
An Information Theoretic Approach to Network Trace Compression

Yong Liua, Don Towsleya, Jing Wenga, and Dennis Goeckelb

aComputer Science, bElectrical & Computer Engineering,
University of Massachusetts, University of Massachussetts,

Amherst, MA 01003 Amherst, MA 01003
{yongliu, towsley, jweng}@cs.umass.edu goeckel@ecs.umass.edu

November 5th, 2004

Abstract

In this paper, we propose an information theoretic framework within which to study the redundancy
present in packet header traces. Packet level and flow level models are developed that capture both tem-
poral and spatial correlation present in packet headers, which can be exploited for packet trace compres-
sion. Information theoretic bounds are established for lossless packet header compression. Dependencies
between the potential compression ratio and network parameters, such as the average route length and
average flow size are derived. Valuable insights are obtained to guide the design of efficient packet trace
compression algorithms.

1 Introduction

The collection of network traces is essential for the engineering and management of today’s networks,
and for performing research leading to better traffic models, and network architectures and protocols. The
collection of such traces poses tremendous challenges due to the high speeds of current network links. For
example, the collection of60 byte packet headers on an OC-48 link can easily generate600Gbytes of data
in an hour, and even trace collection at a gateway of a university or a company can produce over30Gbytes
of data in an hour. Clearly, the size of such traces precludes their widespread collection, either over long
periods of time at a single monitoring site , or concurrently at a large set of distributed monitors without the
use of some form of compression.

There exists considerable redundancy in a packet trace collected at a single monitor. Packets from the
same flow share the same flow level information, such as source IP, destination IP, port, protocol, etc. In a
packet header trace, this shared flow level information is recorded multiple times for each packet belonging
to the flow. In addition, flows from the same subnet use only a small range ofIP addresses. This applies also
to port number as most of the applications tend to use only one of a smallnumber of port numbers, such as
80 for http,21 for ftp, etc. This suggests that a compression algorithm that removes this redundancy may be
able to produce substantially smaller traces.

Observations made from measurements also demonstrate considerable redundancy within a network
due to spatial correlation. A single flow can pass through several measurement monitors, and the packets
belonging to these flows will contain almost exactly the same packet header information, such as source IP
address, destination IP address, packet size, etc. The time stamps for these packets will differ only by small

1

amounts. This suggests the potential for distributed compression to take advantage of this spatial correlation,
resulting in further reduction in trace sizes.

The focus of this paper is to identify and quantify the potential benefits of compression described above.
We focus on two scenarios. The first concerns trace collection at asingle monitor whereas the second
concerns the simultaneous collection of traces at a multiple monitors distributed throughout a network. We
propose two traffic models with which to examine these scenarios, apacket-leveland aflow-levelmodel.
Each of these models the flow of traffic through a network (or a single router) asstochastic processes. We
then compute the entropy rates for these stochastic processes, i.e., the information associated with these
processes per unit time. Given a trace collected over a finite interval of time, information theory tells us that
the raw trace can be compressed to a file of size corresponding to the product of the entropy rate and trace
duration. Hence, using these models, we identify the maximum benefit that can be achieved through lossless
compression in both the single monitor and distributed monitor settings. Ultimately, we combine the two
models into ahybrid model before applying them to finite duration traces.

The above models focus on the information contained in the 5-tuple normally associated with an IP flow,
namely that containing the source and destination addresses, source and destination ports, and protocol field.
We also evaluate the remaining fields of the IP header to determine their information content. We then apply
a combined packet-level and flow-level model, augmented to accountfor the remaining IP header fields to
a set of one hour traces collected at the gateway of a research universityto identify the potential benefits
of lossless compression. We find it possible to compress these traces to files that are roughly1/8 the size
of the original traces. The evaluation of the benefits of the joint compressionof traces collected at multiple
sites is more difficult as we do not have access to traces collected at a set of monitors. Instead, we consider
several synthetic traces based on topologies obtained through the rocketfuelproject, [3]. In this setting, we
observe the potential of distributed loss compression to further reduce the marginally compressed traces at
the individual monitors by a factor inversely proportional to the average flow path length.

A number of studies have focussed on the development of trace compression algorithms. Both [9], and
[13] present flow-based compression algorithms which produce compressed traces that are approximately
25% of the size of the raw trace. Both of these studies focussed on the compression of a trace collected at
a single monitor. There has been little work on the problem of the efficient collection of traces at multiple
monitors. One exception is the work ontrajectory sampling[7] in which information regarding a small
subset of flows is collected at multiple monitors within the network. This approach records complete packet
header information at only one monitor while recording only the information thatchanges at the remaining
monitors. None of these works have attempted to quantify the potential benefits of compression. We will
discuss each of these in greater detail elsewhere in the paper.

The remainder of the paper is structured as follows. In Section 2 we present the packet level model.
The section concludes with a discussion of some of the deficiencies of this model motivating the flow-level
model, which is presented in Section 3. Section 3 concludes with a motivation and description of a hybrid
packet/flow model. As these models focus on the header fields ordinarilyassociated with identifying a
flow, Section 4 evaluates evaluates the remaining fields of the IP header and augments the previous packet-
and flow-level models to account for them. Section 5 applies these models to a set of one hour traces and
synthetic networks and Section 6 discusses the implications of our work to the design of new compression
algorithms. Section 7 summarizes the paper.

2

2 Packet Level Model

In this section we introduce a packet-level trace model with which we determine thegains that can be ob-
tained through the compression of traces collected at a single monitoring point, and more important, through
thedistributed compressionof traces collected at monitoring points scattered throughout the network, i.e.,
trace compression that accounts for the spatial correlation present in a network. Before introducing this
model, however, we review key concepts in information theory required by ourframework.

2.1 Some Concepts from Information Theory

We begin by introducing the concepts of entropy and entropy rate and their relation to data compression [6].

Definition 1 Shannon entropy.LetX be a discrete random variable that takes values fromχ. Letp(x) =
P (X = x), x ∈ χ. The entropy ofX is defined by

H(X) = −
∑
x∈χ

p(x) log2 p(x)

Now consider a stochastic processX = {Xn}
∞
n=1 whereXn is discrete valued.

Definition 2 Entropy Rate. The entropy rate of a discrete valued stochastic processX is defined by

H(X) = lim
n→∞

H(X1, X2, . . . , Xn)

n

when the limit exists.

The entropy rate represents the information rate conveyed by the stochastic processX. It provides an
achievable lower bound on the number of bits per sample required for lossless compression of the process.
With lossless compression, every single bit of data that was originally in the packet header trace remains
after the file is uncompressed. All of the information is completely restored.

Definition 3 Joint Entropy Rate. The joint entropy rate of a collection of many stochastic processes
{X

(i)
n }∞n=1, i = 1, 2, ..., N is defined by

H(X(1), X(2), . . . , X(N)) = lim
n→∞

H((X
(1)
1 , . . . , X

(1)
n), . . . , (X

(n)
1 , . . . , X

(N)
n))

n
(1)

when the limit exists.

