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Abstract

An emerging Internet application, IPTV, has the potential
to flood Internet access and backbone ISPs with massive
amounts of new traffic. We recently measured 200,000 IPTV
users for a single program, receiving at an aggregate simulta-
neous rate of 100 gigabits/second. Although many architec-
tures are possible for IPTV video distribution, several chunk-
driven P2P architectures have been successfully deployed
in the Internet. In order to gain insight into chunk-driven
P2P IPTV systems and the traffic loads they place on ISPs,
we have undertaken an in-depth measurement study of one
of the most popular IPTV systems, namely, PPLive. We
have developed a dedicated PPLive crawler, which enables
us to study the global characteristics of the chunk-driven
PPLive system. We have also collected extensive packet
traces for various different measurement scenarios, includ-
ing both campus access network and residential access net-
works. The measurement results obtained through these plat-
forms bring important insights into IPTV user behavior, P2P
IPTV traffic overhead and redundancy, peer partnership char-
acteristics, P2P IPTV viewing quality, and P2P IPTV design
principles.

1 Introduction

With the widespread adoption of broadband residential ac-
cess, IPTV may be the next disruptive IP communication
technology [11]. With potentially hundreds of millions of
users watching streams of 500 kbps or more, IPTV would
not only revolutionize the entertainment and media indus-
tries, but could also overwhelm the Internet backbone and
access networks with traffic. Given this possible tidal wave
of new Internet traffic, it is important for the Internet research
community to acquire an in-depth understanding of the de-
livery of IPTV, particularly for the delivery architectures that
hold the greatest promise for broad deployment in the near
future.

There are several classes of delivery architectures for
IPTV, including native IP multicast [14], application-level
infrastructure overlays such as those provided by CDN com-
panies [1, 19], peer-to-peer multicast trees such as in end-
system multicast [12], and chunk-driven P2P streaming such

as CoolStreaming [26] and PPLive [6]. Each of these archi-
tectures classes imposes different traffic patterns and design
challenges on Internet backbone and access networks. Re-
quiring minimal infrastructure, P2P architectures offer the
possibility of rapid deployment at low cost.

In terms of the number of simultaneous users, the most
successful IPTV deployments to date have employed chunk-
driven P2P streaming architectures. Bearing strong similari-
ties to BitTorrent [13], chunk-driven P2P architectures have
the following characteristics:

1. A television channel is divided into media chunks (e.g.,
each chunk consisting of one second of media data) and
is made available from an origin server.

2. A host, interested in viewing a particular channel, re-
quests from the system a list of hosts currently watching
the channel. The host then establishes partner relation-
ships (TCP connections) with a subset of hosts on the
list.

3. Each host viewing the channel buffers and shares
chunks with other hosts viewing the same channel. In
particular, a host periodically receives buffer maps from
each of its current partners. The buffer map indicates
the chunks the partner currently has available. Using a
scheduling algorithm, the host requests from its partners
the chunks that it will need in the near future.

4. As in BitTorrent, each host continually seeks new part-
ners that deliver data at higher rates than its existing
partners.

An important characteristic of chunk-driven P2P algorithms
is the lack of an (application-level) multicast tree - a charac-
teristic particularly desirable for the highly dynamic, high-
churn P2P environment [26]. Although these chunk-driven
algorithms have similarities with BitTorrent, BitTorrentin it-
self is not a feasible delivery architecture, since it does not
account for the real-time needs of IPTV.

Several chunk-driven P2P streaming systems have been
successfully deployed to date, accommodating thousands of
simultaneous users. Almost all of the these deployments
have originated from China (including Hong Kong). The pi-
oneer in the field, CoolStreaming, reported that more than
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4, 000 simultaneous users in 2003. More recently, a num-
ber of second-generation chunk-driven P2P systems have re-
ported phenomenal success on their Web sites, advertising
tens of thousands of simultaneous users who watch channels
at rates between 300 kbps to 1 Mbps. These systems include
PPLive [6], ppStream [7], VVSky [9], TVAnts [8] and FeiD-
ian [4].

Given the success to date of many of these IPTV systems,
as well as their potential to swamp the Internet with massive
amounts of new traffic in the near future, we have been moti-
vated to carry out an extensive measurement study on one of
the chunk-driven P2P streaming systems, namely, PPLive.
We chose PPLive as it is currently one of the most popu-
lar – if not the most popular – IPTV deployment to date.
In particular, as part of a preliminary study we performed
on PPLive, we measured the number of simultaneous users
watching a PPLive broadcast of the annual Spring Festival
Gala on Chinese New Year on January 28, 2006. We ob-
served that PPLive broadcasted this event to over 200,000
users at bit rate in the 400-800 kbps range, corresponding to
an aggregate bit rate in the vicinity of 100 gigabits/sec!

In an earlier workshop paper, we reported preliminary
measurement results for PPLive [17]. The current paper
goes significantly further, providing a comprehensive study
of PPLive, including insights into the global properties ofthe
system. Achieving these deeper insights has been challeng-
ing because the PPLive protocol is proprietary. In particular,
in order to build the measurement tools that were used to col-
lect much of the data in this paper, we had to analyze a large
portion of the PPLive protocol.

In this paper, we seek to answer the following questions
about a large-scale P2P IPTV deployment:

• What are the user characteristics?For both popular and
less-popular PPLive channels, how does the number of
users watching a channel vary with time? As with tra-
ditional television, are there diurnal variations in user
demand? What are the dynamics of user churn? What
is the geographic distribution of the users, and how does
this distribution fluctuate over time.

• How much overhead and redundant traffic is there?
What fraction of bytes a peer sends (or receives) is con-
trol data and what fraction is actual video data? What
fraction of the video traffic that a peer receives is redun-
dant traffic?

• What are the characteristics of a peer’s partnerships
with other peers?How many partners does a peer have?
What are the durations of the partnerships? At what
rates does a peer download from and upload to its part-
ners? How are the partnerships different for a campus
peer and a residential peer? How do the partnerships
compare to those in BitTorrent?

