l∗]⊕ {j − l∗};

end for

end for

4 TCP Relay in Overlay Networks

In the previous section, we studied how to optimally place relay nodes along the default end-end
data path provided by the underlay network. However, underlay network routes are not optimized
for the throughput of application level relays. With the flexibility of application level routing in an
overlay network, it is possible to find better paths to relay data at higher speeds. In this section,
we study the optimal TCP relay problem in an overlay network. We formulate it as a multi-metric
application level routing problem. Various algorithms are proposed to find relay paths optimized for
data transport performance metrics, such as throughput and hop-count, as well as overlay network
performance measures, such as the maximal workload on all overlay nodes.
As illustrated in Figure 4, in an underlay network, a subset of network nodes form an application level
overlay network and forward traffic for each other. An overlay network can be represented as a directed
graph G = (V,E), where V is the set of overlay nodes and E is the set of all the logical links between
overlay nodes. Each logical link corresponds to a physical path in the underlay network. (Note: in most
cases, the graph is fully connected, meaning each node can reach each other; however, if the overlay
runs across multiple ASes, due to the policy based inter-domain routing, some overlay nodes may not
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Figure 4: Application Overlay Built upon Underlay Network

able to talk directly to each other. Hence we only assume G is connected.) Through application level
routing, an overlay node can specify a path in the logical graph G to reach another overlay node. Data
is relayed to its destination on all logical links along the specified path. We refer to a path used to relay
data between two overlay nodes as a relay path. Most previous work on application level routing focused
on finding paths with high resilience against failures and best end-end path performance metrics, such
as delay and loss rate, which can translate into the throughput of end-end TCP connections along
those paths. Our objective here is to find relay paths optimized for the performance of TCP relays.
Throughout this section, we assume that underlay network routes are fixed.

4.1 Widest TCP Relay Path

Our first objective is to find a relay path with the highest throughput. The throughput of a TCP relay
path is the minimal TCP throughput on all constituent logical links. We refer to the throughput of a
single TCP connection over a logical link < vi, vj > as the local TCP throughput between vi and vj ,
denoted by B(i, j). B(i, j) can be calculated by the end-end packet loss probability and round trip
time from vi to vj as in (1). In a directed overlay graph G = (V,E), if we assign weight B(i, j) to link
< vi, vj >, and define the width of a path as the minimum weight of all constituent links, an optimal
relay path from vi to vj is a widest path from vi to vj.
The widest path problem has been studied in [13, 20]. The widest path tree rooted at a source s
can be constructed using a simple variant of Dijkstra’s algorithm, which is typically used to construct
single-source shortest path trees. The algorithm keeps two sets of vertices: Z, the set of vertices whose
widest paths from the source have already been determined and V − Z the remaining vertices. Let
d(v) be the best estimate of the widest path for vertex v and π(v) be the predecessor on the widest
path. The basic mode of operation is:
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1. Initialize d(v) = 0, d(s) =∞, Z = ∅,

2. While there are still vertices in V − Z,

(a) Sort the vertices in V − Z according to d(v),

(b) Add u, the vertex with the largest d(v) in V − Z, to Z,

(c) Relaxation: for v connected to u updates d(v): if min(d(u), w(u, v)) > d(v), then π(v) = u
and d(v) = min(d(u), w(u, v)).

Similar to the Dijkstra’s shortest-path algorithm, the running time of the entire algorithm is O(|V |2).
It can be implemented as a link-state algorithm. Each overlay node broadcasts its connectivity and link
widths to all other nodes. After collecting all the link state information, an overlay node can compute
the widest paths to all other nodes. In a real network environment, the local TCP throughput on
a logical link varies over time. Therefore the link weight B(i, j) should be calculated from some
representative statistics. In most cases, B(i, j) should be quantized to avoid unnecessary complexity
introduced by small differences in link width. Quantization is also important when other path metrics,
in addition to the width, are also considered. We will discuss this issue later.
If local TCP throughput on all logical links are symmetric, i.e., B(i, j) = B(j, i), we can use an
undirected graph to represent an overlay network. The widest relay paths between all node pairs can be
efficiently constructed by finding a Minimum Spanning Tree (MST) for the associated undirected graph
G. For example, Figure 5 illustrates an overlay network with symmetric links, let B(i, j) = B(j, i) = 1,
if i + 1 = j, 2 ≤ j ≤ 5 and B(i, j) = 0.1 otherwise. Then the best path connecting v1 and v5 is
< v1, v2, v3, v4, v5 > instead of the direct link between v1 and v5.