The joint entropy rate represents the information rate conveyed by the joint stochastic process. It is also an
achievable lower bound on the number of bits required per sample for thejoint lossless compression of all
the processes.

Let us place this in the context of a network monitoring application. LetXi be the header of thei-th
packet andM the size of the header.{Xi}

∞
i=1 is a stochastic process representing packet headers. We

are interested in quantifying the benefit gained from compressing a packet header trace gathered from one
network monitor or traces collected at a set of network monitors.

3

Definition 4 Marginal Compression Ratio. Given stationary stochastic process{Xi}
∞
i=1, the marginal

compression ratio is defined as the ratio of the entropy rate and record size,

ρm(X) =
H(X)

M

Suppose that we are collecting traces at several points within the network. We are interested in quanti-
fying the benefits of performing distributed compression on these traces. We define,

Definition 5 Joint Compression Ratio. Given a collection ofN jointly stationary stochastic processes
{X

(n)
i }∞i=1, i = 1, 2, . . . , N , the joint compression ratio is defined as the ratio of the joint entropy rate and

the sum of the entropy rates of the individual processes.

ρj(X
(1), X(2), . . . , X(N)) =

H(X(1), X(2), . . . , X(N))∑N
i=1 H(X(i))

.

In the context of network trace compression, the joint compression ratio quantifies the potential benefits
of performing distributed compression of the traces collected at several pointin the network beyond simply
compressing each trace independent of each other. According to Slepian and Wolf [5], if two discrete alpha-
bet random variablesX andY are jointly distributed according to some arbitrary probability distribution
p(x, y), thenX can be compressed without having access toY without losing any compression performance
with respect to the case whereX is compressed with access toY . More formally, without having access to
Y , X can be compressed usingH(X|Y) bits where

H(X|Y) =
∑

y

PY (y)
∑

x

PX(x|y) log2 PX(x|y)

The quantity,H(X|Y) is often interpreted as theuncertaintyremaining in the random variableX given
the observation ofY . This is the same compression performance that would be achieved ifX were com-
pressed while having access toY . Hence, distributed compression can achieve the same benefits as joint
compression. The joint compression ratio reflects the benefits of distributed compression of the traces.

Definition 6 Differential Entropy. Let X be a continuous random variable with a densityf(X). The
differential entropy ofX is defined by

h(X) = −

∫
S

f(x) log f(x)dx

whereS is the support set of the random variable.

In reality, every variable is measured with finite resolution. With a resolution of∆ = 2−n, i.e., an n-
bit quantization, a continuous random variableX is represented by a discrete random variableX∆. The
following theorem relates the discrete entropy ofX∆ to the differential entropy ofX.

Theorem 1 If the density off(X) of continuous random variableX is Riemann integrable, the entropy of
an n-bit quantization ofX is approximatelyh(X) + n.

4

If X follows an exponential distribution with rateλ, its differential entropy

h(X) = −

∫
∞

0
λe−λx log2(λe−λx)dx = log2

e

λ

With an n-bit quantization, the discrete entropy ofX is H(X∆) = log2
e
λ + n. In the following, whenever

there is no confusion, we use the notationH(X) for a continuous random variableX to represent its discrete
entropyH(X∆).

2.2 Packet-level Model

We model a network as a directed graphG = (V, E), wherev ∈ V represents a router in the network and
edge(v1, v2) ∈ E corresponds to a link between routersv1 andv2. LetF denote a set of packet flows that
traverse the network. In this section, we make the following assumption on network flows{f ∈ F}:

• Packets from flowf arrive according to a Poisson process with rateλf . The packet inter-arrival time
is an exponential random variableδf .

• The route of a flowf is fixed. It is represented by a tuplef = (v
(f)
1 , v

(f)
2 , . . . , v

(f)
lf

), wherev
(f)
j is the

j-th router traversed byf andlf is the path length. For each nodev, let C (v) ⊆ F denote the set of
flows that pass through it.

• There is no packet loss in the network and packets incur constant delay oneach link: letDi,j denote
the delay that thej-th packet incurs while traversing thei-th link, i ∈ E, we assume thatDi,j = Di,
∀j.

These assumptions will be relaxed in the following sections and their implications will be studied.

We model packet arrivals by acontinuous timeprocess. However, packet monitoring tools use a high
resolution clock to provide timestamps. For example, packets captured bythe Endace DAG card [1] have
a time stamp of64 bits. The most significant32 bits represent the number of seconds since midnight,
January 1st,1970 and the least significant32 bits form a binary fraction, representing the factional part of
the timestamp in a specified second. Henceforth, we assume all continuoustime variables are quantized
with 32 bits and the total length of a quantized raw timestamp is64 bits.

The behavior of the network is described by the stochastic process{φj = (δj , θj)} whereδj is the time
between the arrivals of thej − 1th and thejth packets to the network, andθj is the flow identifier (ID) of
thej-th packet. Here{δj} is a sequence of iid exponential random variables with parameterλ =

∑
f∈F λf

quantized usingn bits and{θj} is an iid sequence of rv’s with distributionP (θj = f) = λf/
∑

g∈F λg.

For now, we ignore all information associated with each packet header except for the flow identifier,
which covers five fields within the TCP/UDP/IP packet header: the source IP address, destination IP address,
source port, destination port, and protocol. We will observe later (Section 4) that the rest of the header
contains little additional information beyond the flow ID and timestamp associatedwith the packet. Hence
the additional header information has little effect on the compression ratio.

Note that the above stochastic process, along with the route information associated with each of the
flows provides sufficient information to simulate the network. Suppose that we wish to record a sample path
in a compressed format. From Section 2.1 we know that we need a number of bits per packet equal toH(φ)

5

where

H(φ) = h(δ) + 32 + H(θ) (2)

= log
e

λ
+ 32 −

∑
f∈F

λf

λ
log

λf

λ
(3)

=
∑
f∈F

λf

λ
(log

e

λf
+ 32) (4)

=
∑
f∈F

λf

λ
H(δf), (5)

whereδf is the packet inter-arrival time for a flowf . From the first term in (3), per packet information de-
creases with the aggregate packet rate. This is because a higher packet rate means shorter packet-interarrival
time, and thus the shorter the bit sequence to represent them. The last term in (3)corresponds to the balance
between the rates of all flows. The more balanced the flow rates, the longerthe bit sequence needed to
represent the flow ID. In the most balanced case,λf = c, ∀f ∈ F , then we needH(θ) = log2

λ
c = log2 |F|

bits for the flow ID. If there are only several, saym << |F|, high rate flows dominate in packet rate, we
only need approximatelylog2 |m| < log2 |F| bits for the flow ID. Equation (5) suggests that per-packet
information in an aggregate packet stream equals the average of the per-packet timing information over all
component flows. The number of bits per unit time needed for compressionis thenλH(φ). Note that this is
for the case of constant link delays. If link delays are random and independent of each other, then it becomes
necessary to add an information term corresponding to the entropy of the quantizedversion of the delays.