• How good is the viewing quality?What are the view-
ing quality metrics in an IPTV system? How well does
PPLive perform with respect to these metrics?

• What are the fundamental requirements for a successful

chunk-driven P2P IPTV system?How does a P2P IPTV
system maintain high enough downloading rates on all
peers with heterogeneous uploading capacities? What
is the video buffering requirement for smooth playback
on individual peers in the face of rate fluctuations on
peering connections and peer churns?

In this paper, we attempt to answer these questions by us-
ing a custom-designed PPLive crawler and using packet snif-
fers deployed at both high-speed campus access and broad-
band residential access points. Quantitative results obtained
in our study bring light to important performance and design
issues of live streaming over the public Internet.

This paper is organized as follows. We conclude this sec-
tion with an overview of related P2P measurement work. In
Section 2, we provide an overview of different aspects of
PPLive including architecture, signal and management pro-
tocols based on our measurement studies. The design and
development of the tools are presented in details in Section
3. Our measurement tools include an active crawler and a
passive sniffer. In Section 4, using our PPLive crawler, we
present the global-scale measurement results for the PPLive
network, including number of users, arrival and departure
patterns, and peer geographic distributions. In Section 5,
by sniffing monitored peers, we present the traffic patterns
and peering strategies as viewed by residential and campus
PPLive clients. In Section 6, we characterize the stream-
ing performance of PPLive, including playback freezing and
restoration, using our playback monitor. Finally, based on
our measurement results, we outline some design guidelines
for the successful deployment of IPTV application over the
Internet in Section 7.

1.1 Related P2P Measurement Work

To our knowledge, this paper (along with [17]) is the first
measurement study of a large-scale P2P streaming system.
There are, however, a number of recent measurement stud-
ies of other types of P2P systems, including file sharing,
content-distribution, and VoIP. For file sharing, Saroiu etal.
measured the Napster and Gnutella [23] and provided a de-
tailed characterization of end-user hosts in these two sys-
tems. Their measurement results showed significant het-
erogeneity and lack of cooperation across peers participat-
ing in P2P systems. Gummadi et al. monitored KaZaa
traffic [16] for characterizing KaZaa’s multimedia workload
and they showed locality-aware P2P file-sharing architec-
tures can achieve significant bandwidth savings. Ripeanu
et al. crawled the one-tier Gnutella network to extract its
overlay topology. For the latest two-tier Gnutella network,
Stutzbach et al. provided a detailed characterization of P2P
overlay topologies and their dynamics in [25]. Liang et al.
deployed active crawling in [20] to reveal in-depth under-
standing of KaZaa overlay structure and dynamics. In [21],
Liang et al. further demonstrated the existence of content
pollution and poisoning in KaZaa using an active crawler.
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A measurement study was carried out for the live stream-
ing workload from a large content delivery network in [24].
For content distribution, Izal et al. and Pouwelse et al. re-
ported measurement results for BitTorrent [18] and [22]. For
VoIP, two measurement studies of Skype are available [10]
and [15]. A detailed protocol analysis of Skype was pre-
sented in [10] and Skype traffic pattern reported in [15] dif-
fers fundamentally from previous file-sharing P2P systems.
Performance evaluation of CoolStreaming was carried out
over PlanetLab [26] and the measurement results showed
that chunk-driven live streaming systems achieve significant
more continuous media playback than tree based systems.

2 Overview of PPLive

PPLive is a free P2P IPTV application. According to the
PPLive web site [6] in May 2006, PPLive provides200+
channels with400, 000 daily users on average. The bit rates
of video programs mainly range from250 kbps to400 kbps
with a few channels as high as800 kbps. PPLive does not
own video content; the video content is mostly feeds from
TV channels in Mandarin. The channels are encoded in
two video formats: Window Media Video (WMV) or Real
Video (RMVB). The encoded video content is divided into
chunks and distributed to users through the PPLive P2P net-
work. The PPLive web site [6] provides limited informa-
tion about its proprietary technology. Through our measure-
ment studies and protocol analysis, however, we have gained
significant insight into the PPLive protocols and streaming
mechanisms. In order to gain a better understanding of our
measurement tools and results, in this section we provide an
overview of the PPLive operation. The overview also pro-
vides an introduction into the design of a chunk-based video
streaming system.

The PPLive software, running in user computers (peers),
has two major communication protocols:(i) a registration
and peer discovery protocol; and(ii) a P2P chunk distribu-
tion protocol. Figure 1 depicts an overview of the registra-
tion and peer discovery protocol. When an end-user starts the
PPLive software, it joins the PPLive network and becomes a
PPLive peer node. The first action (step1) is an HTTP ex-
change with the PPLive Web site to retrieve a list of channels
distributed by PPLive. Once the user selects a channel, the
peer node registers with the bootstrap root servers and re-
quests a list of peers that are currently watching the channel
(step2). The peer node then communicates with the peers
in the list to obtain additional lists (step3), which it aggre-
gates with its existing list. In this manner, each peer main-
tains a list of other peers watching the channel. A peer on a
list is identified by its IP address and UDP and TCP service
port numbers. The registration and peer discovery protocol
is commonly running over UDP; however, if UDP fails (for
example, because of a firewall), PPLive will instead use TCP
for registration and peer discovery.