��� ���

���

���

���

Figure 5: Overlay Network with Symmetric Logical Links

Theorem 1 In the undirected graph G, assign weight 1
B(i,j) to link < vi, vj > and construct a Minimum

Spanning Tree S, then the path in S between any two nodes vi and vj is an widest relay path from node
vi and vj.

Proof: We prove it by contradiction. Let S be a Minimum Spanning Tree of G, p = {i, · · · , j} be
the path in S connecting vi to vj , and < vk1

, vk2
> be the link along p with the maximal weight

1
B(k1,k2)

, then the throughput of relay path p equals to B(k1, k2). Suppose there is another path p̂ in

G between vi and vj with throughput higher than T (p) = B(k1, k2), then all the links on p̂ will have
local TCP throughput higher than B(k1, k2). Removing link < vk1

, vk2
> from S will partite S into
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two trees S1, S2. Suppose vi is in S1 and vj is in S2, since p̂ connects vi and vj , there must be one link
< vh1

, vh2
> connects S1 and S2. Adding < vh1

, vh2
> to S1 and S2 will form a new spanning tree Ŝ.

Since B(h1, h2) > B(k1, k2), Ŝ will have smaller cost than S, which leads to contradiction.
For the example in Figure 5, all the links will have weight 10 except for those links on the path
S =< v1, v2, v3, v4, v5 >. Therefore S is the MST and optimal path between node i and j(> i) is
always L = {i, i+1, · · · , j}. Widest paths constructed from the Minimum Spanning Tree are naturally
loop free. Minimum Spanning Trees can also be used to construct the optimal overlay multicast trees
[12]

4.2 Widest TCP Relay Path with Limited Hops

The number of logical links on a relay path corresponds to the number of overlay nodes participating
in the data relay. As discussed in Section 3, data relay involves computation and memory overhead at
the intermediate relay nodes. Within an overlay network, buffer and computation power for relaying
traffic are important resources, which are contended for by competing overlay users. The number of
relay nodes on a relay path is an important measure of resource consumption of the corresponding
data transport. Therefore, it is important to enforce a limit on the number of overlay nodes on a relay
path. The optimal relay problem with this path length constraint is to find a path with no more than
m hops to achieve the highest throughput.
To find optimal relay paths with no more than m hops from a single overlay node s to all other
overlay nodes, we develop a variant of the Bellman-Ford (BF) algorithm, which is designed to find
the shortest-paths from a single source to all other nodes for all hop counts. The BF algorithm is an
iterative algorithm. At the h-th iteration, it finds the shortest path between the source and all the
destinations with at most h hops. If we want to find an optimal relay path with no more than m hops,
we run the following BF-like iterative algorithm up to m iterations. Again we assign B(i, j), the local
TCP throughput between node vi and vj , as the weight for the link < vi, vj > in the directed overlay
graph G = (V,E). Let W [v, k] be the width of the optimal path from the source s to the node v with
no more than k hops. The algorithm is

