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Abstract

In this paper, we propose an information theoretic framework within which to study donedancy
present in packet header traces. Packet level and flow level madetieveloped that capture both tem-
poral and spatial correlation present in packet headers, which can logecfor packet trace compres-
sion. Information theoretic bounds are established for lossless packietrtoeenpression. Dependencies
between the potential compression ratio and network parameters, such asrdgeawute length and
average flow size are derived. Valuable insights are obtained to guidedtiga dé efficient packet trace
compression algorithms.

1 Introduction

The collection of network traces is essential for the engineering and maerag@itoday’s networks,
and for performing research leading to better traffic models, and network &tcinés and protocols. The
collection of such traces poses tremendous challenges due to thekgsf current network links. For
example, the collection df0 byte packet headers on an OC-48 link can easily genét@@bytes of data
in an hour, and even trace collection at a gateway of a university or aaoycan produce ova8dGbhytes
of data in an hour. Clearly, the size of such traces precludes their widespodiection, either over long
periods of time at a single monitoring site , or concurrently at a large seéstofodited monitors without the
use of some form of compression.

There exists considerable redundancy in a packet trace collected atearsimgjtor. Packets from the
same flow share the same flow level information, such as source IP, destilRatport, protocol, etc. In a
packet header trace, this shared flow level information is recorded multipés fon each packet belonging
to the flow. In addition, flows from the same subnet use only a small ranfeaafdresses. This applies also
to port number as most of the applications tend to use only one of asumabler of port numbers, such as
80 for http, 21 for ftp, etc. This suggests that a compression algorithm that removes this esayrday be
able to produce substantially smaller traces.

Observations made from measurements also demonstrate considerabareguwithin a network
due to spatial correlation. A single flow can pass through several measutremonitors, and the packets
belonging to these flows will contain almost exactly the same paclketdnenformation, such as source IP
address, destination IP address, packet size, etc. The time stamps foratiests will differ only by small



amounts. This suggests the potential for distributed compression to take apvafhiiais spatial correlation,
resulting in further reduction in trace sizes.

The focus of this paper is to identify and quantify the potential benefits of cosipredescribed above.
We focus on two scenarios. The first concerns trace collectionsaighe monitor whereas the second
concerns the simultaneous collection of traces at a multiple monitors disttithroughout a network. We
propose two traffic models with which to examine these scenaripacket-levebnd aflow-levelmodel.
Each of these models the flow of traffic through a network (or a single routstpekastic processes. We
then compute the entropy rates for these stochastic processes, i.e., the tioformsaociated with these
processes per unit time. Given a trace collected over a finite interval afitifoemation theory tells us that
the raw trace can be compressed to a file of size corresponding to the protheeatropy rate and trace
duration. Hence, using these models, we identify the maximum benefitthéiecachieved through lossless
compression in both the single monitor and distributed monitor settings. Ultynatelcombine the two
models into ahybrid model before applying them to finite duration traces.

The above models focus on the information contained in the 5-tuple normatigiased with an 1P flow,
namely that containing the source and destination addresses, sour@stnatibn ports, and protocol field.
We also evaluate the remaining fields of the IP header to determine their itil@nroantent. We then apply
a combined packet-level and flow-level model, augmented to acoutite remaining IP header fields to
a set of one hour traces collected at the gateway of a research univeriglgntify the potential benefits
of lossless compression. We find it possible to compress these trackes tindit are roughly /8 the size
of the original traces. The evaluation of the benefits of the joint compressimaces collected at multiple
sites is more difficult as we do not have access to traces collectedtadfansenitors. Instead, we consider
several synthetic traces based on topologies obtained through the rocketjeet, [3]. In this setting, we
observe the potential of distributed loss compression to further reduce thmatlgrgompressed traces at
the individual monitors by a factor inversely proportional to the average faiw length.

A number of studies have focussed on the development of trace caigoredgorithms. Both [9], and
[13] present flow-based compression algorithms which produce comgrizases that are approximately
25% of the size of the raw trace. Both of these studies focussed on the ceioprefa trace collected at
a single monitor. There has been little work on the problem of the efficidigction of traces at multiple
monitors. One exception is the work drjectory sampling7] in which information regarding a small
subset of flows is collected at multiple monitors within the network. This aagroecords complete packet
header information at only one monitor while recording only the informationdhanges at the remaining
monitors. None of these works have attempted to quantify the potential berafampression. We will
discuss each of these in greater detail elsewhere in the paper.

The remainder of the paper is structured as follows. In Section 2 we preserddket fevel model.
The section concludes with a discussion of some of the deficiencies of dlisl motivating the flow-level
model, which is presented in Section 3. Section 3 concludes with a motivatibdescription of a hybrid
packet/flow model. As these models focus on the header fields ordimasiyciated with identifying a
flow, Section 4 evaluates evaluates the remaining fields of the IP heatlaugments the previous packet-
and flow-level models to account for them. Section 5 applies these mtmlalset of one hour traces and
synthetic networks and Section 6 discusses the implications of our work to sfgag# new compression
algorithms. Section 7 summarizes the paper.



2 Packet Level Model

In this section we introduce a packet-level trace model with which we determirgathe that can be ob-
tained through the compression of traces collected at a single monitorirggrwinmore important, through
the distributed compressioaf traces collected at monitoring points scattered throughout the network, i.e.
trace compression that accounts for the spatial correlation present in a netdefdre introducing this
model, however, we review key concepts in information theory required bframework.

2.1 Some Concepts from Information Theory
We begin by introducing the concepts of entropy and entropy rate and their ndlatdata compression [6].

Definition 1 Shannon entropy.Let X be a discrete random variable that takes values franhetp(z) =
P(X =x),x € x. The entropy o is defined by

H(X)=—) p(x)log p(x)

rEX
Now consider a stochastic proce¥s= { X, }°° ; whereX,, is discrete valued.

Definition 2 Entropy Rate. The entropy rate of a discrete valued stochastic procéss defined by

H(X) — lim H(X17X2" . "X’n)

n—o00 n

when the limit exists.

The entropy rate represents the information rate conveyed by the stochastic pXocdsgrovides an
achievable lower bound on the number of bits per sample requireddslielks compression of the process.
With lossless compression, every single bit of data that was originallyeip#tket header trace remains
after the file is uncompressed. All of the information is completely restored.