We now describe the chunk distribution protocol. At any
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Figure 1: Channel and peer discovery

given instant, a peer buffers up to a few minutes worth of
chunks within a sliding window. Some of these chunks may
be chunks that have been recently played; the remaining
chunks are chunks scheduled to be played in the next few
minutes. Peers upload chunks to each other. To this end,
peers send to each other “buffer map” messages; a buffer
map message indicates which chunks a peer currently has
buffered and can share. The buffer map message includes
the offset (the ID of the first chunk), the length of the buffer
map, and a string of zeroes and ones indicating which chunks
are available (starting with the chunk designated by the off-
set). The offset field is of 4 bytes. For one PPLive channel
with the bit rate of 340 kbps and a chunk size of 14 KBytes,
this chunk range of232 indicates the time range of 2042 days
without wrap-up. Figure 2 illustrates a buffer map. A peer
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Figure 2: A peer’s buffer map of video chunks

can request, over a TCP connection, a buffer map from any
peer in its current list of peers. After a peer A receives a
buffer map from peer B, peer A can request one or more
chunks that peer B has advertised in the buffer map. As
we will see in Section 5, a peer A may download chunks
from tens of other peers simultaneously. PPLive continu-
ally searches for new partners from which it can download
chunks. Since PPLive is proprietary, we do not know the ex-
act algorithm a peer uses for choosing partners and request-
ing chunks. Clearly, when a peer requests chunks, it should
give some priority to the missing chunks that are to be played
out first. Most likely, it also gives priority to rare chunks,that
is, chunks that do not appear in many of its partners’ buffer
maps (see [2] [26]). Peers can also download chunks from
the PPLive channel server. The chunks are sent over TCP
connections.

Having addressed how chunks are distributed among
peers, we now briefly describe the video display mecha-
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nism. As mentioned above, PPLive works in conjunction
with a media player (either Windows Media Player or Re-
alPlayer). Figure 3 illustrates the interaction between the
PPLive peer software and the media player. The PPLive
engine, once having buffered a certain amount of contigu-
ous chunks, launches the media player. The media player
then makes an HTTP request to the PPLive engine, and
the PPLive engine responds by sending video to the media
player. The media player buffers the received video; when it
has buffered a sufficient amount of video content, it begins
to render the video.

Media Player 

Internet
Media 
User 

Interface 
Queue

S

PPLive Engine 

Queue

streaming direcion

Figure 3: PPLive streaming process

If, during video playback, the PPLive engine becomes in-
capable of supplying the video player with data at a sufficient
rate (because the PPLive client is in turn not getting chunks
fast enough from the rest of the PPLive network), then the
media player will starve. When this occurs, depending on
the severity of the starvation, the PPLive engine may have
the media player wait where it left off (freezing) or it may
have the media player skip frames.

3 Measurement Methodologies

Our P2P network measurements fall into two categories: ac-
tive crawling and passive sniffing. The active crawling is
used to obtain a global view of the entire PPLive network for
any channel. Our crawler has a UDP component for collect-
ing peer lists from all the PPLive peers; and a TCP compo-
nent for collecting buffer maps from all the PPLive peers.
The passive sniffing is used to gain a deeper insight into
PPLive from the perspective of residential users and campus
users.

3.1 Active Crawling

To characterize the behavior of the entire PPLive network,
we developed a crawler which repeatedly probesall of the
PPLive nodes that are watching a specific channel. Building
the crawler was a major challenge in itself, since we needed
to implement portions of the PPLive proprietary protocol.
To this end, using packet traces from passive sniffing and our
knowledge about how chunk-driven P2P streaming generally
operates, we were able to understand critical portions of the
PPLive’s signaling protocols. During a crawling experiment,
peer responses are recorded for online processing and off-
line analysis.

3.1.1 Harvesting Peer Lists

Recall from Section 2 that each peer watching a particular
channel maintains a peer list, which lists other peers cur-
rently watching the same channel. Also recall that any peer
A can send to any other peer B, within a UDP datagram,
a request for peer B’s peer list. The crawler, implementing
the PPLive protocol, sweeps across the peers watching the
channel and obtains the peer list from each visited peer. The
crawler does these three phases:

• Peer Registration:The UDP crawler first registers it-
self with one of the root servers by sending out a peer
registration packet. The significant information in this
packet includes a128 bit channel identifier, its IP ad-
dress, and its TCP and UDP service ports. In contrast
to many other popular P2P applications, a PPLive peer
does not maintain a fixed peer ID, but instead generates
a new, random value every time it re-joins the channel.

• Bootstrap:After the registration, the crawler sends out
multiple bootstrap peer list queries to the peer-list root
server for peers enrolled in this channel. In response
to a single query, the server will return a list of peers
(normally50 peers), including IP addresses and service
port numbers. The crawler aggregates all the lists it has
received, thereby maintaining its own list of peers en-
rolled in the channel.

• Peer Query:After obtaining an initial peer list from the
root servers, the crawler sends peer list queries directly
to those peers from the initial list. Active peers will
return part of their own peer lists, which get added to
the crawler’s list.

PPLive clients are highly dynamic, joining and leaving
PPLive and switching between channels frequently. To ac-
count for the highly dynamic nature of the PPLive clients, we
designed the crawler to periodically crawl the PPLive net-
work to track active peers once a minute. In particular, every
one minute, the crawler starts from scratch, with an empty
peer list. Furthermore, within each minute, the crawler is
only active for the first 15-seconds, during which it:

1. Obtains an initial peer list for the root server.

2. Sends peer queries to non-queried peers in the list.

3. Marks a peer active if it responds to the query with its
own peer list; expands the crawler’s peer list using the
lists received from active peers; returns to step(2) until
no new peers are obtained by peer queries.

Then we have finished oneloop of probing. In our experi-
ments, it normally takes about6 seconds to finish one loop.
After one loop, to include peers that joined the network dur-
ing the probing loop, the crawler goes back to the beginning
of the list and probes all the peers again to find new active
peers. We repeat the process until15 seconds run up. The
crawler then records the active peers seen in this15 seconds,
clears its memory, and goes to sleep until the beginning of
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the next minute. In this manner we obtain a profile of the ac-
tive peers every minute. We note in passing that the crawler
doesn’t use a NAT traversal scheme. Peers behind NATs may
not set their NATs properly to receive peer queries from the
crawler. Our crawler therefore under-estimates the number
of active peers; in fact, in some of experiments we observed
that as many as 37% of the PPLive peers could be behind
NATs. Although NATs make it difficult to determine the ab-
solute number of users at any time, our measurement results
still enable us to report time evolutionary trends and also pro-
vide lower bounds on the number of users.

