
1

TCP Implementations and False Time Out
Detection in OBS Networks

Xiang Yu†, Chunming Qiao† and Yong Liu∗
†Department of Computer Science and Engineering, State University of New York at Buffalo

∗Department of Computer Science, University of Massachusetts at Amherst

Abstract— This paper compares Reno, New-Reno and Selec-
tive Acknowledgements (SACK), the three most common TCP
implementations today in (future) optical burst switched (OBS)
networks. In general, SACK, which considers multiple Triple
Duplicated ACKed (TD) losses in one round, is found to perform
best in OBS networks, while New-Reno, which improves Reno in
packet switched networks by fast retransmission in responding
to partial ACKs, may however perform worse than Reno.

All three TCP implementations react to a Time Out (TO)
loss in the same way (i.e, using Slow Start). In OBS networks,
where a burst may contain all packets from one round, and
a burst loss occurs mainly due to contention instead of buffer
overflow, such a TO event may no longer imply heavy congestion,
or in other words, it may be a false TO or FTO. Such FTOs,
which may be common in OBS networks especially for fast TCP
flows, can significantly degrade the performance of all existing
TCP implementations. Accordingly, we also propose a new TCP
implementation called Burst TCP (BTCP) which can detect FTOs
and react properly, and as a result, improve over the existing TCP
implementations significantly.

I. INTRODUCTION

Optical Burst Switching (OBS) (see [9], [10] for example)
is a promising technology which integrate IP and Wavelength
Division Multiplexing (WDM) and is expected to support the
future Internet backbone with huge bandwidth demand. Since
TCP [11] is the prevailing mechanism for data transmission
today, and its variations will likely remain dominant in the
next generation Optical Internet based on OBS, understanding
the performance of the current TCP implementations in OBS
network becomes an important issue.

In a TCP/IP over OBS network, the TCP sender/receiver
is connected to an OBS network through several IP routers,
which form two local IP access networks, hereafter called
sender-side and receiver-side respectively. It is noted that both
the local IP access networks and the OBS network can have
loss (packet loss vs burst loss). The impact of packet losses
on the performance of current TCP implementations have been
studied in many previous works such as [3], [6], [7], and in
this paper, we will focus on the impact of burst losses in the
OBS network.

The basic transmission unit in OBS networks is a burst,
which usually contains a number of consecutive pack-
ets/segments1. Whenever a burst loss occurs, a TCP sender will
be notified with the loss of a number of consecutive packets
belonging to the lost burst, either by duplicate/partial ACKs

1We will use the terms packet and segment interchangeably as [3], [6], [7].

as in Reno and New-Reno, using the information contained in
received ACKs as in SACK, or by an expired timers in all three
TCP implementations. How such a burst loss affects different
TCP implementations has not studied in current literatures as
far as we know. For example, most recent studies on TCP over
OBS either are based on TCP Reno only as [2] and without
considering Reno’s fast recovery algorithm, or simply ignored
the details of TCP implementations as [1], [4].

For Reno TCP, consecutive packet losses in a burst can
shrink the congestion window a consecutive number of times
due to multiple TD retransmissions, and may eventually result
in TO retransmission. New-Reno TCP improves over Reno
in packet switched networks by avoiding TO resulted from
multiple TD losses. However, it can have a worse performance
in OBS networks than Reno when the size of a lost burst (and
accordingly, the number of lost packets) is large because New-
Reno insists on retransmitting only one lost packet in each
retransmission round, and during such a retransmission phase,
there can be no new packets transmitted.

Some recently proposed TCP implementations such as
Selective Acknowledgements (SACK) [3] and Forward Ac-
knowledgements (FACK) [6] address the inefficiency of Reno
and New-Reno in dealing with multiple packet losses in
one sending round by adding the information about missing
packets in a receiver’s window to the ACKs so that a sender
can retransmit multiple lost packets in one round. In this paper,
we will show that SACK can also achieve a better performance
than Reno and New-Reno in OBS networks.