Definition 3 Joint Entropy Rate. The joint entropy rate of a collection of many stochastic processes
(X i =1,2,..., Nis defined by

n=1»

(1) (1) (n) (N)
HXW, x@ xWy =gy AL X, (G X))

n—oo n

(1)

when the limit exists.

The joint entropy rate represents the information rate conveyed by the joint stegh@cess. It is also an
achievable lower bound on the number of bits required per sample fguittidossless compression of all
the processes.

Let us place this in the context of a network monitoring application. Xgbe the header of theth
packet andM the size of the header{ X;}:°, is a stochastic process representing packet headers. We
are interested in quantifying the benefit gained from compressing a packet tiesax gathered from one
network monitor or traces collected at a set of network monitors.



Definition 4 Marginal Compression Ratio. Given stationary stochastic proce$s;}>°,, the marginal
compression ratio is defined as the ratio of the entropy rate and record size,

Suppose that we are collecting traces at several points within the networkieWeezrested in quanti-
fying the benefits of performing distributed compression on these traces. We,defin

Definition 5 Joint Compression Ratio. Given a collection ofV jointly stationary stochastic processes
{Xi(”) >.,4=1,2,..., N, the joint compression ratio is defined as the ratio of the joint entropy rate and

the sum of the entropy rates of the individual processes.

HXW® x@  x(N)

pi( XM, x@ L x(N)y = :
’ Sy H(X)

In the context of network trace compression, the joint compression ratio qaatkié potential benefits
of performing distributed compression of the traces collected at severalipoi network beyond simply
compressing each trace independent of each other. According to Slepisviodf [5], if two discrete alpha-
bet random variableX andY are jointly distributed according to some arbitrary probability distribution
p(z,y), thenX can be compressed without having access without losing any compression performance
with respect to the case whekeis compressed with accessto More formally, without having access to
Y, X can be compressed usiiff X |Y") bits where

H(X[Y) = ) Pr(y)>_ Px(z[y)log, Px(z|y)

The quantity,H (X|Y") is often interpreted as thencertaintyremaining in the random variablé given
the observation of". This is the same compression performance that would be achievéaviére com-
pressed while having access¥o. Hence, distributed compression can achieve the same benefits as joint
compression. The joint compression ratio reflects the benefits of distributguression of the traces.

Definition 6 Differential Entropy. Let X be a continuous random variable with a densjtyX). The
differential entropy ofX is defined by

h(X) = - /S f(2)log f(z)dz

whereS is the support set of the random variable.

In reality, every variable is measured with finite resolution. With a resolutiod of 27", i.e., an n-
bit quantization, a continuous random variaBleis represented by a discrete random variaklte. The
following theorem relates the discrete entropyof to the differential entropy oX .

Theorem 1 If the density off (X) of continuous random variabl& is Riemann integrable, the entropy of
an n-bit quantization of{ is approximately:(X) + n.



If X follows an exponential distribution with rate its differential entropy
h(X) = — / Ae ™ logy(Ne ™) dx = log2§
0

With an n-bit quantization, the discrete entropyXfis H(X%) = log, £ + n. Inthe following, whenever
there is no confusion, we use the notatf@(.X ) for a continuous random variahlé to represent its discrete
entropyH (X 2).

2.2 Packet-level Model

We model a network as a directed gragh= (V, E'), wherev € V represents a router in the network and
edge(vy,v2) € E corresponds to a link between routefsandv,. Let F denote a set of packet flows that
traverse the network. In this section, we make the following assumption onkefteios { f € F}:

o Packets from flowf arrive according to a Poisson process with rate The packet inter-arrival time
is an exponential random variahie.
‘o fi i () () () (£) 5
e The route of a flowf is fixed. It is represented by a tupfe= (v;"’, v, s U ), wherev;"” is the
J-th router traversed by andi; is the path length. For each nodglet C(*) C F denote the set of
flows that pass through it.

e There is no packet loss in the network and packets incur constant detcbriink: letD; ; denote
the delay that thg-th packet incurs while traversing th¢h link, : € £, we assume thab; ; = D;,
V7.

These assumptions will be relaxed in the following sections and their intiplisawill be studied.

We model packet arrivals by @ntinuous timgrocess. However, packet monitoring tools use a high
resolution clock to provide timestamps. For example, packets capturdgiyndace DAG card [1] have
a time stamp o064 bits. The most significan32 bits represent the number of seconds since midnight,
January 1st]970 and the least significai32 bits form a binary fraction, representing the factional part of
the timestamp in a specified second. Henceforth, we assume all contitineugariables are quantized
with 32 bits and the total length of a quantized raw timestantjlibits.

The behavior of the network is described by the stochastic prdegss: (d;, 0;)} whered; is the time
between the arrivals of the— 1th and thejth packets to the network, art is the flow identifier (ID) of
the j-th packet. Hergd;} is a sequence of iid exponential random variables with pararheteEfef Af
quantized using bits and{¢;} is an iid sequence of rv's with distributiaf(6; = f) = Ar/ > c 7 Ag-

For now, we ignore all information associated with each packet headepiesar the flow identifier,
which covers five fields within the TCP/UDP/IP packet header: the source IPssddestination IP address,
source port, destination port, and protocol. We will observe later (Section #jhimaest of the header
contains little additional information beyond the flow ID and timestamp associdthdhe packet. Hence
the additional header information has little effect on the compression ratio.

Note that the above stochastic process, along with the route information asdowith each of the
flows provides sufficient information to simulate the network. Suppose thatistetavrrecord a sample path
in a compressed format. From Section 2.1 we know that we need a number aftjisgiet equal té ()



where

H(¢) = h(5)+32+H(0) )
e A A
- logx+32—27flog7f 3)
feF
Af e
= —(log — + 32) 4)
% AN
= YY), ©
feF

whered s is the packet inter-arrival time for a flof. From the first term in (3), per packet information de-
creases with the aggregate packet rate. This is because a higher packetasdeshorter packet-interarrival
time, and thus the shorter the bit sequence to represent them. The last termarr¢3ponds to the balance
between the rates of all flows. The more balanced the flow rates, the ldrgéit sequence needed to
represent the flow ID. In the most balanced caser ¢, Vf € F, then we need (§) = log, 2 = log, | F|
bits for the flow ID. If there are only several, say << |F]|, high rate flows dominate in packet rate, we
only need approximateljog, |m| < log, |F| bits for the flow ID. Equation (5) suggests that per-packet
information in an aggregate packet stream equals the average of the pet{pachkg information over all
component flows. The number of bits per unit time needed for compressioen\H (¢). Note that this is
for the case of constant link delays. If link delays are random and erdt of each other, then it becomes
necessary to add an information term corresponding to the entropy of the quasmtigish of the delays.