3.1.2 Harvesting Buffer Maps from Active Peers

To monitor the buffer content of PPLive clients, we aug-
mented the crawler with a TCP component that retrieves the
buffer map from the active peers during above crawling pro-
cess. To this end, as we crawl each peer, the crawler sends
a PPLive request for the peer’s buffer map. We then parse
the buffer maps off-line, to glean information about buffer
resources and timing issues at the remote peers throughout
the network.

3.2 Passive Sniffing

Passive sniffing captures the traffic exchanged between our
monitored peers and their partners in the PPLive network.
We collected multiple PPLive packet traces from four PCs:
two PCs connected to Polytechnic University campus net-
work with 100 Mbps Ethernet access; and two PCs con-
nected to residential networks through cable modem. Most
of the PPLive users today have either one of these two types
of network connections. The PCs with residential access
were located at Manhattan and Brooklyn in New York. Each
PC ran Ethereal [3] to capture all inbound and outbound
PPLive traffic. We built our own customized PPLive packet
analyzer to analyze the various fields in the various PPLive
signaling and content packets.

3.2.1 Playback Monitoring

In IPTV, user’s perceived quality is vital for a successful
service. As shown in Figure 3, the media player interacts
with the PPLive engine. Whenever the PPLive engine has
received playable media chunks, the PPLive engine streams
these media chunks to the player. When the media player
runs out of media contents, the player freezes, impacting
the user perceived quality. To trace the user playback per-
formance, we developed a simple PPLive playback moni-
tor. This monitor emulates the normal media playback pro-
cess and tracks the presentation time of the latest media
chunk. The difference between the actual playback time and
the latest media chunk presentation time indicates the size
of playable media size in the player. The monitor reports
an playback freeze whenever this time difference reaches0.
During the playback freezing period, the monitor continues

receiving media content from the PPLive engine. When the
buffered content is above a threshold, which is specified by
the content source in the media file header, the monitor re-
ports a recovery from freeze.

4 Global Behavior of the PPLive Net-
work

In this section, we reportglobal statisticsfor the PPLive net-
work collected by UDP component of the crawler. PPLive
hosts more than200 different programs. To compare the
characteristics of different programs, we crawled two pro-
grams: XING, a popular channel with a5-star popularity
grade: and GUANG, a less popular channel with a1-star
popularity grade. The two programs were both crawled for
one entire day in April, 2006. The crawler crawled both
programs every minute as described in the previous section.
Based on the lists of the active peers at every minute of
the crawled programs, we calculated the number of users,
user arrivals and departures, and user geographic locations.
What’more, we also collected data during the Chinese New
Year to observe some user behavior.

4.1 Number of Participating Users

Figure 4 shows how the number of users evolves for both
crawled programs. Both sub-figures are labelled in US East-
ern Standard Time. We first observe that the numbers of par-
ticipating users are quite different for the two programs. The
maximum number of users for the popular program reaches
nearly1, 700; however, that of the unpopular program is just
around120. The diurnal trend is clear for both programs.
The major peaks appear during9AM to 1PM EST, translat-
ing into 9PM to 1AM China local time. As we shall see,
those peaks are mostly contributed by users from China.
There are several smaller peaks scattered around9PM to
5AM, translating into9PM EST to2AM WST. We believe
those are mostly due to users in US. We will show the user
geographic distribution in Section 4.3. This suggests that
people tend to use IPTV to watch TV programs outside of of-
fice hours, consistent with the behavior of regular TV users.
In contrast, a recent measurement study on Skype [15] sug-
gests that people tend to use VoIP service at work.

In Fig 5, we plot the evolution of the number of users for
the popular channel over one week. We can observe that
more people use PPLive during weekends than during week-
days. This again confirms that most users use IPTV in their
leisure time. As with many other P2P applications, the num-
ber of IPTV users is largely determined by the popularity of
the program. The annual Spring Festival Gala on Chinese
New Year is one of the most popular TV programs within
Chinese communities all over the world. Starting from3AM
EST, January28, 2006 (Chinese New Year Eve day), we ran
the crawler to collect all peer IP addresses from14 PPLive
channels which were rebroadcasting the event. Figure 6 plots
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Figure 4: Diurnal Trend of Number of Participating Users
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Figure 5: Weekly Trend of Number of Users

the number of peers watching this event live through PPLive.
There was a sharp jump from50, 000 peers to200, 000 peers
after the event started at7AM EST. The number of users
stayed at this high level for around4 hours. The number
of users went back to normal when the event finished at
about12AM EST. The near constant user population during
the event suggests that chunk-driven P2P streaming systems
scales well, handling a flash crowd in a live broadcasting.
We will come back to the video quality issue in Section 6.

4.2 User Arrivals and Departures

In this section, we examine the peer arrival and departure
pattern for the popular channel. We record a peer arrival
when the crawler finds a new IP address joining the program.
To deal with possible losses of peer queries and responses,
we only record a peer departure if a previously active peer
doesn’t respond to three consecutive queries.

The numbers of peer arrivals and departures of the popu-
lar channel in every minute of one day are plotted in Figure
7. Since it is a popular program, many peers continuously
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Figure 6: Flash Crowd on Chinese New Year Eve

join and leave. Comparing this figure with that the evolution
of the number of active peers, Figure 4(a), we see peers join
and leave at a higher rate at the peak time. Note the con-
secutive pulse spacings of about2 hours in Figure 7(b). The
pulses are due to many peers leaving immediately and simul-
taneously at the end of (roughly) two-hour programs. This
batch-departures pattern in PPLive system is different from
p2p file sharing systems, where peer departures are mostly
triggered by the asynchronous completions (or, the detec-
tions of completions) of file downloads. This suggests that
p2p IPTV systems expect lower peer churn rates in the mid-
dle of a program. Consequently, peers can maintain more
stable partnership with each other. We will address this more
in Section 5.2.3.
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Figure 7: Peer Arrival and Departure Evolution of a Popular
Channel

We define the peer lifetime the time between the arrival
and the departure of the peer. Our analysis shows that peer
lifetimes vary from very small values up to16 hours. There
are totally34, 021 recorded peer sessions for the popular
channel and2, 518 peer sessions for the unpopular channel.
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The peer lifetime distribution in Figure 8 suggests that the
peers prefer to stay longer for popular programs than for un-
popular programs. However90% of peers for both programs
have lifetimes shorter than1.5 hours.