W [v, k] = 0, W [s, k] =∞, 0 ≤ k ≤ m;
for k = 1 upto m do

for u ∈ V do

W[u,k]=W[u,k-1];
end for

for < u, v >∈ E do

if min(W [u, k − 1], B(u, v)) > W [v, k] then

W [v, k] = min(W [u, k − 1], B(u, v))
end if

end for

end for

If we set m = |V |, after the completion of the algorithm, we can identify the smallest possible number of
relay hops to achieve the highest throughput for all destinations. The running time for the algorithm is
O(m|E|). It can be implemented as a distributed distance-vector algorithm. Each node communicates
only with directly-attached neighbors about the widest paths to other destinations with hop constraints.
It is has been shown in [24] that the basic BF algorithm is not the most efficient in finding the hop-
constrained widest paths when the network is densely connected. An Improved Bellman-Ford (IBF)
algorithm is proposed with lower asymptotic complexity O(|E|log|V | + m(|V |2/log|V |)). Interested
readers are referred to [24] for details. It deserves study to compare IBF with BF on different size
overlay networks.
To find optimal relay paths with no more than m hops between all pairs of overlay nodes, we can
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develop an algorithm similar to the recursive all-pairs shortest-paths algorithm. Let N(v) be the set of
neighbors of node v; W [s, t, k] be the width of the optimal path from s to t with no more than k hops.
The algorithm is in the bottom-up order of k:

for s, t ∈ V , do

if (s, t) ∈ E then

W [s, t, 1]← B(s, t)
else

W [s, t, 1]← 0
end if

end for

for k = 2 upto m do

for s, t ∈ V do

WP (s′) = min{W [s′, t, k − 1], B(s, s′)}, ∀s′ ∈ N(s);
W [s, t, k] = max{W [s, t, k − 1], maxs′∈N(s) WP (s′)}

end for

end for

4.3 TCP Relay Path Optimized for Width and Length

So far, we have focused on finding the highest throughput TCP relay paths with or without a constraint
on the number of relay hops. In this section, we introduce path length as an additional metric to search
for optimal TCP relay paths. When the path length is used as a secondary optimization criterion, an
optimal relay path is a shortest-widest path from a source to destination. Under certain situations, the
strict preference of path width over path length should be relaxed. One way to trade off width against
length is to find the shortest path satisfying width requirement.
Since an end-end path is bounded just by its “narrowest” link, all other links on the path have no effect
on the path’s width. Therefore, there are normally many widest paths with equal width between two
nodes and a path with loops may also qualify as a widest path. This problem is more serious in an
overlay network, where two different logical links will have the same weights if they physically share
the same bottleneck link and have similar round-trip delays. Therefore, in an overlay network, it is
easy to have many logical paths, which have the same (or very close) width. In Figure 6, all possible
logical paths from A to D are physically constrained by A’s access link, which is the only bottleneck
link in the network. If the delays on logical links A−C and A−B are equal, A−C −D, A−B −D,
A−C−B−D and A−B−C−D are all widest paths from A to D. The path length can be used as the

A

B

C

D

bottleneck

Figure 6: Ambiguity of Widest Path in Overlay Networks

secondary optimization criterion when there is a tie in path width. That is to say we want to find the
so called shortest-widest path (SWP), i.e., the shortest one among all the widest paths. As studied in
the previous section, logical hop count can be used to measure the length of a relay path. Physical hop
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count, the number of physical links on a path, is also an important length measure. The more physical
links on the relay path, the more network resources consumed by the corresponding data transport.
When two relay path are equally wide, one should always choose the relay path with smaller physical
hop count to minimize network resource consumption by one data transfer, which in turn maximizes
the overall network utilization. However, end-end physical length, or equivalently propagation delay,
is not an important metric for relay path. The latency of transmitting a large file is dominated by the
transmission delay, which is determined only by the relay path’s throughput.
In our study, we use either logical hop count or physical hop count as the second relay path metric.
In an overlay graph, if we assign 1 as the length of each logical link, the length of a relay path is its
logical hop count; if we assign the number of physical links on a logical link as its length, the length
of a relay path is its physical hop count. Although multi-metric path optimization in general is an
intractable problem [28, 20], the choice of bandwidth and length as path metrics makes the complexity
of the SWP algorithm similar to that of a standard shortest path algorithm. Both Dijkstra like link
state algorithms and Bellman-Ford like distance vector algorithms have been proposed to solve the
SWP problem in the context of Quality-of-Service routing [20, 21, 22]. Extra care has to be taken
when extending shortest/widest path algorithms due to the following properties of SWP:

1. If a path from A to Z through B, A
p1� B

p2� Z, is a SWP from A to Z, it doesn’t mean that the
path B

p2� Z is a SWP from B to Z; It is true if we replace SWP with shortest path. This is an
important property for the correctness of Dijkstra shortest path algorithms.