In practice, we do not have access{ip;}. Instead, we can instrument the routers to gather packet
traces. Note that each link can be modelled as an M/Bystem. Since packet arrivals to the network are
described by a Poisson process, and network route and delay are fisket, graivals to every router are also

described by Poisson processes. {#t) = (53(.”), 0;”))} denote the inter arrival times and flow identifiers

for the stream of packets entering router Here {5§”)} is described by am-bit quantized exponential
distribution with rateA) = >, ) Ay, andP(0®) = f) = A;/A) for f € C) and zero otherwise.
Similar to the network scenario, in order to describe a packet trace colleatedeait we need a number of
bits per packet equal tH (¢(*)) where

H(®) = h(™)+32+HOW)

. e )\f /\f
= log 1oy +32— > 10 108 1
fecw)

The rate at which information arrives at nodeper unit time is themt\(") H(¢(*)). Note that this is true
for the case of constant link delays. In the case that delays on the diffares are mutually independent
iid sequences of random variables, it is necessary to introduce a newnseqfeandom variables at each
monitor to represent the out of order arrival characteristics of the packetsvilWeot pursue this in this

paper.
In the absence of compression, each packet requébits, 104 bits to encode the flow identifier and

64 bits for the timestamp. Hence nodegenerated68\(Y) bits of uncompressed trace per unit time. The
aggregate rate at which uncompressed trace at the nodes is generatetitpee 168 > A©),



Now we can answer the question: what is the maximum benefit that cacheved through compres-
sion? We have aarginal compression ratfo

Yuey A H (¢1)
1683, cv A(®)
e A A
>_vev{log o t32 - ZfeC(’“) ,\<_£> log ,\<—Jvc>}
168>, ey AW

The compression ratio,, (¢) provides a lower bound on what can be achieved through losslegsession
of the original network lossless trace.

pm(¢) =

We are also interested in quantifying how well marginal compression conashteving the entropy
rate of the network. We have
A (¢)

> vey AV H(6™)
where the numerator is the lower bound on joint compression and the detomis the lower bound
of marginal compression of each trace separately. The compressiorp yadgtwows the benefit of joint
compression. According to (5),

pi(9) = (6)

AH(¢) = > ApH(5y). (7)
fer
Similarly,
AVH(@W) = > ApH(5y). (8)
fec
Therefore,
SrerArHGr) e ArH(Sy)

pi(¢) = (9)

Yovev Lpece) APH(0f) Y per pArH (0y)
Equation (9) indicates as flow route lengths increase, the gain of joint cosmpmescreases as well.

2.3 Limitation of Packet-Level Model

In the remainder of this section, we examine some of the assumptions ungehg packet-level model.
The packet level model assumes independence between packetsedhretwork environment, this is
generally not valid. We have collected a humber of one hour tracestfie outgoing gateway at a major
research university. In Figure 1(a) and 1(b), we plot the autocorrelation funcidhe source address and
destination address for one of these traces used in Section 5. The dotted fespaad to th®5% con-
fidence interval. The plotted auto-correlation functions in Figure 1(a) and Figurdlu@ate significant
temporal correlation in the trace. This is true for other fields of the packet haadeell. One explanation
of this temporal correlation is that packets from the same flow share lots of cormformation and they
tend to closely spaced in time.

In the packet level model, we assume packets arrive according to Rgsscesses for all the flows.
Therefore the aggregate packet arrival process is still Poisson and the intal#mes are independent.
If the packet arrival process is not Poisson, the entropy calculated fropathet level model (2) can no
longer serve as the lower bound for packet trace compression. Lesgalle this by a simple example.
Suppose there are two flowfs and f, traversing one node. Within the measurement time interval 77,

1This is over all of the traces collected at all of the monitors.
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Figure 1: Auto-correlation in Packet Addresses

fi generatesKl packets and» generateds, packets. As illustrated in Figure 2, we denote{lziy,,»}fil1
and{ds, z} , the packet inter-arrival times for floy and f>.

01424
fua U

Figure 2: Interleaved Packet Stream from Two Flows

Assume{o; ;} and{d,;} arei.i.d. sequences and are independent with each other. Therefore tipg entro
of packet trace of, and f, at nodev can be calculated by

H({01,}i2, {023}/2) = K1 H(81) + Ko H(82). (10)
The average per-packet information is
K Ky
7]{1 n KQH((Sl) + —K1 n KZH(&Q).
K1+K2

On the other hand, the aggregated packet trace can also be describedé&yubneéd o, 0142 j}
whered; o ; is the inter-arrival time between thi¢h and; — 1th packet in the aggregated traﬁeﬁ jis
the flow id of thejth packet. There is a one-one mapping between the seqfénce;, 01+2]}K1+K2 and

the flow based sequen¢gdy ;}i-, {02, }1-% }. Therefore,

H({01125, 011251127 ™) = H{01: 1, {62412, (11)

Packet level model (2) will calculate the entrop§(d;,2) and H(6;+2) according to the marginal dis-
tribution of 4,12 and 6;2. For general packet arrival pattern within a flow, it is no longer true that
{01425, 01425} 12 are independent, therefore

(K1 + K2)(H(6142) + H(0142)) > H({6142,5, 0142, }12), (12)

8



together with (10) and (11), we have

K,
K+ K>

Ky

H(S H(O > —_—
(0142) + H(0112) K+ K,

H(6) +
That is to say the per-packet information calculated by the packet-levediriro(R) is larger than the real
average per-packet information. In this case, the packet level modellgnger suitable to describe the
information content in an aggregated packet trace. Insfead:based model, e.dd; ;15 and{d,,;}2,
can be employed to characterize packet traces.