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(min)

CD
F 

pr
ob

ab
ilit

y

pop
unpop

Figure 8: Peer Lifetime Distribution

4.3 User Geographic Distribution

We classify PPLive users into three categories according to
their IP addresses: users from Asia, users from North Amer-
ica, and users from the rest of the world. To accomplish this,
we query the free MaxMind GeoIP database [5] to obtain the
country that each user belongs to with the recorded user IP
address as the input. Figure 9 shows the evolution of the geo-
graphic distribution of the popular channel during one entire
day. The figure is divided into three regions by two curves.
The bottom region is made up of the peers from Asia, the
middle region is for the peers from North America, and the
top region is for peers from the rest of the world. We can see
that most of users come from Asia. Again, the curve reaches
it lowest point around7PM to8PM EST.
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Figure 9: Evolution of Geographic Distribution

Fig 10 plots the evolution of peer geographic distribution
for the Spring Festival Gala event on the past Chinese New
Year’s Eve. This figure has the same format as Figure 9,
with three regions denoting three different geographical re-
gions. We can see that for this event, many peers from out-
side of Asia were watching the live broadcast – in fact, a
significantly higher percentage of peers were from outside
of Asia as compared with Figure 9. The distribution evolu-
tion is consistent with the observations in Section 4.2: Peers
from North America have the smallest share at about7AM
EST, and the largest share at about8PM EST. Thus the be-

havior of users in North America is quite similar to users in
Asia.
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Figure 10: Evolution of Geographic Distribution during Chi-
nese New Year’s Eve

5 Local Views from Monitored Peers

In this section, we present detailed statistics derived from
packet traces collected on our monitored peers. As summa-
rized in Table 1, we collected traces from four peers, each of
which was watching one of two channels (either the popu-
lar CCTV3 or the less popular CCTV10) from either a cam-
pus network or residential networks. Data was obtained at
different granularities, including byte-level, packet-level and
session-level, to help us understand PPLive’s signaling and
streaming protocols and its impact on the Internet.

5.1 Video Traffic and Signaling Overhead

A PPLive peer generates and receives both video and sig-
naling traffic. In this paper, we are mainly concerned with
the video traffic, since it is responsible for majority of the
traffic in most P2P streaming systems. In order to present a
clear picture of the nature of the PPLive video traffic, we use
a simple heuristic to filter out the signaling traffic from our
traces. The ideas behind heuristic can likely be employed
for the analysis of many P2P streaming systems, including
PPLive.

In a chunk-driven P2P video streaming system, a peer nor-
mally has a large number of ongoing TCP connections with
other peers. Some of these connections contain only sig-
naling traffic; other connections contain video chunks and
possibly some signalling traffic. The chunk size is typically
much larger than the maximum payload size of a TCP seg-
ment (typically 1460 bytes). For example, in PPLive, the
chunk size is larger than 14 KBytes (the exact chunk size
depends on the bitrate). Thus, if a TCP connection carries
video, it should have a large number (say, at least 10) of large
size TCP segments (say,> 1200 bytes) during its lifetime.
These observations lead to the following heuristic:

1. For a given TCP connection, we count the cumulative
number of large packets (> 1200 bytes) during the con-
nection’s lifetime. If the cumulative number of large
packets is larger than 10, this connection is labeled as
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Table 1: Data sets
Trace Name Trace size Duration Playback Rate Total IPs Active IPs Download Upload

(Byte) (Sec) (Kbps) (MByte) (MByte)
CCTV3-Campus 784,411,647 7676 340 3105 2691 360.99 4574.57

CCTV3-Residence 132,494,879 7257 340 1616 1183 372.53 352.75
CCTV10-Campus 652,000,813 7285 312 1008 910 317.08 3815.34

CCTV10-Residence 66,496,909 9216 312 797 282 385.50 7.68

a “video TCP connection”; otherwise, the connection is
labeled as a “signaling TCP connection”. We filter from
the traces all signaling TCP connections.

2. A video TCP connection may include some signaling
traffic as well. For each video TCP connection, we fur-
ther filter out all packets smaller than 1200 bytes.

We first use this heuristic to estimate the fraction of up-
stream and downstream signaling overhead for each of the
four traced peers. The signaling overhead consists of the
payloads of all UDP packets, plus the payloads of all the TCP
packets in the signaling connections, plus the payloads of all
the TCP packets less than 1200 bytes in all of the video con-
nections. From Table 2 we see that the signaling overhead is
generally in the 5% to 8% range.

5.1.1 Video Traffic Redundancy

Due to the distributed nature of chunk-driven P2P streaming,
it is possible that a peer downloads duplicate chunks from
multiple partners. The transmission of redundant chunks
wastes network and access bandwidth; hence, we are inter-
ested in measuring the redundancy traffic once the streaming
player begins to playback steadily. To this end, to minimize
the impact of transient behavior, the first 10 minutes of the
traces are not used for this redundancy analysis . Excluding
TCP/IP headers, we determine the total streaming payload
for the download traffic. Utilizing the video traffic filtering
heuristic rule, presented in Section 5.1, we are able to extract
the video traffic. Given the playback interval and the me-
dia playback speed, we obtain a rough estimate of the media
segment size for the playback interval. We compute the re-
dundant traffic as the difference between the total received
video traffic and the estimated media segment size. We de-
fine the redundancy ratio as the ratio between the redundant
traffic and the estimated media segment size. From Table 3,
we observe that the traffic redundancy to be small. This is
partially due to the long buffer time period so that PPLive
peers have enough time to locate peers in the same stream-
ing channel and exchange content availability information
between themselves.