In practice, we do not have access to{φj}. Instead, we can instrument the routers to gather packet
traces. Note that each link can be modelled as an M/D/∞ system. Since packet arrivals to the network are
described by a Poisson process, and network route and delay are fixed, packet arrivals to every router are also
described by Poisson processes. Let{φ(v) = (δ

(v)
j , θ

(v)
j)} denote the inter arrival times and flow identifiers

for the stream of packets entering routerv. Here{δ(v)
j } is described by ann-bit quantized exponential

distribution with rateλ(v) =
∑

f∈C(v) λf , andP (θ(v) = f) = λf/λ(v) for f ∈ C(v) and zero otherwise.
Similar to the network scenario, in order to describe a packet trace collected atnodev we need a number of
bits per packet equal toH(φ(v)) where

H(φ(v)) = h(δ(v)) + 32 + H(θ(v))

= log
e

λ(v)
+ 32 −

∑
f∈C(v)

λf

λ(v)
log

λf

λ(v)

The rate at which information arrives at nodev per unit time is thenλ(v)H(φ(v)). Note that this is true
for the case of constant link delays. In the case that delays on the different links are mutually independent
iid sequences of random variables, it is necessary to introduce a new sequence of random variables at each
monitor to represent the out of order arrival characteristics of the packets. Wewill not pursue this in this
paper.

In the absence of compression, each packet requires168 bits, 104 bits to encode the flow identifier and
64 bits for the timestamp. Hence nodev generates168λ(v) bits of uncompressed trace per unit time. The
aggregate rate at which uncompressed trace at the nodes is generated per unit time is168

∑
v∈V λ(v).

6

Now we can answer the question: what is the maximum benefit that can be achieved through compres-
sion? We have amarginal compression ratio1

ρm(φ) =

∑
v∈V λ(v)H(φ(v))

168
∑

v∈V λ(v)

=

∑
v∈V {log

e
λ(v) + 32 −

∑
f∈C(v)

λf

λ(v) log
λf

λ(v) }

168
∑

v∈V λ(v)

The compression ratioρm(φ) provides a lower bound on what can be achieved through lossless compression
of the original network lossless trace.

We are also interested in quantifying how well marginal compression comes toachieving the entropy
rate of the network. We have

ρj(φ) =
λH(φ)∑

v∈V λ(v)H(φ(v))
(6)

where the numerator is the lower bound on joint compression and the denominator is the lower bound
of marginal compression of each trace separately. The compression ratioρj shows the benefit of joint
compression. According to (5),

λH(φ) =
∑
f∈F

λfH(δf). (7)

Similarly,
λ(v)H(φ(v)) =

∑
f∈C(v)

λfH(δf). (8)

Therefore,

ρj(φ) =

∑
f∈F λfH(δf)∑

v∈V

∑
f∈C(v) λfH(δf)

=

∑
f∈F λfH(δf)∑

f∈F lfλfH(δf)
(9)

Equation (9) indicates as flow route lengths increase, the gain of joint compression increases as well.

2.3 Limitation of Packet-Level Model

In the remainder of this section, we examine some of the assumptions underlying the packet-level model.
The packet level model assumes independence between packets. In areal network environment, this is
generally not valid. We have collected a number of one hour traces from the outgoing gateway at a major
research university. In Figure 1(a) and 1(b), we plot the autocorrelation functionsof the source address and
destination address for one of these traces used in Section 5. The dotted lines correspond to the95% con-
fidence interval. The plotted auto-correlation functions in Figure 1(a) and Figure 1(b)illustrate significant
temporal correlation in the trace. This is true for other fields of the packet header as well. One explanation
of this temporal correlation is that packets from the same flow share lots of common information and they
tend to closely spaced in time.

In the packet level model, we assume packets arrive according to Poisson processes for all the flows.
Therefore the aggregate packet arrival process is still Poisson and the inter-arrival times are independent.
If the packet arrival process is not Poisson, the entropy calculated from thepacket level model (2) can no
longer serve as the lower bound for packet trace compression. Let’s illustrate this by a simple example.
Suppose there are two flowsf1 andf2 traversing one nodev. Within the measurement time interval[0, T],

1This is over all of the traces collected at all of the monitors.

7

10
0

10
1

10
2

10
3

10
4

10
5

� ��� � �
0

0.05

0.1

0.15

0.2

0.25

n

E
(X

i−E
X

)(
X

i+
n−E

X
)/E

(X
i−E

X
)2

(a) Source IP Auto-correlation

10
0

10
1

10
2

10
3

10
4

10
5

� ��� � �
0

0.05

0.1

0.15

0.2

0.25

n

E
(X

i−E
X

)(
X

i+
n−E

X
)/E

(X
i−E

X
)2

(b) Destination IP auto-correlation

Figure 1: Auto-correlation in Packet Addresses

f1 generatesK1 packets andf2 generatesK2 packets. As illustrated in Figure 2, we denote by{δ1,i}
K1
i=1

and{δ2,i}
K2
i=1 the packet inter-arrival times for flowf1 andf2.

���
	 �

��
�� �

��� ����� �

���

���

�! �"$#

Figure 2: Interleaved Packet Stream from Two Flows

Assume{δ1,i} and{δ2,i} are i.i.d. sequences and are independent with each other. Therefore the entropy
of packet trace off1 andf2 at nodev can be calculated by

H({δ1,i}
K1
i=1, {δ2,i}

K2
i=1) = K1H(δ1) + K2H(δ2). (10)

The average per-packet information is

K1

K1 + K2
H(δ1) +

K2

K1 + K2
H(δ2).

On the other hand, the aggregated packet trace can also be described by the sequence{δ1+2,j , θ1+2,j}
K1+K2
j=1 ,

whereδ1+2,j is the inter-arrival time between thejth andj − 1th packet in the aggregated trace,θ1+2,j is
the flow id of thejth packet. There is a one-one mapping between the sequence{δ1+2,j , θ1+2,j}

K1+K2
j=1 and

the flow based sequence{{δ1,i}
K1
i=1, {δ2,i}

K2
i=1}. Therefore,

H({δ1+2,j , θ1+2,j}
K1+K2
j=1) = H({δ1,i}

K1
i=1, {δ2,i}

K2
i=1). (11)

Packet level model (2) will calculate the entropyH(δ1+2) and H(θ1+2) according to the marginal dis-
tribution of δ1+2 and θ1+2. For general packet arrival pattern within a flow, it is no longer true that
{δ1+2,j , θ1+2,j}

K1+K2
j=1 are independent, therefore

(K1 + K2)(H(δ1+2) + H(θ1+2)) > H({δ1+2,j , θ1+2,j}
K1+K2
j=1), (12)

8

together with (10) and (11), we have

H(δ1+2) + H(θ1+2) >
K1

K1 + K2
H(δ1) +

K2

K1 + K2
H(δ2). (13)

That is to say the per-packet information calculated by the packet-level model in (2) is larger than the real
average per-packet information. In this case, the packet level model is nolonger suitable to describe the
information content in an aggregated packet trace. Instead,flow-based model, e.g.{δ1,i}

K1
i=1 and{δ2,i}

K2
i=1,

can be employed to characterize packet traces.