H(02). (13)

3 Flow Level Model

3.1 Network Flow Model

In this section we introduce flow-basedmodel that addresses the problems described at the end of the
preceding section. As before, we represent the network as a directed(graplV, ). Assume that flows
arrive to the network according to a Poisson process withatet © ; € F be the id of thej-th flow that
arrives to the network As in the packet level model, the route of a flenF is fixed, and is represented by

atuplef = (vl ),véf), e ,vl(;)), wherevj(.f) is the j-th router traversed by andi; is the path length. For

each node, letC(") C F denote the set of flows that pass through it. When fl@emes in, it generatés ;
packets. Packets within floyarrive according to some point process with independent inter-arrival times
{6%,»}522, whered; ; is the inter-arrival time between thie- 1th andith packet of flow;. It is assumed that

the first packet arrives at the same time as the flow. As before, we assusysti® use32 bits to quantize
both the flow and packet inter-arrival time and the total length of a uncosgulgsmestamp i§4. The
behavior of packet arrivals in the network is described by the stochastiessd@ ;, ©;, K, {5j7i}§2)}.

We are interested in determining the minimum number of bits required to represhritovadf we assume
{A;}, {©;} and{ K} are all mutually independent i.i.d. sequences, on average we ragulzer of bits

per flow equal taH (®) where

H(®)=H(©)+h(A)+32+ H(K) + E[(K —1)(h(5) + 32)]. (14)
If we further assuméy; is independent ofd; ; }, we have

H(®) = H(©) + h(A) + 32+ H(K) + (E[K] — 1)(E[h(6)] + 32). (15)

The per-flow information consists of two parts: one part is timing information abouldhearrival
and flow ID, which is shared by all packets in the flow; the other part cordigti the packet inter-arrival
information, which grows linearly with the number of packets within the flow if weusne packet inter-
arrivals are independent. (note: If packet inter-arrival times are not indepérthis part can be further
compressed by exploiting the correlation.) The information rate per unit time iSAHEID).

In practice, traces are collected at individual nodes. Consider amniodbe network. Since flows arrive
to the network according to a Poisson process and the delay between anydegin the network is con-
stant, flows arrive to nodeaccording to a Poisson process with rAt®) = A x P(© € C*)). The behav-
ior of packet arrivals at node can be described by the stochastic pro<{é$‘s ”) K (v) {6(”z : ]2 H,

where{A } is the sequence of inter-flow-arrival time at nadthat follows exponentlal distribution with
rate AV {G) } is an i.i.d. sequence of flow ids seen ftay{K } is an i.i.d, sequence of integer valued

9



K
random variables that denote the number of packets irtthflow passing through and{dj ; } is the

inter-arrival time of packets within floy.. We need a number of bits per flow equalHg® (")) Where

H(@®) = HOW) + h(AM) + 32 + H(K®) + E[(K® — 1)(h(6}") + 32)] (16)

If we further assumés () is independent 0{6 } we have
H(@®) = HO®) + (AM) + 32 + H(K®) + (B[K™] - 1)E[h(5") + 32 (17)

The information rate per unit time is thei) H (®(*)) at nodev. In the absence of compression, each flow
requires on average 04 + 64) E[K (*)] + 64 bits with 104 bits to encode the flow identifier artid bits for
timestamps of both packet inter-arrivals within a flow and flow inter-arrival.

Now we can answer the question: what is the maximum benefit that cachleved through compres-
sion? From®(?), we have anarginal compression ratio

(v)
p(@t) = 168*ES; )]+ 64 (18)
H(OW) + h(A®) +32 + H(K™)
B 168 * E[K(”)] + 64
(19)
(E[K®)] - )E[h( ) +32]
" )

168 * E[K(")] + 64

The compression ratio(® (")) provides a lower bound on what can be achieved through losslegzresm
sion of the raw network trace. From (19), the compression ratio at nala function of theaverageflow
size E[K ()] of all flows traversing that node. Since the information in flow@®) and flow arrivalA(®)

is shared by all packets in the flow, the larger the average rowE[fé(”)], the smaller the per-packet
share, therefore the smaller the compression ratio. WH#&A()] is large, the compression ratio is bounded

E[h(60))]+32 . o . . e
from below by%, which is an indication of how compressible the packet inter-arrival time is in

average. (Note: in this model, we assume packet inter-arrival time within adlimdependent with its flow
size. When this assumption is not true, a tighter bound can be derived toeeitpacorrelation.)

We are also interested in quantifying how well marginal compression coneshteving the entropy
rate of the network. We have

AH(®)

pg(@) Zvev A(U)H((I)(U))

(20)

where the numerator is the lower bound on joint compression and the detomis the lower bound of
marginal compression of each trace separately. The joint compression yaimws the benefit of joint
compression.

We apply flow-based model to an one hour trace collected at the outjpingf a major research
university connecting to a commercial service provider on July 22, 2004 statifi9:30AM local time.
There arep, 465, 323 flows and57, 976, 722 packets in the trace. As we don’t have information about the
flow length and packets arrival process of flows that starts or ends oofdigetraces, the following results
consider onhy, 325, 879 flows that starts and ends within an hour. These flows correspods3a0, 698
packets. Flow-based model shows that we need an averagde.8fhits to describe a flow and can achieve.
a marginal compression ratig, = 0.1853.

10



Although the flow-based model captures temporal correlation present ireaitre@nnot deal with flows
that start or end outside of the trace. In the case of our one hour traces|dhgdlows account for more
than40%, of all packets in the traces. In the next section, we introduce a hybrid flokepanodel that
accounts for both short flows and long flows that cross boundary of traces

3.2 Hybrid Flow-Packet Model

In the packet-level model, we assumpersistentflows, i.e., flows are always active and keep generating
packets according to Poisson process. In the flow-based model, flovisigrén duration and generate a
finite number of packets according to some flow size distribution. In realityy émv is finite; at the same
time, however, any packet trace is also finite. In a finite packet trace,@myvhich is active throughout the
duration of the trace appearginite. Those long flows can account for a large portion of packets in a trace
depending on the length of the trace. It is important to incorporate those flows marlel and characterize
their information content. In this section, we develampydrid model, which captures persistent flows using
the packet-level model and captures those finite transient flows usingwhbdiked model.