The negative redundancy ratio (−3.5%) for CCTV3-
Campus indicates that the video download chunks are not
sufficient for smooth video playback. As shown in Figure
11(a), at time10 < t < 20 minute and60 < t < 64 minute
for CCTV3-Campus, the download rate decreases signifi-
cantly and the PPLive playback may suffer seriously lack-

ing of video chunks. Given the good connectivity of campus
network, this abnormal case requires further investigation.

5.1.2 Download and Upload Video Traffic

Having isolated the video traffic, we examine the aggregate
amount of upload and download video traffic leaving and en-
tering the four peers. Figure 11 plots the upload and down-
load rates for the video traffic for the four traces beginning
from startup. Each data point is the average bit rate over a30
second interval. We make the following observations:

1. The aggregate download rates closely hug the video
playback rates, even for campus peers where the avail-
able bandwidth greatly exceeds the playback rate. This
is very different from BitTorrent, which tries to use as
much of its downstream bandwidth as possible.

2. A P2P streaming peer’s aggregate upload rate can
greatly exceed the aggregate download rate. For exam-
ple, we see that for two campus peers, the upload rate
exceeds the download rate by (approximately) a factor
of 10. This is also very different from BitTorrent, whose
tit-for-tat mechanism encourages peers of roughly equal
capacity to partner with each other.

3. In a P2P streaming system, not all peers have an ag-
gregate upload rate exceeding the download rate. For
example, we see that one of the residential peers up-
loads at an average rate approximately equal to the av-
erage download rate, and the other residential peer does
almost no uploading. Thus, some peers act asampli-
fiers, pumping out bytes at rates higher than the receive
rate; some peers act asforwarders, pumping out bytes
at roughly the same average rate as the receive rate; and
some peers act assinks, forwarding very little traffic
over their lifetimes.

One important lesson learned is that even though an access
link may have asymmetric downstream and upstream band-
widths (such as ADSL), with the downstream bandwidth
being higher than the upstream bandwidth, the actual bit
rates can have opposite behavior, with uploading rates being
higher than the downloading rates. Thus, P2P video stream-
ing can potentially severely stress the upstream capacity of
access ISPs.

Note that in trace CCTV10-Residence, the download rate
falls significantly below the playback rate for about4 min-
utes at about timet = 33 minutes. After this decrease, the
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Table 2: PPLive traffic overhead
Trace name upload (MByte) download(MByte)

Signaling Video Percentage Signaling Video Percentage
UDP TCP TCP Overhead(%) UDP TCP TCP Overhead(%)

CCTV3-Campus 0.60 43.7 3951.4 1.11 0.88 22.6 285.7 7.59
CCTV3-Residence 2.87 19.9 313.2 6.78 4.40 23.5 314.9 8.14
CCTV10-Campus 1.23 73.8 3406.3 2.16 1.28 21.6 259.4 8.11

CCTV10-Residence 1.55 2.7 4.4 49.13 2.76 23.9 351.6 7.05

Table 3: Video traffic redundancy
Trace name Interval Total download Video download Estimated media segment sizeRedundancy ratio

(second) (MByte) (MByte) (MByte)
CCTV3-Campus 6966.2 308.3 285.7 296.1 -3.5%

CCTV3-Residence 6512.6 338.4 314.9 276.8 13.8%
CCTV10-Campus 6600.7 281.0 259.4 257.4 0.76%

CCTV10-Residence 8230.5 375.5 351.6 321.0 9.5%

peer aggressively downloads from the network, download-
ing at a rate higher than the playback rate for about3 min-
utes. Then the download rate becomes steady again. Despite
the PPLive and media player buffering, this download rate
deficit may have impacted the quality of the video playback.

Although not as high as the two campus peers, the res-
idential peer watching CCTV3 contributed traffic volume
comparable to its download traffic volume. However, the
other residual peer (watching CCTV10) only uploaded4.6
MBytes of video to other peers. Since the two residential
peers have similar access bandwidth, we seek an explana-
tion for why this one peer hardly uploaded any video. One
possibility is that the other peers contribute sufficient upload
bandwidth, so that this residential peer simply doesn’t need
to contribute. Another possibility is that the buffering and
rendering for this residential peer lags behind most of the
other peers; thus, relatively few other peers can use the res-
idential peer’s chunks (we will discuss this lagging issue in
more detail in Section 6).

5.2 Properties of Video TCP Connections

In this section we examine the basic properties of video TCP
connections in PPLive, including connection duration, num-
ber of partners, partner churn, and upload/download traffic
to/from partners.

5.2.1 Duration of Video TCP Connections

A video TCP connection begins with the TCP SYN packet;
we say that the connection ends when we see a TCP FIN
packet or when we see a packet that is not followed by any
other packet in the connection for two minutes. Figure 12
provides a typical Complementary Cumulative Distribution
Function (CCDF) of video TCP connection durations. Note
that durations spread over a wide range. The median dura-
tion is about 20 seconds and only about10% of the connec-
tions last for over15 minutes. Because many connections

are short, a peer may only exchange a few video chunks with
its partner before the connection ends.
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Figure 12: CCDF of duration of video TCP connection for
CCTV3-Campus

5.2.2 Number of Partners

For each of the four peers, Figure 13 plots the number of
partners (that is, its number of video TCP connections) the
peer has as a function of time. Note that campus peers
have many more partners than residential peers. A campus
peer utilizes its high-bandwidth access, maintaining a steady
number of partners for video traffic exchange. Content popu-
larity also has a significant impact on the number of partners
for the residential peer. In particular, the residential peer with
the less-popular CCTV10 channel seems to have difficulty
in finding enough partners for streaming the media. At time
t = 33 minutes, the number of partners drops to1. This re-
duction in partners significantly impacts the download rateof
this residential peer, as shown in Figure 11(d). In this experi-
ment, the peer detected this rate reduction quickly and started
to search for new partners. New partners were quickly found
and fresh streaming flows were established; hence, the video
download rate recovered quickly as a result.
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Figure 11: Upload and download video bit rates for the four traces