However, all the current TCP implementations deal with a
TO loss in the same way by performing slow-start. While such
a TO loss indicates serious congestion in a packet-switched
network as all the packets in the same round are lost, it
does not necessarily indicates serious congestion in an OBS
network. For example, for a fast TCP flow, whose arrival rate
at an OBS assembly node is large, all the packets from the
same sending round can always be assembled in one burst. If
such a burst is lost due to contention (among multiple bursts),
no ACKs can be sent back, and accordingly, the burst loss
will eventually trigger a TO event, even though the burst loss
occurs with more or less a random probability, rather than
due to buffer overflow induced by serious congestion. In other
words, such a TO event will generate a false indication of
serious congestion, and accordingly will be called false TO
or FTO hereafter. FTOs will unnecessarily force all current
TCP implementations to perform Slow Start, and thus result
in significant performance degradation.
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This paper makes two major contributions. First, we use
simulations to evaluate the performances of Reno, New-Reno
and SACK in OBS networks, and in particular, demonstrate
their inefficiencies in dealing with FTOs. Another major
contribution is that we propose a new implementation called
Burst TCP (BTCP) which can detect FTOs and react properly.
More specifically, upon detecting a FTO, BTCP treats the
loss as a TD loss, and enters the fast retransmission phase;
If BTCP determines that a TO is a true TO (i.e., not a
FTO) resulted from several (packet/burst) losses, or there have
been several consecutive FTOs (which also indicate serious
congestion in the OBS networks), BTCP performs the usually
timeout retransmissions with Slow Start as all current TCP
implementations do. In this paper, we will describe three FTO
detection methods, and discuss their tradeoffs between FTO
detection accuracy and implementation complexity. We will
show through both analysis and simulations that BTCP can
have a much higher throughput than existing TCP implemen-
tations especially for fast TCP flows while remaining to be as
responsive to serious congestion.

The rest of the paper is organized as follows. Section II
introduces the background for OBS networks and the current
Reno, New-Reno and SACK implementations. Section III
evaluates the performances of Reno, New-Reno and SACK in
the OBS networks via NS-2 simulations. The proposed BTCP
with FTO detection methods is described in Section IV, and
its performance is evaluated in Section V. Finally, Section VI
concludes this paper.

II. BACKGROUNDS

Two main characteristics of OBS that result in different TCP
performance from (electronically) packet-switched networks
are burst assembly at OBS ingress nodes, and bufferless
switching within the OBS core. More specifically, bufferless
switching implies that burst losses within OBS networks could
be more or less random due to contention among multiple
bursts instead of buffer overflow. On the other hand, burst
assembly affects the TCP performance mostly in two ways:
delay penalty due to an increased TCP round trip time, and
correlation gain from being able to send more packets between
two loss events [2], [12]. They both depend on the burst
assembly time Tb, and offset each other to some extent. While
the delay penalty affects different TCP implementations in
more or less the same way2, the correlation gain, which is
the net effect of the so-called delayed first loss (DFL) gain
and the retransmission penalty [12], could be different for
different TCP implementations with different retransmission
mechanisms.

A. Slow, Fast and Medium-rate TCP Flows in OBS networks

In this paper, we approximate each of the local IP access
network as just one link with a constant access bandwidth λ
(which is also the TCP sending/receiving rate). Below, we will
review three typical TCP traffic scenarios in OBS networks:
slow TCP flow, fast TCP flow and medium-rate TCP flow.

2Here, we assume a simple time-based burst assembly algorithm where Tb

is fixed.