Again, we represent the network as a directed gi@ph (V, E). Packets are generated by two types of
flows: persistent flowsF, and transient flows;. Packets from a persistent flofy € F, arrive according
to a Poisson process with ralg,. The aggregate packet arrival from all persistent flows is still a Poisson
process with rate\ = >, 7, i Associated with each packet from persistent flows is a flod wdth

PO =f;)= i Similar to (2), the number of bits required to represent a packet from persistestditm

be calculated as

H(¢) =log s +32— Y P(0=fi)log PO = f) (21)
fq'E]:p

The number of bits per unit time needed for compression is Xé(y).

Transient flows arrive to the network according to a Poisson process with &mtd let{©; € F;,j =
1,2,---} be an i.i.d sequence of random variables that denote the flow ids of trafisies. A transient

flow j generated(; packets, the packet inter-arrival time within flgiis {5j,i}§2. Similar to (15), the
number of bits required to represent a transient flow can be calculated as:

H®) = > PO = f;)logP(© = f;) + log% 132+ H(K) + (E[K] — 1)(E[R(5)] +32). (22)
fi€Ft

The information rate per unit time is theéyH (P).

Overall, the number of bits per unit time to describe a network with both persetentransient flows
can be calculated as:
H(®) = AH(¢) + AH (D), (23)

whereH (¢) and H(®) can be calculated as in equation (21) and (22) respectively.

In the absence of compression, each packet reqlixes- 64 bits, 104 bits for the flow identifier and
64 bits for the timestamp and each flow in average requités + 64) « E[K] + 64 bits with 104 bits to
encode the flow identifier angil bits for timestamps of both packet arrivals within a flow and flow arrivals.
Hence, node generatd 68)\(") + (168E[K] + 64)A() bits per unit time. With marginal compression, we
have amarginal compression ratio

)\(U)H((ﬁ(v)) + A(v)H(q)(v))
168A() + (168 E[K] + 64)A(®)

Pm
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We are also interested in quantifying how well marginal compression conaehigving the entropy rate of
the network. Similar to flow-based model, we have
AH(®) + \H (o)
> ey (AW H (@) + X@ H(¢()))
where the numerator is the lower bound on joint compression and the deatomis the lower bound

of marginal compression of each trace separately. The compressiorp yaglwows the benefit of joint
compression.

pj =

4 The IP Packet Header

So far, we only studied the information content of packet header’s time stadihe flow 1DO (or #), which
corresponds to the 5-tuple consisting of the source address, destinatiossaddrece and destination port
numbers, and the protocol field. There are other fields in the IP header. Ry sl the fields in an IP
header as defined in [10].

e 32 bits

Version IHL Type-of-Service Total Length

Identification Flags Fragment offset

Time-to-live Protocol Header Checksum

Source address

Destination address

Options(+padding)

Figure 3: Format of IP Header

In this section we focus on the additional information conveyed by the remainidg €&the IP header.
We do not consider the contents of the TCP/UDP header, leaving this for futuke with the exception of
the port field, which is needed to characterize the flow ID. The discussiow lieelzased on our analysis of
an one hour trace collected at the outgoing link of a major researckmitivconnecting to a commercial
service provider on Julg2, 2004, starting a9 : 30AM local time.

We examine each of the fields in the IP header in turn.

e \ersion: The current version of IP is Version 4. Hence, this field is always set to fulicanveys no
information.

e |HL: This field, the IP Header Length, refers to the number of 32 bit words forming ¢aelér. This
is typically five as is the case in our one hour trace and all other tracesé¢hzve examined. Hence
it conveys no information.

e TOS: This is the Type of Service field, which is now known as Differentiated Serviceg Cotht
(DSCP). Itis usually set to zero. the analysis of our trace indicates that e ebthe TOS field is
zero more tha®9.2% ofthe time. In what follows, we will assume that it conveys no information as
H(TOS) = 0 for this and other traces.

e Size of Datagram{otal_len): This fields refers to combined length of the header and the data in
bytes. We can find practical distribution from real trace analysis and charaditegizntropy with
H(l).

12



¢ l|dentification (I PID): This is a 16-bit number, which together with the source address uniquely
identifies this packet. Modern versions of Linux randomly setitRe D field for the first packet of
a flow and then increments it for each successive packet. On the otlter\Wandows, uses a global
counter that is incremented each time a packet is sent out, regardlessflofattibat it belongs to.
Hence, the contents of this field contains information regarding other activitiee aender; in the
case of Linux, the value for the first packet of a flow and in the case of 8iadthe first IPID value
along with the increments between packets of a flow. lidbe a r.v that denotes the first IPID value
of a flow f andd; denotes the difference of IPID value between two consecutive packetsceHe
{I}is ani.i.d. sequence of rv's with uniform distribution ow&K value space anfld} is and i.i.d.
sequence of rv's where we can have practical distribution from real tracesémalye have

H(IPID)=H(I)+ Y Ky« H(dy), (24)
!

whereK ; is the number of packets within floy.

e Flag: This field indicates whether the datagram is fragmented or not. The analysig tface
indicates that this is typically set to 0. Hence, it contains little information amdgwore it for now.
H(Flag) =~ 0 for this and other traces.

e Fragment. When the datagram is fragmented, his field indicates the position within the datagram
that the fragment belongs. The analysis of our trace indicates that this igatiypically set to 0. it
contains little information and we ignore it for now (Frag) ~ 0 for this and other traces.

e TTL: This is the Time To Live field, which indicates the remaining number of hopkglihat the
packet may be routed over before it is removed from the network. Different @ugsystems set
the initial TTL differently. They choose values frofi4, 128, 256}. Once a packet is in the network,
each router decrements the TTL field by one. For a flow, it is determined byr#heéicket and
remains unchanged afterwards. [Igtbe a r.v that denotes the first TTL value of a flgw Hence
{T}} isani.i.d. sequence of rv's where we can find out practical distribution frohtrees analysis.
We denote the entropy in the TTL field &5T").

e Protocol: This field indicates the type of transport packet being carried. Our tracgsaaldicates
this to be primarily TCP, UDP, and some control protocols which accounts for timan69.8% of the
total traffic. This holds for all the traces we have examined. Once deterrfonedflow, it remains
unchanged.

e Checksum: The header checksum corresponds to the 1's complement of the renfais of the
IP header. Packets with an invalid checksum are discarded by all nodedmnetwork. Hence it is
totally dependent on other fields. Hence,dktcksum denotes the field of checksum and contains
no information beyond what is carried by the other fields.

e Options: This field indicates whether IP options are in effect. The analysis of our tractiq5®)
indicates that it is never used. Hence in our evaluation we will assurhi daaries no information.