5.2.3 Dynamics of Partners

During its lifetime, a peer continually changes its partners.
This is illustrated in Figure 14, in which the number of part-
ners (video chunk exchange sessions) is sampled every30
seconds. A changed partner refers to either a new partner
or a partner that stops to exchange video chunks. For both
types of access networks, over a30 second period, typically
several partners leave and several new partners arrive. Nev-
ertheless, compared with the total number of partners, the
average number of the changed peers in30 seconds is less
than10% of the total video peers for campus peers. How-
ever, the changed partners make up a larger percentage of
the total number of partners for residential peers. One con-
sequence is that the download video rates of residential peers
are likely to fluctuate more significantly.

5.2.4 Locality of Partners

It would be a waste of network resources to download from
another continent if a channel could be downloaded from
a source in the same continent. We investigated whether a
PPLive peer takes locality into account when it determines
which peer to download from. We employed the same tech-
nique as that of Section 4.3 to determine the geographic lo-
cation of a peer.

For the three traced peers (all located in New York) with
substantial upload traffic, Table 4 shows the geographic dis-
tribution of the peer’s partners. We observe that a large frac-
tion of partners are located in Asia, and these Asian part-
ners contribute the majority of the download traffic. On the

other hand, the majority of the traffic uploaded by each of
our traced peers is to partners in North America. For ex-
ample, in Table 4(b), the CCTV3-residential peer downloads
81.0% video traffic from partners in Asia and18.3% video
traffic from partners in North America; however, it uploads
only 6.4% video traffic to Asia and64.1% to North America.

Table 4: Geographic distribution of partners
(a) CCTV3-Campus

Asia North America Other Places
peer(%) 19.1 73.5 7.4

Download(%) 72.3 26.2 1.5
Upload(%) 1.1 83.9 15.0

(b) CCTV3-Residence

Asia North America Other Places
peer(%) 63.5 29.5 7.0

Download(%) 81.0 18.3 0.7
Upload(%) 6.4 64.1 29.5

(c) CCTV10-Campus

Asia North America Other Places
peer(%) 37.1 55.7 7.2

Download(%) 92.1 6.9 1.0
Upload(%) 2.6 76.2 21.2
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Figure 13: Evolution of numbers of partners for each of four
peers

5.2.5 Traffic Volume Breakdowns across Video TCP
Connections

In a chunk-driven P2P system, a peer may download from
many partners and may upload to many partners. In this sub-
section, we examine how the download rates differ among
partners and how the upload rates differ among partners.
For a campus peer, Figure 15(a) compares the peer’s aggre-
gate download video rate with the download rate from the
greatest contributing peer. This top peer contributes on aver-
age about50% of the total video download traffic. How-
ever, the download rate from this top peer is highly dy-
namic, most likely due to content availability from the top
peer and congestion in the network between the two peers.
One important consequence is that a peer typically receives
video from more than one peer at any given time. With this
multi-download feature, the aggregate video download rate
becomes quite smooth. In conjunction with the buffering
mechanisms, PPLive typically provides smooth video play-
back, as discussed in Section 6.3. We also plot analogous
curves, in log scale, for video upload in Figure 15(b). Since
the campus node uploads to many peers, the top peer video
upload session only accounts for about5% of the total video
upload traffic.

6 User Perceived Quality

A fundamental measure of the success of an IPTV system is
user viewing satisfaction. While both subjective and anec-
dotal feedback from PPLive users and the stableness of user
population suggest highly satisfactory user perceived qual-
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Figure 14: Partner departures and arrivals

ity, in this section, we reportquantitativeresults on user per-
ceived quality for PPLive. In particular, we used our mea-
surement platforms, to obtain insights into start-up delay,
playback freezing rate, and video buffer occupancy.

6.1 Start-up Delay

Start-up delay is the time interval from when one chan-
nel is selected until actual playback starts on the screen.
For streaming applications in best-effort networks, start-up
buffering has always been a useful mechanism to deal with
the rate variations of streaming sessions. P2P streaming ap-
plications additionally have to deal with peer churns, increas-
ing the need for startup buffering and delay. While short
start-up delay is desirable, certain amount of start-up delay
is necessary for continuous playback. Using our monitored
peers, we recorded two types of start-up delays in PPLive:
the delay from when one channel is selected until the stream-
ing player pops up; and the delay from when the player pops
up until the playback actually starts. For a popular channel,
the player pop-up delay was in general10 to 15 seconds and
the player buffering delay was10 to 15 seconds. Therefore,
the total start-up delay is from20 to 30 seconds. Less pop-
ular channels had start-up delays of up to2 minutes. These
delays are, of course, significantly longer than what are pro-
vided by traditional television.

6.2 Playback Continuity

Other than start-up delay, playback continuity is another
important measure of user perceived quality. We devel-
oped a simple PPLive playback monitor to trace the play-
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Figure 15: Peer download and upload video traffic break-
down for CCTV3-Campus

back performance, as described in Section 3.2.1. We used
this plaback monitor to investigate playback continuity for
a number of different channels at different times at differ-
ent locations. Figure 16 shows the player buffer level a
CCTV news channel playing back at a campus node. We
see that in the time interval [16, 23] minutes, the monitor
detected4 playback freezing incidents. Nevertheless, play-
back restarted shortly afterward each incident. Interestingly,
the player buffer level increases after each recovery. Thus
it appears that PPLive adaptively builds buffer levels as a
function of streaming quality degradation. Table 5 reports
the playback statistics of various traces. The playback freeze
probability is approximated by the ratio of the average freez-
ing time interval to the sum of the average freezing and av-
erage continuous interval. We observe that the fraction of
time that the player freezes is very small for all but one of
the traces. When freezing occurs, the average freeze interval
of one channel exceeds1 minute.