2. If A
p1� B

p2� Z is a SWP from A to Z, and B
p3� Z is a SWP from B to Z, it is not always true

that A
p1� B

p3� Z is a SWP from A to Z; It is true if we replace SWP with widest path.

A

B

C

D

<0.5,1>

<0.5,1>

<2,10>

<1,1>

<0.5,10> <x,y>
x:= bandwidth
y:= length

Figure 7: Special Properties of Slowest-widest Paths

For the network in Figure 7, the SWP from C to A should be the path C −D − B − A, which has a
width of 0.5 and a length of 3. However, D−B−A is narrower than D’s SWP D−A (due to 1)) and
C −D−A has a length of 11, which is larger than that of C’s SWP (due to 2)). Shortest-widest relay
paths can be found in the following two-phase search:

1. In the first phase, assign local TCP throughput to each logical link in the overlay graph, find
the widest paths from the source to all other nodes using Dijkstra like algorithm as described in
Section 4.1

2. Let T (i) be the width of a widest path to node i. Sort all the nodes into a list such that T (i) is
in increasing order. Assign link lengths as link weights in the graph
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3. Start with the node with the smallest T (i), prune all the links in E which have bandwidth less
than T (i).

4. Find the shortest path from the source to node i in the pruned graph, that is the shortest-widest
path from the source to node i in the original graph, take node i out of the sorted list

5. Go back to step 3), until the list is empty.

In an overlay network, the choice of metric for optimal relay path is application dependent. So far, we
give the width of a relay path strict priority over the its length. The length metric is used only when
there is a tie in the width metric. This strict priority may be too rigid in a real network environment.
Given the dynamics in the underlay network traffic, both the achieved local TCP throughput and
packet delay over one logical link vary over time. In other words, all those link weights are not
accurate. Therefore link-weight-based search algorithms should not be too rigid, especially regarding
the preference among different path metrics. It doesn’t make sense to rule out a path that is much
“shorter”, while being a little bit “narrower”, than the shortest-widest path constructed based on a
one-time or some mean statistics. The strict priority of bandwidth can be relaxed while still keeping the
preference for it. To practically do it, threshold-based searching algorithms can be employed. One can
specify a lower bound for the width of a path, which is calculated based on the result of the widest path
search and some relaxation margin, and then choose the shortest path satisfying the width requirement.
This can be done by using the previous prune-search procedure as for the shortest-widest path. The
only difference is that the width threshold, instead of the maximal path width, is used to prune links.

4.4 Contention on Relay Nodes

Limiting the length of relay path can alleviate possible contention on some relay nodes. However, it
doesn’t explicitly control the workload on relay nodes. To avoid overloading some relay nodes, we have
to take the contention on relay nodes explicitly into consideration when constructing the application
relays for all demand pairs. This is somewhat similar to the network traffic engineering problem, which
is to find optimal routes for all demand pairs such that overall link contention (translated into link
utilization, or link delay) is minimized. The general load balancing routing can be formulated as the
unsplittable flow problem which tries to minimize the maximum workload on one node. It is a well-
known NP-hard problem [29]. However, for the purpose of setting up a relay path, if we only use
workload on overlay nodes as the objective function to optimize, the solution is trivially that every
node sends data directly to its destination. What we really want is a solution which gives us both
high aggregate throughput for all data transport pairs and a low contention level on all overlay nodes.
This is again a difficult multi-metrics routing problem. Here we propose some heuristic algorithms
to solve a relaxed problem. Instead of solving the multi-objective optimization problem, we ask the
following question: how to optimally set up relay paths for all data transport pairs so as to maximize the
networks’ aggregate throughput while each relay node relays traffic for at most m data transport pairs?
To exactly solve this problem is also difficult. We developed some heuristics to solve it approximately:

1. Find the shortest-widest path (SWP)s between all demand pairs

2. Sort the demand pairs in decreasing order of path widths; set up a relay workload counter for
each overlay node.

3. Take a demand pair out from the head of the sorted list and increase the counter of all the nodes
on its SWP by one, and remove the demand pair from the sorted list
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4. repeat the previous step until some overlay node’s counter reach the upper limit m, then remove
it from the relay topology (it can still be used as source or destination for some demand pair, but
not relaying nodes)

5. based on the reduced topology, go back to step 1), until all demand pairs have been routed.

If during the execution of this algorithm all relay nodes reach their relaying capacities, remaining
demand pairs can only be transmitted directly without any relay.

5 Experiments

We show some experimental results in this section to demonstrate that application level relays effectively
increase the throughput of data transport. The experiments were carried in ns-2 simulator. In order to
simulate the receiver TCP buffer occupancy and the back-pressure in the TCP relay path, we modified
the FullTCP module and the TCP packet header to implement the TCP flow control mechanisms. By
adding the advertisement window to the TCP packet header, sender side TCP can adjust the maximum
window size and stop sending data when the receiver’s TCP buffer is full. We also developed a specific
application module that explicitly pulls data from the receiver TCP buffer. This simulates the read
operation that real applications do when receiving data from a socket connection. This application
module is used to simulate TCP relay nodes.
Two sets of experiments are shown in this section. In the first set, we demonstrate throughput improve-
ment by pipelining TCP connections along the data path provided by the underlying networks. In the
second set, we study TCP relays in overlay networks. We show performance improvement by using the
widest TCP relay paths with limited hops and shortest relay paths satisfying the width requirement.
We performed these experiments several times and got similar results each time.

5.1 TCP Pipeline and Throughput Improvement

In this subsection, we show the performance of TCP pipeline in a linear network topology. As in figure
8, we use a chain topology which consists of 6 duplex links and study the throughput between node
n1 and n7. Each link has a capacity of 20Mbps and a 10ms propagation delay. On each link we add

n2 n3 n5 n6 n7n1

120 TCP 40 TCP 40 TCP40 TCP40 TCP

4.67% 8.90% n47.13% 4.67% 4.67% 4.67%

80 TCP

Figure 8: Linear Network Topology

40, 80 or 120 background TCP flows from one end of the link to the other as indicated in the figure.
The figure also indicates the loss rate incurred on each link. Links with 120 background TCP flows
are the most congested links and those with 40 background TCP flows are the least congested. The
number of the background TCP flows is large enough to ignore TCP pipeline’s impact on link loss
rates. In each experiment, we fix the number of relay nodes and use the algorithm in Section 3.2 to
optimally set-up TCP pipeline. In the first case, data is transferred from source to destination via a
single TCP connection. In the second case, data is transferred using an optimally set-up TCP pipeline
and only 1 relay node is used. In the third case, data is transferred using an optimally set-up TCP
pipeline with 2 relay nodes in the middle. Similarly for the 4th case and the 5th case. In the 6th
case, data is transferred using a hop-by-hop TCP pipeline. Figure 9 shows the achieved throughput
of TCP pipelines optimally established as in Section 3. From this set of experiments, we see that
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the throughput increases as the number of relay nodes increases, which shows the performance boost
brought by TCP pipelining.
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Figure 9: Chain Topology Experimental Results