1) (Extremely) Slow TCP Flow: In this traffic scenario, a
TCP flow has an extremely slow arrival rate λ or equivalent,
an extremely small assembly time, Tb which satisfies

λ · Tb < 1 (1)

As a result, each burst contains only one packet from the
TCP flow. In addition, since the extra delay introduced by
burst assembly is small compared to the Round Trip Time
(RTT ) for the slow TCP flow, the TCP performance in an
OBS network approximates to that in an electronic packet-
switched network whose packet loss rate is the same as the
given burst loss rate. Hereafter, we will ignore this case as the
results from packet-switched networks should apply.

2) Medium Rate TCP Flow: In this traffic scenario, a TCP
flow has a medium arrival rate (and a medium assembly time)
so that one burst contains more than one packet from the TCP
flow, but not all the packets in one sending round. In other
words, we have

1 ≤ λ · Tb < Wm (2)

Usually, there will be more than one bursts transmitted in
the OBS network for each sending round, with each burst
containing more than one TCP packets.

3) Fast TCP Flow: In this traffic scenario, the sending rate
λ of a TCP flow is so fast (or the assembly time Tb is so
large) that all packets sent in one round (even after the sending
window reaches its maximum size of Wm) will arrive within
the same assembly period, and thus be assembled into one
burst. In other words, we have

λ · Tb ≥ Wm − 1 (3)

For such a flow, there is always one burst that contains all
TCP packets transmitted in the OBS network for each sending
round.

In this paper, we will focus on medium and fast TCP
flows in OBS networks, which is of more practical interest,
especially with high-speed access networks and OBS networks
with a reasonably large assembly time. For example, assume
that the access bandwidth is 2.5Gbps in the local IP access
networks, with each TCP packet size of 1KB, and the max-
imum window size of 2Mb, any assembly time larger than
2Mb/2.5Gbps = 0.8ms would make a TCP flow a fast TCP
flow. In OBS networks, the assembly time could be a few ms
long.

B. Reno, New-Reno, and SACK TCP Implementations

Reno TCP refers to TCP with Slow Start, Congestion
Avoidance, Fast Retransmit and Fast Recovery algorithms.
When Reno starts, it enters the Slow-Start phase first with
a congestion window of size 1, and then exponential expands
its sending window after all packets transmitted in the pre-
vious round are acknowledged. When the congestion win-
dow reaches a certain threshold, Reno enters the Congestion
Avoidance phase during which the window expanding speed
slows down, that is, Reno increases the congestion window
size by 1 packet after all packets from the previous round are
acknowledged.

Reno distinguishes two kind of losses, namely timeout (TO)
losses and triple duplicate (TD) losses. A TD loss is assumed
when a Reno sender receives three duplicate ACKs for the
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same packet, and the sender will not wait for a TO be-
fore retransmitting the lost packet. During the retransmission,
the sender halves its congestion window in response to the
congestion indication by the loss. The rationale behind this
is that a TD loss only indicates a light congestion. On the
other hand, after a TO loss, where no more than 3 packets
are successfully transmitted before the timer expires (which
usually indicates a heavy congestion), Reno enters the Slow
Start phase, followed by the Congestion Avoidance phase, to
retransmit the lost packets as well as new packets. Note that
when multiple packets are lost in the same round, e.g., when
a burst containing a large number of packets is lost, Reno
will halve its congestion window every time it successfully
retransmits one lost packet and receives three duplicate ACKs
for the next lost packet in the burst, and eventually, its size may
become less than 3 (e.g., this will be the case if the congestion
window at the time burst loss occured is small enough). After
that, since it is impossible to receive three duplicate ACKs,
a TO event may be triggered, which will bring Reno to the
Slow-Start phase.

New-Reno makes the following small change to Reno. Even
when multiple packets from a single window of data are
lost, New-Reno can recover without a TO by retransmitting
one lost packet per RTT upon receiving each partial ACK,
without waiting for three duplicate ACks, and does not halve
the congestion window until all the lost packets from that
window have been retransmitted. With the above changes,
New-Reno can improve the performance in packet switched
networks. However, in OBS networks, with a large burst lost,
New-Reno can prolong the retransmission period significantly
during which no new packets can be sent which may decrease
its performance.