3 Flow Level Model

3.1 Network Flow Model

In this section we introduce aflow-basedmodel that addresses the problems described at the end of the
preceding section. As before, we represent the network as a directed graphG = (V, E). Assume that flows
arrive to the network according to a Poisson process with rateΛ. Let Θj ∈ F be the id of thej-th flow that
arrives to the network. As in the packet level model, the route of a flowf ∈ F is fixed, and is represented by
a tuplef = (v

(f)
1 , v

(f)
2 , . . . , v

(f)
lf

), wherev
(f)
j is thej-th router traversed byf andlf is the path length. For

each nodev, letC(v) ⊆ F denote the set of flows that pass through it. When flowj comes in, it generatesKj

packets. Packets within flowj arrive according to some point process with independent inter-arrival times
{δj,i}

Kj

i=2, whereδj,i is the inter-arrival time between thei − 1th andith packet of flowj. It is assumed that
the first packet arrives at the same time as the flow. As before, we assume thesystem uses32 bits to quantize
both the flow and packet inter-arrival time and the total length of a uncompressed timestamp is64. The
behavior of packet arrivals in the network is described by the stochastic process{(∆j , Θj , Kj , {δj,i}

Kj

i=2)}.
We are interested in determining the minimum number of bits required to represent each flow. If we assume
{∆j}, {Θj} and{Kj} are all mutually independent i.i.d. sequences, on average we need anumber of bits
per flow equal toH(Φ) where

H(Φ) = H(Θ) + h(∆) + 32 + H(K) + E[(K − 1)(h(δ) + 32)]. (14)

If we further assumeKj is independent of{δj,i}, we have

H(Φ) = H(Θ) + h(∆) + 32 + H(K) + (E[K] − 1)(E[h(δ)] + 32). (15)

The per-flow information consists of two parts: one part is timing information about theflow arrival
and flow ID, which is shared by all packets in the flow; the other part consistsof all the packet inter-arrival
information, which grows linearly with the number of packets within the flow if we assume packet inter-
arrivals are independent. (note: If packet inter-arrival times are not independent, this part can be further
compressed by exploiting the correlation.) The information rate per unit time is thenΛH(Φ).

In practice, traces are collected at individual nodes. Consider a nodev in the network. Since flows arrive
to the network according to a Poisson process and the delay between any two nodes in the network is con-
stant, flows arrive to nodev according to a Poisson process with rateΛ(v) = Λ×P (Θ ∈ C(v)). The behav-

ior of packet arrivals at nodev can be described by the stochastic process{(∆
(v)
j , Θ

(v)
j , K

(v)
j , {δ

(v)
j,i }

K
(v)
j

i=2 }),

where{∆(v)
j } is the sequence of inter-flow-arrival time at nodev that follows exponential distribution with

rateΛ(v), {Θ(v)
j } is an i.i.d. sequence of flow ids seen byv, {K (v)

j } is an i.i.d, sequence of integer valued

9

random variables that denote the number of packets in thejth flow passing throughv and{δ (v)
j,i }

K
(v)
j

i=2 is the

inter-arrival time of packets within flowj. We need a number of bits per flow equal toH(Φ(v)) where

H(Φ(v)) = H(Θ(v)) + h(∆(v)) + 32 + H(K(v)) + E[(K(v) − 1)(h(δ
(v)
f) + 32)] (16)

If we further assumeK(v) is independent of{δ(v)
f,i }, we have

H(Φ(v)) = H(Θ(v)) + h(∆(v)) + 32 + H(K(v)) + (E[K(v)] − 1)E[h(δ
(v)
f) + 32] (17)

The information rate per unit time is thenΛ(v)H(Φ(v)) at nodev. In the absence of compression, each flow
requires on average(104 + 64)E[K (v)] + 64 bits with104 bits to encode the flow identifier and64 bits for
timestamps of both packet inter-arrivals within a flow and flow inter-arrival.

Now we can answer the question: what is the maximum benefit that can be achieved through compres-
sion? FromΦ(v), we have amarginal compression ratio

ρ(Φ(v)) =
H(Φ(v))

168 ∗ E[K(v)] + 64
(18)

=
H(Θ(v)) + h(∆(v)) + 32 + H(K(v))

168 ∗ E[K(v)] + 64

+
(E[K(v)] − 1)E[h(δ

(v)
f) + 32]

168 ∗ E[K(v)] + 64

(19)

The compression ratioρ(Φ(v)) provides a lower bound on what can be achieved through lossless compres-
sion of the raw network trace. From (19), the compression ratio at nodev is a function of theaverageflow
sizeE[K(v)] of all flows traversing that node. Since the information in flow IDΘ(v) and flow arrival∆(v)

is shared by all packets in the flow, the larger the average flow sizeE[K (v)], the smaller the per-packet
share, therefore the smaller the compression ratio. WhenE[K (v)] is large, the compression ratio is bounded

from below by
E[h(δ

(v)
f

)]+32

168 , which is an indication of how compressible the packet inter-arrival time is in
average. (Note: in this model, we assume packet inter-arrival time within a flowis independent with its flow
size. When this assumption is not true, a tighter bound can be derived to explore the correlation.)

We are also interested in quantifying how well marginal compression comes toachieving the entropy
rate of the network. We have

ρj(Φ) =
ΛH(Φ)∑

v∈V Λ(v)H(Φ(v))
(20)

where the numerator is the lower bound on joint compression and the denominator is the lower bound of
marginal compression of each trace separately. The joint compression ratioρj shows the benefit of joint
compression.

We apply flow-based model to an one hour trace collected at the outgoinglink of a major research
university connecting to a commercial service provider on July 22, 2004 starting at 09:30AM local time.
There are5, 465, 323 flows and57, 976, 722 packets in the trace. As we don’t have information about the
flow length and packets arrival process of flows that starts or ends outsideof the traces, the following results
consider only5, 325, 879 flows that starts and ends within an hour. These flows corresponds to34, 370, 698
packets. Flow-based model shows that we need an average of212.8 bits to describe a flow and can achieve.
a marginal compression ratioρm = 0.1853.

10

Although the flow-based model captures temporal correlation present in a trace, it cannot deal with flows
that start or end outside of the trace. In the case of our one hour traces, these long flows account for more
than40%, of all packets in the traces. In the next section, we introduce a hybrid flow-packet model that
accounts for both short flows and long flows that cross boundary of traces.

3.2 Hybrid Flow-Packet Model

In the packet-level model, we assumepersistentflows, i.e., flows are always active and keep generating
packets according to Poisson process. In the flow-based model, flows arefinite in duration and generate a
finite number of packets according to some flow size distribution. In reality, every flow is finite; at the same
time, however, any packet trace is also finite. In a finite packet trace, any flow which is active throughout the
duration of the trace appearsinfinite. Those long flows can account for a large portion of packets in a trace
depending on the length of the trace. It is important to incorporate those flows in our model and characterize
their information content. In this section, we develop ahybrid model, which captures persistent flows using
the packet-level model and captures those finite transient flows using the flow-based model.