5.2 TCP Relay in Overlay Networks

We now demonstrate the throughput boost enabled by application relay in an overlay network. Our
underlying network consists of 50 nodes and 217 edges, created by the Georgia Tech’s topology generator
GT-ITM [30]. All links have the same capacity of 10Mbps and the delays are set proportional to the
distance between two nodes in the GT-ITM generated scenario. Any two links between two nodes have
the same loss rate, and the loss rate is randomly set between 0 and 0.02. Among the 50 nodes, we
randomly choose 20 nodes to form an overlay network. On this overlay network, we perform two sets of
experiments. In one set of experiments, we use the Bellman-Ford algorithm proposed in Section 4.2 to
find the widest TCP relay path with different logical hop constraints. In the other set of experiments,
we use the algorithm discussed at the end of Section 4.3 to demonstrate the trade-off between the width
and length of a relay path.
The first set of experiments in this subsection uses the widest TCP relay path with limited hops
algorithm to compute optimal TCP relay paths. We randomly choose two pairs of overlay senders and
receivers in the overlay network and observe the throughput achieved using or without using TCP relay.
We compare the changes of throughput for the sender/receiver pairs as the maximum number of hops
used in TCP relay increases. In these cases, the widest paths do not change every time the upper limit
increases and keep the same when the upper limit is larger than 7. Thus we set the maximum hops
used in the overlay TCP relay from 1 to 8 and observe the throughput reached in each case. When the
maximum hops is set to 1, the underlying path between the sender and the receiver is used. Figure 10
shows the throughput achieved for the three sender/receiver pairs with different TCP relay paths. We
see that, when the limit on the maximum relay hops used is increased, wider relay paths can be found
and the achieved throughput shows an obvious increasing trend.
In the second set of experiments, we use the algorithm proposed in Section 4.3 to set up the shortest
TCP relay path satisfying the width requirement in this 20 node overlay network. The purpose is to
illustrate the trade-off between the width and length of a relay path. We choose three source destination
pairs. Based on the previous discussions on the trade-off between width and length (logical or physical
hop counts) of a path, we relax the width requirement gradually and solve for shortest length (measured
in logical or physical hops) at each relaxation level. Experiment results are shown in Figure 11 and 12.
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Figure 10: TCP Relay using Widest Path with Limited Hops

The level of path width relaxation is represented by the relax margin, which is the gap between the
width of the widest relay path and the width requirement. Figure 11 shows that as we relax the width
requirement, we can find shorter path in terms of relay segments at the expense of smaller width. We
observe the similar results when we use physical hop counts as the metric for the path length, as shown
in Figure 12.

6 Discussions: Impact on the Underlay Network

In previous sections, we have studied various application relay schemes to increase the bandwidth of
data transport. We have assumed that an application level relay has negligible impact on the underlay
network. This can be justified when the amount of traffic employing application relay constitutes a small
portion of the total network traffic. However, end users have a strong motivation to employ application
relays to improve their performance. Application relays are becoming more and more popular and they
are generating an increasing fraction of network traffic. The fast growth in overlay traffic draws more
and more attentions. In this section, we discuss application relays’ impact on the underlay network
and the performance of normal users. Specifically, our discussions focus on application relays’ impact
on efficiency and fairness.
Application relays overcome deficiencies in underlay network congestion control and routing. They
improve network efficiency in the following ways. Application relay paths are set to maximize the
throughout on their “narrowest” relay hops. By doing so, traffic is routed away from the most congested
links. Therefore, application level relays in fact help achieve network load balancing. At the network
layer, traffic engineering also tries to balance workload on all links. Due to the cost of changing routing
tables on routers, the time interval between network routing updates is on the scale of days. On the
other hand, application relay paths can be updated much more frequently so that it can keep up with
changes in network traffic. Along a relay path, relay nodes are responsible for the reliability of packets
relayed by them. Lost packets, either due to congestion or corruption, are recovered locally. The local
recovery eliminates unnecessary packet retransmissions on all links along an end-end path triggered
by packet losses on just one link. This saving is significant especially when there are wireless links
on the path [25]. Large feedback delay is a major hurdle for the stability and efficiency of congestion
control schemes [31, 32, 33]. TCP connections on relay segments experience much smaller feedback
delays and reacts faster than end-end connections. Local rate control is more efficient in obtaining

16



0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

60

70

80

90

100

Relax Margin (kbps)

W
id

th
 (k

bp
s)

Source 1, destination 6
Source 1, destination 14
Source 1, destination 18

(a) Width of a shortest width-constrained
path decreases as we relax the width con-
straint.