As described above, the only ones that convey any information are the Td [ fesdlause they reflect the
operating system that generated the packets, the IPID field, because ifieattihe activity of the end host
sending the packets, and the packet length field. TTL field and the initisd @ IPID field are shared by all
packets in a flow. They only need to be recorded once per flow. For scdm a persistent flow, we ignore
the overhead introduced by these two fields. On the other hand, we dtohaamrd the increment in IPID
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start time packets transient | persistent| original size| predicted size p.,
flows flows (Gb) (Gb)
2004-07-22 09:3Q0 57,976,722 | 5,325,879 | 139,444 1.855 0.2746 0.1480
2004-09-22 10:0Q 387,766,186/ 34,868,897| 1,185,542| 12.409 1.722 0.1388
2004-09-23 01:0Q 408,677,406/ 32,225,458| 1,482,371| 13.077 1.500 0.1147
2004-09-23 13:0Q 438,144,794 27,658,438 580,827 14.020 1.528 0.1090
2004-09-25 10:0Q 318,278,620 52,309,680| 1,412,361| 10.184 1.726 0.1694
2004-09-26 01:0Q 358,380,592 49,877,711| 1,296,820 11.468 1.532 0.1336
2004-09-26 13:0Q 374,112,428 33,641,117| 1,143,797 11.971 1.658 0.1385
2004-09-29 10:0Q0 386,969,290 30,513,707| 1,403,630 12.383 1.417 0.1144
2004-10-05 10:0Q 426,552,282 26,926,647 565,459 13.649 1.486 0.1089
2004-10-06 01:0Q 422,589,830 69,453,421| 1,875,242| 13.522 2.301 0.1702
2004-10-06 13:0Q 480,253,220 66,839,365| 1,737,823 15.368 2.057 0.1338
2004-10-07 10:0Q 407,247,232 36,620,681| 1,245,103| 13.031 1.813 0.1391
2004-10-08 01:0Q 416,196,650 32,818,373| 1,509,645 13.318 1.528 0.1148
2004-10-08 13:0Q0 412,129,998 26,016,222 546,340 13.188 1.433 0.1087
2004-10-09 10:0Q 231,111,618 37,983,622| 1,025,557 7.395 1.248 0.1688
2004-10-10 01:0Q 231,327,068 32,195,004, 837,070 7.402 0.987 0.1333

Table 1: Marginal Compression Ratio over Real Traces

field and the packet length for each individual packet, no matter it is frgrrsistent flow or a transient
flow. Hence, the rate at which real information is generated in a network with petsiste transient flows
is given by

H(S) = XNH(¢)+H(P)+ H(dP))+ A(H(®)+ H(T)+H(I)+ E[K|H(I") + (E[K] - 1)H(d")), (25)

where)\ is the aggregate packet arrival rate for all persistent fléwg;) characterizes the packet timing and
flow ID information and can be calculated according to (2)andd? denotes the packet length and IPID
increment of packets from persistent flows respectivklis the arrival rate of transient flows#{ (®) char-
acterizes timing and flow ID information for all the packets within a flow and carab®ikated according
to (15),T andI denotes the TTL value and initial IPID value of a transient flow, drahdd’ denotes the
packet length and IPID increment of packets from transient flows,

5 Empirical Results on Real Packet Traces

In this section we apply the hybrid model to several one hour traces takenabauniversity gateway, We
gathered one hour traces taken at different times of the day (1am, 10amod@na period from Sept 22,
2004 to Oct 23, 2004. In table 1, we list the statistics of some of these tadgbe marginal compression
ratios predicted by our hybrid model.

We observe from Table 1 the potential to compress the raw trace to a size thatrid 4d86~17% of
its original size.

Now we want answer the question: what is the benefit of joint compmr@sie apply the hybrid
model to several pop-level topologies obtained from the Rocketfuel R8je®etailed descriptions of the
topologies that we use can be found in [4]. Unfortunately, the Rocketfuetgirg concerned only with
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nodes

links

transient

persistent persistent flow| transient flow| averge pj
flows flows packets rate | packets rate| path length
c&Ww 33 107 21 805 183,079.8 467,870.7 3.7627 | 0.2241
TeleG | 10 34 2 79 150,022.8 569,704.8 1.6296 | 0.6182
TeleE | 43 107 28 1077 295,329.1 547,974.2 6.0172 | 0.1534

Table 2: Joint Compression Ratio

obtaining topoloical information but not workload information. We generate i&klovad in the following
way. A persistent flow is generated between any pair of nodes with probabilRgickets within a flow are
generated according to a Poisson process with an arrival rate generated asimgthiods in [8]. For each
nodev € V, we pick two random numbe@,, @, € [0, 1]. Furthermore, for each node péir;, v;), we
pick a random numbe¥,, ...y € [0, 1]. Forv; andv; with Euclidean distancg the traffic rate between,
andv; is

—1/2L
aOu; Qu; Z(w; v;)€ /

whereq is a scale parameter aridis the largest Euclidean distance among all pairs of nodes. The values
of O, and@, model the degree to which a node generates or attracts traffic. The distaockls traffic
locality. This model, on average, generates larger traffic rates betwesnpairs of nodes than distant pairs

of nodes. Similarly, we generate transient flows between any pair of ramtesding to a Poisson process
with an arrival rate generated using the methods in [8]. The distribution of flow sizgsacket inter arrival
times within a flow are taken from the one hour trace collected at the outgoingfiakmajor research
university connecting to a commercial service provider on July 22, 2004 sfaittid9:30AM local time.

In table 2, we describe three topologies, Cable and Wireless (C&W), the main kBdrecof German
Telekom (Tele G), and Colt Telekom Europe (Tele E). We also describe in Ibihe ttze workload pro-
duced using the method described above. In addition, we list the jointressipn ratio. Note that this
describes the additional benefit of joint compression over marginapiezssion. We find in all cases that
p; is approximately equal to the inverse of the average flow path length. Thisasanable result as joint
compression mainly captures redundancy caused by duplicate recotids arme packet at different nodes
in the network.