Again, we represent the network as a directed graphG = (V, E). Packets are generated by two types of
flows: persistent flowsFp and transient flowsFt. Packets from a persistent flowfi ∈ Fp arrive according
to a Poisson process with rateλfi

. The aggregate packet arrival from all persistent flows is still a Poisson
process with rateλ =

∑
fi∈Fp

λfi
. Associated with each packet from persistent flows is a flow idθ with

P (θ = fi) =
λfi

λ . Similar to (2), the number of bits required to represent a packet from persistent flows can
be calculated as

H(φ) = log
e

λ
+ 32 −

∑
fi∈Fp

P (θ = fi) log P (θ = fi) (21)

The number of bits per unit time needed for compression is thenλH(φ).

Transient flows arrive to the network according to a Poisson process with rateΛ and let{Θj ∈ Ft, j =
1, 2, · · · } be an i.i.d sequence of random variables that denote the flow ids of transient flows. A transient

flow j generatesKj packets, the packet inter-arrival time within flowj is {δj,i}
Kj

i=2. Similar to (15), the
number of bits required to represent a transient flow can be calculated as:

H(Φ) =
∑

fj∈Ft

P (Θ = fj) log P (Θ = fj) + log
e

Λ
+ 32 + H(K) + (E[K] − 1)(E[h(δ)] + 32). (22)

The information rate per unit time is thenΛH(Φ).

Overall, the number of bits per unit time to describe a network with both persistent and transient flows
can be calculated as:

H(Φ) = λH(φ) + ΛH(Φ), (23)

whereH(φ) andH(Φ) can be calculated as in equation (21) and (22) respectively.

In the absence of compression, each packet requires104 + 64 bits, 104 bits for the flow identifier and
64 bits for the timestamp and each flow in average requires(104 + 64) ∗ E[K] + 64 bits with 104 bits to
encode the flow identifier and64 bits for timestamps of both packet arrivals within a flow and flow arrivals.
Hence, nodev generate168λ(v) + (168E[K] + 64)Λ(v) bits per unit time. With marginal compression, we
have amarginal compression ratio

ρm =
λ(v)H(φ(v)) + Λ(v)H(Φ(v))

168λ(v) + (168E[K] + 64)Λ(v)

11

We are also interested in quantifying how well marginal compression comes toachieving the entropy rate of
the network. Similar to flow-based model, we have

ρj =
ΛH(Φ) + λH(φ)∑

v∈V (Λ(v)H(Φ(v)) + λ(v)H(φ(v)))

where the numerator is the lower bound on joint compression and the denominator is the lower bound
of marginal compression of each trace separately. The compression ratioρj shows the benefit of joint
compression.

4 The IP Packet Header

So far, we only studied the information content of packet header’s time stampand the flow IDΘ (orθ), which
corresponds to the 5-tuple consisting of the source address, destination address, source and destination port
numbers, and the protocol field. There are other fields in the IP header. Fig 3 shows all the fields in an IP
header as defined in [10].

Version IHL Type % & ' % (
)�* +-, .) Total Length

Identification Flags Fragment offset

Time % / &-% 0 , +) Protocol Header Checksum

Source address

Destination address

Options(+padding)

32 bits

Figure 3: Format of IP Header

In this section we focus on the additional information conveyed by the remaining fields of the IP header.
We do not consider the contents of the TCP/UDP header, leaving this for future work, with the exception of
the port field, which is needed to characterize the flow ID. The discussion below is based on our analysis of
an one hour trace collected at the outgoing link of a major research university connecting to a commercial
service provider on July22, 2004, starting at09 : 30AM local time.

We examine each of the fields in the IP header in turn.

• Version: The current version of IP is Version 4. Hence, this field is always set to four and conveys no
information.

• IHL: This field, the IP Header Length, refers to the number of 32 bit words forming the header. This
is typically five as is the case in our one hour trace and all other traces thatwe have examined. Hence
it conveys no information.

• TOS: This is the Type of Service field, which is now known as Differentiated Services Code Point
(DSCP). It is usually set to zero. the analysis of our trace indicates that the value of the TOS field is
zero more than99.2% ofthe time. In what follows, we will assume that it conveys no information as
H(TOS) ≈ 0 for this and other traces.

• Size of Datagram(total len): This fields refers to combined length of the header and the data in
bytes. We can find practical distribution from real trace analysis and characterizethe entropy with
H(l).

12

• Identification (IPID): This is a 16-bit number, which together with the source address uniquely
identifies this packet. Modern versions of Linux randomly set theIPID field for the first packet of
a flow and then increments it for each successive packet. On the other hand, Windows, uses a global
counter that is incremented each time a packet is sent out, regardless of theflow that it belongs to.
Hence, the contents of this field contains information regarding other activities at the sender; in the
case of Linux, the value for the first packet of a flow and in the case of Windows, the first IPID value
along with the increments between packets of a flow. LetIf be a r.v that denotes the first IPID value
of a flow f anddf denotes the difference of IPID value between two consecutive packets. Hence
{If} is an i.i.d. sequence of rv’s with uniform distribution over64K value space and{df} is and i.i.d.
sequence of rv’s where we can have practical distribution from real trace analysis. We have

H(IPID) = H(I) +
∑

f

Kf ∗ H(df), (24)

whereKf is the number of packets within flowf .

• Flag: This field indicates whether the datagram is fragmented or not. The analysis ofour trace
indicates that this is typically set to 0. Hence, it contains little information and we ignore it for now.
H(Flag) ≈ 0 for this and other traces.

• Fragment: When the datagram is fragmented, his field indicates the position within the datagram
that the fragment belongs. The analysis of our trace indicates that this value is typically set to 0. it
contains little information and we ignore it for now.H(Frag) ≈ 0 for this and other traces.

• TTL : This is the Time To Live field, which indicates the remaining number of hops /links that the
packet may be routed over before it is removed from the network. Different Operating systems set
the initial TTL differently. They choose values from{64, 128, 256}. Once a packet is in the network,
each router decrements the TTL field by one. For a flow, it is determined by the first packet and
remains unchanged afterwards. LetTf be a r.v that denotes the first TTL value of a flowf . Hence
{Tf} is an i.i.d. sequence of rv’s where we can find out practical distribution from real trace analysis.
We denote the entropy in the TTL field asH(T).

• Protocol: This field indicates the type of transport packet being carried. Our trace analysis indicates
this to be primarily TCP, UDP, and some control protocols which accounts for morethan99.8% of the
total traffic. This holds for all the traces we have examined. Once determinedfor a flow, it remains
unchanged.

• Checksum: The header checksum corresponds to the 1’s complement of the remaining fields of the
IP header. Packets with an invalid checksum are discarded by all nodes inan IP network. Hence it is
totally dependent on other fields. Hence, letchecksum denotes the field of checksum and contains
no information beyond what is carried by the other fields.