6.3 Video Buffering

In the previous section we studied video buffering levels at
specific peers by directly monitoring the buffer levels at the
peers with our custom-made player monitor. Although these
insights provide anecdotal insight into perceived quality, it
is desirable to quantify buffer levels acrossall peers actively
watching a specific channel. To achieve this goal, we need
a mechanism to infer the buffer levels on all active remote
peers. To this end we augmented our PPLive crawler to not
only harvest peer lists but also buffer maps. From the har-
vested buffer maps, we can estimate the distribution of buffer
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Figure 16: PPLive playback, freeze and re-start of the CCTV
news channel for a peer with LAN access

levels across all active peers in a channel.
Figure 17 depicts the CDF of the buffer levels among

200+ peers over a600-minute crawling period for a gaming
channel. Both the total buffer levels and continuous playable
buffer levels are plotted. From the figure, we see that peers
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Figure 17: CDF of buffer level for a game channel among
200+ peers over a 600-minute crawling period.

seem to strive to buffer levels of7 MBytes or higher. With
only a small probability peer buffers went under1 MByte.
This again confirms our playback continuity results reported
by our playback monitor for local peers in Section 6.2 .

6.4 Playback Lags among Peers

One unfortunate characterisitc of a chunk-driven P2P
streaming system is the possibility of playback lags among
peers. Specifically. some peers watch frames in a channel
minutes behind other peers. Thus, for example, in a soccer
game some peers will see a goal minutes after other peers.
Aditionally, peers with large playback lags won’t upload use-
ful chunks to peers with smaller lags, decreasing the aggre-
gate uploading capacity of the system.

To analyze the lagging effect, we again use the buffer
maps harvested from our crawler. Recall that each buffer
map includes an offset, which provides the earliest chunk
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Table 5: Playback Statistics
Trace Average smooth playback intervalAverage freeze interval Freezing probability

ATV-Campus-NY 4222.6 6.8 0.0016
ATV-Campus-HK 19360.3 61.5 0.0032
ATV-Cable-NY 14789.2 16.9 0.0011

CCTV3-Campus-HK 1462.7 2.4 0.0016
CCTV3-Cable-NY 973.0 2.0 0.0021

CCTV6-Campus-HK 587.2 4.6 0.0078
CCTVNews-Campus-NY 323.8 8.9 0.0268
CCTVNews-Cable-NY 7765.7 6.4 0.0008

buffered in the PPLive engine. This offset increases along
with the playback. We use the buffer map offset as a ref-
erence point of the actual playback. Therefore, the lags of
buffer map offsets among peers watching the same channel
reflect the lags of the actual playbacks among them. We
intensively probed peers in a TV channel, ATV, to retrieve
their buffer maps for60 minutes. We clustered the harvested
buffer maps according to the time when they are received by
the crawler. Received buffer maps are clustered into time
bins of10 seconds. For buffer maps within each bin, we cal-
culated the difference between the maximum and minimum
offset. Figure 18(a) plots the numbers of buffer maps falling
into different time bins, and Figure 18(b) plots the maximum
playback time differences over all bins. We observe that the
lag among peers can be huge - with around70 probed peers,
the maximum playback time difference of these peers are
around150 seconds.
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Figure 18: Bitmap harvesting for the ATV channel over a
60-minute period.

7 Conclusions and Future Work

IPTV is an emerging Internet application which may dramat-
ically reshape the traffic profile in both access and backbone
networks. We conducted a measurement study on a popu-
lar P2P IPTV application, PPLive. Our study demonstrates
that the current Internet infrastructure is capable of providing
the performance requirements of IPTV at low cost and with
minimal dedicated infrastructure. Through passive and ac-
tive measurements, we characterized P2P IPTV user behav-
ior and traffic profiles at packet, connection and application
levels. More importantly, the measurement results provide
an understanding of how to architect a successful large scale
P2P IPTV system. Insights obtained in this study will be
valuable for the development and deployment of future P2P
IPTV systems.

Although large-scale P2P IPTV systems are feasible in to-
day’s Internet, this class of applications is in its infancy, and
performance remains to be improved in several directions:

• Shorter Start-up Delay.We showed that at start-up,
PPLive buffers tens of seconds of video before play-
back to compensate for peer churn and rate fluctuations
of video connections. However, many users of ordi-
nary televison enjoy raplidly switching among chan-
nels. Thus, if P2P IPTV is truly going to mimic (and
enhance) ordinary television, the start-up delay needs
to be reduced to from tens of seconds to a few seconds.
Possible directions to be investigated include redundant
downloading and/or network coding of video chunks. It
will come at the price of increased video traffic redun-
dancy.

• Higher Rate Streaming.We demonstrated that, un-
like the BitTorrent file distribution system, it is diffi-
cult to enforce the tit-for-tat policy in a P2P stream-
ing system, since many peers have upload capacity less
than the compressed playback rate of video. To com-
pensate, peers with higher uploading capacity upload
much more than what they download to sustain steady
playback at all peers. To support higher bit rates, the
workload on those “amplifier” nodes will be further in-
creased. It becomes questionable whether an ordinary
peer, and the access ISP to which it is connected, will
have the capability and incentive to continue to pro-
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vide the additional upload traffic. Thus, in the future,
some level of dedicated infrastructure (such as dedi-
cated proxy nodes), may have to be combined with the
P2P distribution to deliver videos at higher rates.

• Smaller Peer Lags.In our measurement study we ob-
served large playback lags, that is, some peers watch
frames in a channel minutes behind other peers. To re-
duce the lags, better peering strategies and video chuck
scheduling schemes are needed.

• Better NAT Traversal.We observed lots of private IP
addresses in collected peer lists. The peers behind
NATs are often not fully reachable. To utilize the up-
loading capacities from peers behind NATs, better NAT
traversal schemes need to be employed.
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