6 Implications, Lessons, and Applications

In previous sections, we have established models to study the informatitentanpacket headers. Ap-
plication of these models to hour-long traces shows the potential of reglti@rsize of a raw trace from a
single site tol /6 of the original size and, in the case of a collection of distributed traces byditicnal

factor of 1/6 to 1/2. In this section, we discuss several packet trace compression principégsenbfrom

our models. Guidelines are presented which either have been adoptediwugly proposed compression
schemes or can be followed in new packet trace compression algorithaehitve a better compression
ratio. The fact that packet headers are highly compressible can alsploited in other ways, such as
online packet header compression for communication over low batttaidnnels and to discover hidden
communication through covert channels that exploit unused fieldskepaeaders and timing information
of packets. We will briefly discuss these two applications towards the etiilsadection. Last, the Section
concludes with a discussion of the model assumptions, specificallg$otw on those that can be relaxed.
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6.1 Guidelines for Packet Trace Compression
6.1.1 Exploiting Information Structure

A naive way to do packet trace compression is to use generic data comprieggg Gzip [2] can achieve

a marginal compression ratio arouddvhen applied to our packet traces. This is far below the result
predicted by our previous study. Packet header traces are highly strudatedtreams; their structure
should be accounted for during compression.

Brute-force vs. By-field Since a packet header consists of several fields, and many fieldtharecenstant
or are described by highly skewed distributions (consequentially exhibitimgehtropy), one can divide a
packet trace into multiple traces, each corresponding to a single fieldcBai@ression tools, such as gzip,
bzip2, etc., can be used to compress these field traces. To further expteitition among different fields,
e.g., the 5-tuple defining a TCP flow, one can place multiple fields intdarane, and then compress it using
algorithms which can handle long symbols. This procedure can be ctatthnline if the compression
algorithm only scans the data sequence once, such as gzip, dyndfmiamaoding [17].

Packet-based vs. Flow-baseHackets from the same flow share considerable information in addition to the
tuple defining the flow. However, packets from different flows are interiavea packet trace. Hence there

is less commonality between successive packets in a trace. In orderad &xp information redundancy
within a flow, packet header compression algorithms can reorganizetgaoko flows and conduct flow
based compression. Two previous works have investigated flow-baskel p@ader recording and com-
pression. The authors of [9] represent packet header traces as a séio@sretordsand packet records.
The information shared by all packets from the same flow is only recorded oredlow record. The
per-packet records are maintained to store unique information of each patlqe¢r-packet records from
the same flow stored together. This technique has been shown, [9], to pepduaginal compression ra-

tio of betweenl /3 and1/4 can be achieved. However this approach requires greater storage thao gene
compression because of the need to identify flows and classify packets.

Another work [13] also adopted the idea of flow-based compression. Aawinformation is stored
once for each flow. Unlike the previous work, packetsrasereshuffled. Instead, a flow id is stored in each
packet header as a pointer to the flow information. With a fixed time resolut@midro-second, the author
proposed to use a variable number of bits to store the packet inter-arrivalltirbés if the inter-arrival time
is smaller thar2'® us; 32 bits if the inter-arrival time is smaller that¥! s; and96 bits otherwise. Packet
timing information can be further compressed if optimal codes, e.g., Huffrode, @are applied on packet
inter-arrival time to achieve the entropy bound as calculated in Section 3.

Another major saving comes from the observation that many fields ofkepheader are predictable
given the previous packet header within the same flow, (in other wordsy paeket header in a flow brings
little new information). It is argued that, for a TCP flow, only the flow ddblytes) and inter-arrival time (2
bytes) is necessary to represent a in-sequence TCP padikgieé time stamp #0 bytes TCP/IP header).
This easily leads to a compression factoBoNow the flow id takes a major portion of a compressed packet
header. It can be further compressed since the flow size distributgkevgedn the Internet. Intuitively,
assigning shorter flow ids to elephant flows will reduce the average floangth for all the packets. We
can even get rid of flow id in each packet header if we place all of tekgideaders from the same flow
together. This complies with our flow based model in Section 3, where flowadrdoappear in a packet
header information content. It comes, however, at the cost of packeiffiesy, which is very memory
intensive because one has to store all the packets from all active flo@sn@imory requirement of packet
reshuffling can be reduced by only storing the compressed headers irryreamddhe flow temporal locality
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which will be explained in the following section.

6.1.2 Exploiting Temporal Locality

Users’ connections are inherently transient. Network flows come and goauketp within a flow are
closely spaced in time. This results in temporal locality in packet headdhwan be explored both by
packet based compression and flow based compression.

For packet based by-field compression, the compression ratio is bobgdbd entropy of each field.
Given a packet trace with duratidh, we can use Huffman coding to construct a optimal code kod@r
the whole tracdrace(0,T"). Alternatively, we can construct a Huffman code ba@kfor the first half of
the tracel'race(0, 7) and another code boak, for the second half of the trad&race(Z, T'). We than use
C1 to compresg'race(0, L) andC» to compressrace(%,T). SinceC is optimized forTrace(0, L),
Trace(0, %) is better compressed ldy; than byC. Similarly, Trace(%, T) is better compressed witti;
thanC'. Therefore the whole tracBrace(0,7") can be better compressed by us@igandC, than justC'.
On the other hand, we have to store two code badkandCs instead of on&”. In general, one can divide
a packet trace efficiently according to time and compress them separatepidceghe temporal locality in
packet headers.

Temporal locality is more important for flow-based compression. Given@ti@ce, a large number of
flows and their packets have to be stored in the memory. A long bit seqhasde be used to represent
a flow id. Since most flows are transient, if we only count active flows within a twmdow, the smaller
the window size, the smaller the number active flows. Equivalentlygitiwide a long trace into multiple
shorter traces according to time, we can reduce the memory requirement asttbtse bit sequences to
represent flow ids. Similar to the argument in the previous paragraph, wdscaticebetter in compressing
flow id. On the other hand, time window will chop one flow, either longenttie time window or happens
to cross one boundary of a time window, into multiple flows. The conse@gustticat the flow size (measured
in packets) seen by the flow-based compression algorithm is now smaltethtir original size. ldeally,
the more packets in a flow, the higher the gain of flow-based compressiorsniall a time window will
degrade the performance of flow based compression. To illustrate, agsinawe to usé’ bits to represent
the flow information,B bits (in average) to record per-packet information, the total length of aflovth
N packets isF' + N B bits, the per-packet flow information overhead]%s Let's say due to a small time
window, the flow is chopped equally inte smaller flows{ fi,--- , f,»}. Then we have to usg&' bits to
represent flow information for each flofy which consists o% packets. The per-packet flow information
overhead isn times higher than the previous case. The total bits needed to repfegent- , f,,,} is
mF + NB. The inflation in the compressed length for the flowjs= ENE If & > L je,, each
time window still have a large number of packets from the same flow, theiofleatio p; is close tol.
The choice of appropriate window size depends on the flow size distributioruneedé®thin time and in
packets.