• Options: This field indicates whether IP options are in effect. The analysis of our trace (Section 5)
indicates that it is never used. Hence in our evaluation we will assume that it carries no information.

As described above, the only ones that convey any information are the TTL field, because they reflect the
operating system that generated the packets, the IPID field, because it can reflect the activity of the end host
sending the packets, and the packet length field. TTL field and the initial value of IPID field are shared by all
packets in a flow. They only need to be recorded once per flow. For packets from a persistent flow, we ignore
the overhead introduced by these two fields. On the other hand, we do haveto record the increment in IPID

13

start time packets transient persistent original size predicted size ρm

flows flows (Gb) (Gb)
2004-07-22 09:30 57,976,722 5,325,879 139,444 1.855 0.2746 0.1480
2004-09-22 10:00 387,766,186 34,868,897 1,185,542 12.409 1.722 0.1388
2004-09-23 01:00 408,677,406 32,225,458 1,482,371 13.077 1.500 0.1147
2004-09-23 13:00 438,144,794 27,658,438 580,827 14.020 1.528 0.1090
2004-09-25 10:00 318,278,620 52,309,680 1,412,361 10.184 1.726 0.1694
2004-09-26 01:00 358,380,592 49,877,711 1,296,820 11.468 1.532 0.1336
2004-09-26 13:00 374,112,428 33,641,117 1,143,797 11.971 1.658 0.1385
2004-09-29 10:00 386,969,290 30,513,707 1,403,630 12.383 1.417 0.1144
2004-10-05 10:00 426,552,282 26,926,647 565,459 13.649 1.486 0.1089
2004-10-06 01:00 422,589,830 69,453,421 1,875,242 13.522 2.301 0.1702
2004-10-06 13:00 480,253,220 66,839,365 1,737,823 15.368 2.057 0.1338
2004-10-07 10:00 407,247,232 36,620,681 1,245,103 13.031 1.813 0.1391
2004-10-08 01:00 416,196,650 32,818,373 1,509,645 13.318 1.528 0.1148
2004-10-08 13:00 412,129,998 26,016,222 546,340 13.188 1.433 0.1087
2004-10-09 10:00 231,111,618 37,983,622 1,025,557 7.395 1.248 0.1688
2004-10-10 01:00 231,327,068 32,195,004 837,070 7.402 0.987 0.1333

Table 1: Marginal Compression Ratio over Real Traces

field and the packet length for each individual packet, no matter it is from apersistent flow or a transient
flow. Hence, the rate at which real information is generated in a network with persistent and transient flows
is given by

H(S) = λ(H(φ)+H(lp)+H(dp))+Λ(H(Φ)+H(T)+H(I)+E[K]H(lt)+(E[K]−1)H(dt)), (25)

whereλ is the aggregate packet arrival rate for all persistent flows,H(φ) characterizes the packet timing and
flow ID information and can be calculated according to (2),lp anddp denotes the packet length and IPID
increment of packets from persistent flows respectively,Λ is the arrival rate of transient flows,H(Φ) char-
acterizes timing and flow ID information for all the packets within a flow and can be calculated according
to (15),T andI denotes the TTL value and initial IPID value of a transient flow, andlt anddt denotes the
packet length and IPID increment of packets from transient flows,

5 Empirical Results on Real Packet Traces

In this section we apply the hybrid model to several one hour traces taken at amajor university gateway, We
gathered one hour traces taken at different times of the day (1am, 10am, 1pm) over a period from Sept 22,
2004 to Oct 23, 2004. In table 1, we list the statistics of some of these tracesand the marginal compression
ratios predicted by our hybrid model.

We observe from Table 1 the potential to compress the raw trace to a size that is around 11%∼17% of
its original size.

Now we want answer the question: what is the benefit of joint compression? We apply the hybrid
model to several pop-level topologies obtained from the Rocketfuel Project [3]. Detailed descriptions of the
topologies that we use can be found in [4]. Unfortunately, the Rocketfuel project is concerned only with

14

nodes links persistent transient persistent flow transient flow averge ρj

flows flows packets rate packets rate path length
C&W 33 107 21 805 183,079.8 467,870.7 3.7627 0.2241
Tele G 10 34 2 79 150,022.8 569,704.8 1.6296 0.6182
Tele E 43 107 28 1077 295,329.1 547,974.2 6.0172 0.1534

Table 2: Joint Compression Ratio

obtaining topoloical information but not workload information. We generate a workload in the following
way. A persistent flow is generated between any pair of nodes with probabilityp. Packets within a flow are
generated according to a Poisson process with an arrival rate generated using the methods in [8]. For each
nodev ∈ V , we pick two random numbersOv, Qv ∈ [0, 1]. Furthermore, for each node pair(vi, vj), we
pick a random numberZ(vi,vj) ∈ [0, 1]. Forvi andvj with Euclidean distancel, the traffic rate betweenvi

andvj is

αOvi
Qvj

Z(vi,vj)e
−l/2L

whereα is a scale parameter andL is the largest Euclidean distance among all pairs of nodes. The values
of Ov andQv model the degree to which a node generates or attracts traffic. The distancel models traffic
locality. This model, on average, generates larger traffic rates between close pairs of nodes than distant pairs
of nodes. Similarly, we generate transient flows between any pair of nodesaccording to a Poisson process
with an arrival rate generated using the methods in [8]. The distribution of flow sizes and packet inter arrival
times within a flow are taken from the one hour trace collected at the outgoing linkof a major research
university connecting to a commercial service provider on July 22, 2004 starting at 09:30AM local time.

In table 2, we describe three topologies, Cable and Wireless (C&W), the main IP backbone of German
Telekom (Tele G), and Colt Telekom Europe (Tele E). We also describe in the table the workload pro-
duced using the method described above. In addition, we list the joint compression ratio. Note that this
describes the additional benefit of joint compression over marginal compression. We find in all cases that
ρj is approximately equal to the inverse of the average flow path length. This is a reasonable result as joint
compression mainly captures redundancy caused by duplicate records forthe same packet at different nodes
in the network.

6 Implications, Lessons, and Applications

In previous sections, we have established models to study the information content in packet headers. Ap-
plication of these models to hour-long traces shows the potential of reducing the size of a raw trace from a
single site to1/6 of the original size and, in the case of a collection of distributed traces by an additional
factor of1/6 to 1/2. In this section, we discuss several packet trace compression principles obtained from
our models. Guidelines are presented which either have been adopted in previously proposed compression
schemes or can be followed in new packet trace compression algorithms toachieve a better compression
ratio. The fact that packet headers are highly compressible can also be exploited in other ways, such as
online packet header compression for communication over low bandwidth channels and to discover hidden
communication through covert channels that exploit unused fields in packet headers and timing information
of packets. We will briefly discuss these two applications towards the end ofthis section. Last, the Section
concludes with a discussion of the model assumptions, specifically focussing on those that can be relaxed.