0 20 40 60 80 100 120 140 160 180
1

2

3

4

5

6

7

Relax Margin (kbps)

Lo
gi

ca
l H

op
 C

ou
nt

s

Source 1, destination 6
Source 1, destination 14
Source 1, destination 18

(b) Logical hop count of a shortest width-
constrained path decreases as we relax the
width constraint.

Figure 11: Shortest Width-constrained Path: logical hop count as the path length
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available bandwidth and at the same time helps to maintain network stability. Application level data
relay in the store-and-forward manner naturally supports local caching of redundant data. For some
data intensive applications, such as multicast and web server caching, an application relay can greatly
reduce the amount the traffic crossing the network.
Application relay users can achieve better performance than regular users. They raise the fairness
issues between different applications. However, it is not fair to criticize application relay users for
being unfair to regular users just because they achieve higher throughput. As argued in [25], splitting
a long connection into multiple smaller connections actually provides better fairness in a MANET. By
moving traffic to less congested path, application relays in fact help to improve the performance of those
regular users that have to use the congested path. Most previous studies of fair sharing of network
resource focused on the transport layer and below [3, 34, 35, 36]. Little attention has been given to
application layer fairness. Fairness issues of multi-path routing was investigated in [23]. Recently it
has been studied in [17, 18] that Parallel TCP breaks, at the application layer, the fairness that TCP
tries to maintain at the transport layer. The resources consumed by an application can be measured
by the amount of congestion it generates in the network. Utility-price based framework was proposed
to study the fairness and stability of congestion control schemes [35, 36, 37, 38]. Each transport layer
connection has a utility function and incurs cost from all links along its path with congestion based
price. The rate control problem is studied as a distributed optimization problem. This utility-price
based approach can potentially be used to investigate the fairness issue at application layer. Since one
application relay employs multiple transport layer connections to relay data, how to combine utility
functions of those relay connections to study the application level fairness is a problem deserves further
study. The goal of application layer fairness study is to guide the design of application level relays
which trade-off efficiency with fairness among competing applications.

7 Conclusions and Future Works

In this paper, we investigate application level relay schemes for high-bandwidth data transport over
shared wide area networks. We have shown that, by optimally combining TCP connections, both se-
quentially and in parallel, TCP pipelining greatly improves the throughput of long-haul data transport
over lossy links. It also improves network efficiency and alleviates discrimination against long connec-
tions. The proposed optimal relay algorithms can be easily adopted in wireless/sensors and special
purpose wired-line networks to relay data between nodes far away from each other. The optimal relay
problem in overlay networks has been formulated as a multi-metric application level routing problem.
Various algorithms have been investigated to optimize for multiple performance measures of individual
users and the network as a whole. Proposed algorithms are readily to be implemented in operating
overlay networks. We also discuss application level relays’ impact on the fairness and efficiency of
network resource allocation.
Future works can be pursued in several directions:

1. Extensive experiments have to be conducted in real network environment, such as the wide area
overlay testbed PlanetLab [39], to test the performance of proposed relay schemes, and more
importantly gain more understanding on the trade-offs between multiple performance metrics of
relay paths.

2. The implementation of relay schemes in overlay networks remains to be studied. What is the right
way to collect statistics regarding the underlay network? It was pointed in [40] that independent
probes by overlay nodes generate considerable ping traffic. A routing underlay was proposed
to collect information from the underlying Internet and answer the queries of overlay nodes.
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Another question to be answered is when and how to compute optimal relay paths? Each node
can calculate its optimal relay paths using distributed algorithms or a centralized unit is set up
to do the optimization for all the nodes. Depending on the variability in the network condition,
relay paths can be pre-computed and updated occasionally when the state of the network changes;
or relay paths are calculated on-demand.

3. While the major objective of application level relay is to efficiently utilize network resource, the
fairness issue at application level deserves more study. How to trade-off efficiency with fairness
in application level relays is an interesting problem to look into.
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