6.1.3 Exploiting Spatial Correlation

A distributed network measurement system collects traces from multiple neliwksko characterize net-
work wide phenomena. Packet header traces can be compressedualiimising the previously discussed
principles. Network flows crossing multiple network monitors introduce informatolundancy between
packet traces collected at these monitors. The focus of this section is dp baploit thespatial correlation
present in packet traces to jointly compress them.
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We observed that the joint compression ratio is roughly equal to the aveatigéepgth. This obser-
vation was based on the assumptions that delays are constant andciteds fpar a given flow always take
the same route through the network. However, these assumptions are lgematralue in real network
environment. Flow routes can change over time (albeit infrequently) andisamcur random delay on
network links. To capture the route changes, the network behavior sha@lldénthe information of where
a particular packet appears. In other words, each monitor shouldsatésard in some way the identities
of all packets that it observes. To deal with random link delayshawe tostore timing information of each
packet on each monitor. The jointly compressed trace must contain théyiderd timing information for
each packet on each monitoring point. In an individually compresseddésed trace at a monitor, flow id
and inter-arrival time corresponds to most of the information associated withkatp&2ne may draw the
conclusion that in a realistic network environment joint packet trace casjmreis not necessary. However,
this is not true for the following reasons:

1. Flow routes change infrequently. We don't have to record packet |D mioalitors all the time. How
to exploit the stability of network routes in joint compression of distributed patlaces deserves
more study.

2. Are packet inter-arrival time on multiple links correlated? How can wéogghis spatial correlation
to compress packet timing information.

3. So far we have focused on packet header trace compression. Soit@imgapplications, especially
network security related applications, require that packet payload informagisacorded. Unlike
headers, payloads don’t change inside the network. Furthermore, thégaderthe trace dominate
header in size. Joint compression of full packet trace is definitely desirabl

Implementation of joint packet trace compression is much more complitegadndividual packet trace
compression. The major difficulty comes from how to correlate distributed tra&@ae option is to send
all packet traces to a single service facility and compress them jointly émtadized way. In Figure 4, all
network monitors send their packet traces to a common packet trace storagerder to reduce bandwidth
consumption in sending the original packet traces, packet traces camipeessed individually before the
transmission. Another option is to jointly compress packet traces alongvthgito the common storage.
For example in Figure 44 first sends its trace t®; B compresses its own trace jointly with's trace,
then sends the compressed tracdstoHow to optimally organize the routing and compression of packet
traces is a trade off between the processing power and network connectiaty monitors. Distributed

\

Figure 4: Joint Packet Trace Compression

data compression [6] aims at compressing correlated sources in a distribytethevachieving the gain
of joint compression. How to compress packet traces without exchapgicket headers remains to be a
challenging problem. It may also be possible to borrow ideas frajactory sampling7]to design joint
compression algorithms.
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6.2 Other Applications
6.2.1 Packet Header Compression to Improve Link Efficiency

Packet header compression is not only important for passive netwarkaring. It has also been used to
improve link efficiency in various network environment. For network applicatiGcuch as remote login,
Voice over IP, network games, etc, the payload of IP packet is smallnsiiigting IP headers incur a
large overhead. Packet header compression is especially impotianttvose applications run over low
bandwidth and high bit error rate links, such as dial-up connection and ssretgannels. As shown in
Figure 5, packet headers can be compressed at the sender side of Hmalunkcompressed by the receiver.
Header compression improves the efficiency of those expensive IB#geral packet header compression

header payl oad
header payl oad

header payl oad l:|
- .—M — .deconpress -
expensive |ink

Sender Recei ver

Figure 5: Header Compression to Improve Link Efficiency

standards have been developed within IETF ([11], [12], [14] and [16]) for difféypetof links and different
applications. The models and principles developed in this paper mag ps®ful to guide the design of
packet header compression schemes for new network environmentewghplications.

6.2.2 Covert Channels Established using Packet Headers

A covert channel is defined to be a communication channel that carplster by a user to transfer infor-
mation in a manner that violates a system’s security policy. Covert chaimitle Internet pose a big threat
to network security [15]. Several schemes have been proposed to estabdistbadded communications
channel utilizing TCP/IP packet headers. Some schemes take unusedkatchelds in packet headers to
transmit data. Some schemes use timing between packets to convey inforr@ationformation theoretic
study in packet traces, both on packet timing and individual packesfietth be used to detect covert chan-
nels built on packet headers: a significant increase in the entropy kétpagaders suggests that they are
being manipulated to hide communications.

7 Conclusions and Future Work

Using an information theoretic approach, we systematically study the informatiomaancy in packet
headers. Both packet-level and flow-level models are developedotorexhe temporal and spatial cor-
relation of packet traces collected from distributed network monitors. We cirefully the information
content in all fields of an IP header, including the timestamp, the flow fidet by the 5-tuple, TTL field
and IPID field, etc. Empirical data from an access link of a major universitfes@ into the proposed
models to demonstrate the potential gain of conducting marginal and mimpression on packet traces.
Various results obtained from our information theoretic study serve as lowedbamthe compression
ratios which can be achieved by lossless compression algorithms. Moretamibg our analytical models
help us identify the major sources of information redundancy in packetehdgtes. Several important
principles are obtained to guide the design of efficient packet trace cosigredgorithms.
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Future work can be pursued the several directions. One immediate application stfudy is to de-
velop both marginal and joint packet compression algorithms accotditite proposed guidelines. Their
efficiency can be evaluated by comparing their compression ratios oradatdraces with those predicted
by our models. In our models, we make several assumptions, sugpendency assumptions, on packet
headers and their fields. The implication of violation of those assumptiof®ith analytical models and
algorithm design deserves further study. How to extend our packet hemdils to study other emerging
applications, such as covert channels, is another interesting directiorsteepu
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