15

6.1 Guidelines for Packet Trace Compression

6.1.1 Exploiting Information Structure

A naive way to do packet trace compression is to use generic data compression tools. Gzip [2] can achieve
a marginal compression ratio around2 when applied to our packet traces. This is far below the result
predicted by our previous study. Packet header traces are highly structureddata streams; their structure
should be accounted for during compression.

Brute-force vs. By-fieldSince a packet header consists of several fields, and many fields are either constant
or are described by highly skewed distributions (consequentially exhibiting low entropy), one can divide a
packet trace into multiple traces, each corresponding to a single field. Datacompression tools, such as gzip,
bzip2, etc., can be used to compress these field traces. To further exploitcorrelation among different fields,
e.g., the 5-tuple defining a TCP flow, one can place multiple fields into onetrace, and then compress it using
algorithms which can handle long symbols. This procedure can be conductedonline if the compression
algorithm only scans the data sequence once, such as gzip, dynamic huffman coding [17].

Packet-based vs. Flow-basedPackets from the same flow share considerable information in addition to the
tuple defining the flow. However, packets from different flows are interleaved in a packet trace. Hence there
is less commonality between successive packets in a trace. In order to exploit the information redundancy
within a flow, packet header compression algorithms can reorganize packets into flows and conduct flow
based compression. Two previous works have investigated flow-based packet header recording and com-
pression. The authors of [9] represent packet header traces as a series offlow recordsandpacket records.
The information shared by all packets from the same flow is only recorded once ina flow record. The
per-packet records are maintained to store unique information of each packet. All per-packet records from
the same flow stored together. This technique has been shown, [9], to producea marginal compression ra-
tio of between1/3 and1/4 can be achieved. However this approach requires greater storage than generic
compression because of the need to identify flows and classify packets.

Another work [13] also adopted the idea of flow-based compression. Again, flow information is stored
once for each flow. Unlike the previous work, packets arenot reshuffled. Instead, a flow id is stored in each
packet header as a pointer to the flow information. With a fixed time resolution ofa micro-second, the author
proposed to use a variable number of bits to store the packet inter-arrival time:16 bits if the inter-arrival time
is smaller than215µs; 32 bits if the inter-arrival time is smaller than231µs; and96 bits otherwise. Packet
timing information can be further compressed if optimal codes, e.g., Huffman code, are applied on packet
inter-arrival time to achieve the entropy bound as calculated in Section 3.

Another major saving comes from the observation that many fields of a packet header are predictable
given the previous packet header within the same flow, (in other words, a new packet header in a flow brings
little new information). It is argued that, for a TCP flow, only the flow id (4 bytes) and inter-arrival time (2
bytes) is necessary to represent a in-sequence TCP packet (8 bytes time stamp +40 bytes TCP/IP header).
This easily leads to a compression factor of8. Now the flow id takes a major portion of a compressed packet
header. It can be further compressed since the flow size distribution isskewedin the Internet. Intuitively,
assigning shorter flow ids to elephant flows will reduce the average flow id length for all the packets. We
can even get rid of flow id in each packet header if we place all of the packet headers from the same flow
together. This complies with our flow based model in Section 3, where flow id doesn’t appear in a packet
header information content. It comes, however, at the cost of packet reshuffling, which is very memory
intensive because one has to store all the packets from all active flows. The memory requirement of packet
reshuffling can be reduced by only storing the compressed headers in memory and the flow temporal locality

16

which will be explained in the following section.

6.1.2 Exploiting Temporal Locality

Users’ connections are inherently transient. Network flows come and go and packets within a flow are
closely spaced in time. This results in temporal locality in packet headers which can be explored both by
packet based compression and flow based compression.

For packet based by-field compression, the compression ratio is boundedby the entropy of each field.
Given a packet trace with durationT , we can use Huffman coding to construct a optimal code bookC for
the whole traceTrace(0, T). Alternatively, we can construct a Huffman code bookC1 for the first half of
the traceTrace(0, T

2) and another code bookC2 for the second half of the traceTrace(T
2 , T). We than use

C1 to compressTrace(0, T
2) andC2 to compressTrace(T

2 , T). SinceC1 is optimized forTrace(0, T
2),

Trace(0, T
2) is better compressed byC1 than byC. Similarly, Trace(T

2 , T) is better compressed withC2

thanC. Therefore the whole traceTrace(0, T) can be better compressed by usingC1 andC2 than justC.
On the other hand, we have to store two code booksC1 andC2 instead of oneC. In general, one can divide
a packet trace efficiently according to time and compress them separately to explore the temporal locality in
packet headers.

Temporal locality is more important for flow-based compression. Given a long trace, a large number of
flows and their packets have to be stored in the memory. A long bit sequencehas to be used to represent
a flow id. Since most flows are transient, if we only count active flows within a time window, the smaller
the window size, the smaller the number active flows. Equivalently, if we divide a long trace into multiple
shorter traces according to time, we can reduce the memory requirement and useshorter bit sequences to
represent flow ids. Similar to the argument in the previous paragraph, we can also do better in compressing
flow id. On the other hand, time window will chop one flow, either longer than the time window or happens
to cross one boundary of a time window, into multiple flows. The consequence is that the flow size (measured
in packets) seen by the flow-based compression algorithm is now smaller than their original size. Ideally,
the more packets in a flow, the higher the gain of flow-based compression. Too small a time window will
degrade the performance of flow based compression. To illustrate, assumewe have to useF bits to represent
the flow information,B bits (in average) to record per-packet information, the total length of a flowf with
N packets isF + NB bits, the per-packet flow information overhead isF

N . Let’s say due to a small time
window, the flow is chopped equally intom smaller flows{f1, · · · , fm}. Then we have to useF bits to
represent flow information for each flowfi which consists ofNm packets. The per-packet flow information
overhead ism times higher than the previous case. The total bits needed to represent{f1, · · · , fm} is
mF + NB. The inflation in the compressed length for the flow isρI = mF+NB

F+NB . If N
m >> F

B , i.e., each
time window still have a large number of packets from the same flow, the inflation ratio ρI is close to1.
The choice of appropriate window size depends on the flow size distribution measuredboth in time and in
packets.

6.1.3 Exploiting Spatial Correlation

A distributed network measurement system collects traces from multiple networklinks to characterize net-
work wide phenomena. Packet header traces can be compressed individually using the previously discussed
principles. Network flows crossing multiple network monitors introduce informationredundancy between
packet traces collected at these monitors. The focus of this section is on howto exploit thespatial correlation
present in packet traces to jointly compress them.

17

We observed that the joint compression ratio is roughly equal to the average path length. This obser-
vation was based on the assumptions that delays are constant and that packets for a given flow always take
the same route through the network. However, these assumptions are generally not true in real network
environment. Flow routes can change over time (albeit infrequently) and packets incur random delay on
network links. To capture the route changes, the network behavior should include the information of where
a particular packet appears. In other words, each monitor should at least record in some way the identities
of all packets that it observes. To deal with random link delays, wehave tostore timing information of each
packet on each monitor. The jointly compressed trace must contain the identity and timing information for
each packet on each monitoring point. In an individually compressed flow-based trace at a monitor, flow id
and inter-arrival time corresponds to most of the information associated with a packet. One may draw the
conclusion that in a realistic network environment joint packet trace compression is not necessary. However,
this is not true for the following reasons:

1. Flow routes change infrequently. We don’t have to record packet ID at all monitors all the time. How
to exploit the stability of network routes in joint compression of distributed packet traces deserves
more study.

2. Are packet inter-arrival time on multiple links correlated? How can we exploit this spatial correlation
to compress packet timing information.

3. So far we have focused on packet header trace compression. Some monitoring applications, especially
network security related applications, require that packet payload informationbe recorded. Unlike
headers, payloads don’t change inside the network. Furthermore, they dominate the trace dominate
header in size. Joint compression of full packet trace is definitely desirable.

Implementation of joint packet trace compression is much more complicatedthan individual packet trace
compression. The major difficulty comes from how to correlate distributed traces. One option is to send
all packet traces to a single service facility and compress them jointly in a centralized way. In Figure 4, all
network monitors send their packet traces to a common packet trace storageE. In order to reduce bandwidth
consumption in sending the original packet traces, packet traces can be compressed individually before the
transmission. Another option is to jointly compress packet traces along theirway to the common storage.
For example in Figure 4,A first sends its trace toB; B compresses its own trace jointly withA’s trace,
then sends the compressed trace toE. How to optimally organize the routing and compression of packet
traces is a trade off between the processing power and network connectivity on all monitors. Distributed

E

A

B

C

DTraceB

TraceA
TraceC

TraceD

TraceA

Trace(A+B)

Figure 4: Joint Packet Trace Compression

data compression [6] aims at compressing correlated sources in a distributed way and achieving the gain
of joint compression. How to compress packet traces without exchangingpacket headers remains to be a
challenging problem. It may also be possible to borrow ideas fromtrajectory sampling[7]to design joint
compression algorithms.

18

6.2 Other Applications

6.2.1 Packet Header Compression to Improve Link Efficiency

Packet header compression is not only important for passive network monitoring. It has also been used to
improve link efficiency in various network environment. For network applications, such as remote login,
Voice over IP, network games, etc, the payload of IP packet is small. Transmitting IP headers incur a
large overhead. Packet header compression is especially important when those applications run over low
bandwidth and high bit error rate links, such as dial-up connection and wireless channels. As shown in
Figure 5, packet headers can be compressed at the sender side of the linkand uncompressed by the receiver.
Header compression improves the efficiency of those expensive links.Several packet header compression

header payload

compress decompress

Sender Receiver
expensive link

header
header

payload
payload

Figure 5: Header Compression to Improve Link Efficiency

standards have been developed within IETF ([11], [12], [14] and [16]) for differenttype of links and different
applications. The models and principles developed in this paper may prove useful to guide the design of
packet header compression schemes for new network environments and new applications.

6.2.2 Covert Channels Established using Packet Headers

A covert channel is defined to be a communication channel that can be exploited by a user to transfer infor-
mation in a manner that violates a system’s security policy. Covert channels in the Internet pose a big threat
to network security [15]. Several schemes have been proposed to establish anembedded communications
channel utilizing TCP/IP packet headers. Some schemes take unused/unchecked fields in packet headers to
transmit data. Some schemes use timing between packets to convey information.Our information theoretic
study in packet traces, both on packet timing and individual packet fields, can be used to detect covert chan-
nels built on packet headers: a significant increase in the entropy of packet headers suggests that they are
being manipulated to hide communications.

7 Conclusions and Future Work

Using an information theoretic approach, we systematically study the information redundancy in packet
headers. Both packet-level and flow-level models are developed to explore the temporal and spatial cor-
relation of packet traces collected from distributed network monitors. We carefully study the information
content in all fields of an IP header, including the timestamp, the flow Id defined by the 5-tuple, TTL field
and IPID field, etc. Empirical data from an access link of a major university arefeed into the proposed
models to demonstrate the potential gain of conducting marginal and joint compression on packet traces.
Various results obtained from our information theoretic study serve as lower bounds on the compression
ratios which can be achieved by lossless compression algorithms. More importantly, our analytical models
help us identify the major sources of information redundancy in packet header traces. Several important
principles are obtained to guide the design of efficient packet trace compression algorithms.

19

Future work can be pursued the several directions. One immediate application ofour study is to de-
velop both marginal and joint packet compression algorithms accordingto the proposed guidelines. Their
efficiency can be evaluated by comparing their compression ratios on real packet traces with those predicted
by our models. In our models, we make several assumptions, such independency assumptions, on packet
headers and their fields. The implication of violation of those assumptions on both analytical models and
algorithm design deserves further study. How to extend our packet headermodels to study other emerging
applications, such as covert channels, is another interesting direction to pursue.

References

[1] Dag card web site,http://dag.cs.waikato.ac.nz/.

[2] Gzip web site,http://www.gzip.org/.

[3] Rocketfuel project, http://www.cs.washington.edu/research/networking/
rocketfuel/.

[4] Rocketfuel topology,http://dmz02.kom.e-technik.tu-darmstadt.de/∼heckmann/
index.php3?content=topology.

[5] J. Chou, D. Petrovic, and K. Ramchandran. A distributed and adaptive signal processing approach to
reducing energy consumption in sensor networks. InIEEE Infocom 2003, April 2003.

[6] T. A. Cover and J. A. Thomas.Information theory. John Wiley & Sons, Inc., 1991.

[7] N. Duffield and M. Grossglauser. Trajectory sampling with unreliablereporting. InIEEE Infocom,
March 2004.

[8] B. Fortz and M. Thorup. Internet traffic engineering by optimizing ospf weights.In IEEE Infocom,
April 2000.

[9] G. Iannaccone, C. Diot, I. Graham, and N. McKeown. Monitoring very high speed links. InProceed-
ings of ACM Internet Measurement Workshop, November 2001.

[10] I. S. Institute. Internet protocol DARPA Internet program protocol specification. Sep 1981.

[11] V. Jacobson. Compressing TCP/IP headers for low-speed serial links. Feb 1990.

[12] S. P. M. Degermark, B. Nordgren. IP header compression. Feb 1999.

[13] M. Peuhkuri. A method to compress and anonymize packet traces. InProceedings of ACM Internet
Measurement Workshop, November 2001.

[14] V. J. S. Casner. Compressing IP/UDP/RTP headers for low-speed serial links. Feb 1999.

[15] J. C. Smith,http://gray-world.net/cn/papers/covertshells.txt.

[16] E. V. See. A template for ietf patent disclosures and licensing declarations. Sept 2004.

[17] J. S. Vitter. Design and analysis of dynamic huffman codes.Journal of the Assocaition for Computing
Machinery, 34(4), October 1987.

20