The congestion control algorithm implemented in SACK
is a conservative extension of Reno’s congestion control, in
that it uses the same algorithms for increasing and decreasing
the congestion window. The difference is that the option field
in SACK contains a number of SACK blocks, where each
SACK block reports a non-contiguous set of data that has been
received and queued. With the block information in ACK, the
TCP sender will be able to send more than one lost packets
at a time, which helps improve the TCP performance in OBS
networks.

III. PERFORMANCE COMPARISON AMONG EXISTING TCP
IMPLEMENTATIONS

In this section, we compare the performance of Reno,
New-Reno and SACK in OBS networks using NS-2 simu-
lation.Previous work has evaluated the performance of these
TCP implementations with a few packet losses within a
sending round, but not as many packet losses as what occurs
in an OBS network with a burst loss.

Generally speaking, all three TCP implementations have the
same Slow Start and Congestion Avoidance algorithms, and
the DFL gain and delay penalty mentioned earlier will be the
same as long as the assembly time or burst size is kept the
same. The differences between various TCP implementations
come from the fast retransmission and fast recovery mech-

anisms, and their interactions with burst assembly in OBS
networks, which are the focus of this section.

In our simulation, the TCP sender and receiver connect
to OBS edge nodes with a link whose propagation delay is
10ms. The OBS network is modelled with two edge nodes, and
two core codes which form a path of four nodes using three
fiber links, each having 10ms delay and 10Gbps bandwidth.
Therefore, the round trip time (RTT) without including the
assembly time is around 2 × 50ms or 0.1s. By default,
the packet size is fixed at 1KB, and the maximal window
limitation varies from 10KB to 200KB. The results from the
simulations were generated by tracing packets inside bursts
departing the OBS ingress node. For each graph, the X-axis
shows the bursts’ departure time in seconds, the Y-axis shows
the packets’ number mod 60.

A. With One Burst Loss

This section highlights the performance differences between
Reno, New-Reno and SACK in OBS networks with one burst
loss.

1) Medium Rate TCP flows: To simulate a medium rate
flow, we assume that the access bandwidth is 125KBps.
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(a)   Small Congestion Window
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Fig. 1. Packet trace with one burst loss occurred at (a) W = 20 and (b)
W = 200 for a Reno TCP flow (Tb = 0.04s)

Figure 1 illustrates the impact of the congestion window size
on Reno’s TD loss event, where the length of the lost burst
is BL = 5 packets (which is the maximal value since 0.04 ×
125 = 5). As we can see from Figure 1 (a), if the congestion
window3 is small, i.e., W = 20 packets, at the time when
the burst is lost, the window size will be reduced to less than
3 at time 3 after three retransmission rounds but before all 5
packets lost in a burst can be retransmitted. Therefore, without
being able to receive three duplicate ACKs any longer, a TO
occurs at time 3.8 and a Slow Start phase begins. However,
in Figure 1(b) where the congestion window size has already
grown to reach the maximal limit of 200 packets by the time
the burst loss occurs, Reno can recover from retransmission

3Note here with a relatively small RTT , TCP packets are pipelined and
congestion window cannot be represented in the graph
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(b) Tb = 0.2

Fig. 2. Packet traces with one burst loss (W = 40 when a burst is lost)

stage and re-enter the congestion avoidance phase without a
TO event.

Figure 2(a) compares different TCP implementations upon
one burst loss when both BL and W are small (5 and 40
in the simulation, respectively). It can be seen that SACK
has the best performance because the ACK can indicate the
block of packets lost, and the sender sends out the all the
lost packet again upon receiving the ACK. In addition, New-
Reno generally performs better than Reno because New-Reno
detects the loss of next packets upon receiving a partial ACK,
without waiting for 3 duplicate ACKs or a TO (while Reno
will have a TO as discussed earlier). In addition, New-Reno’s
congestion window will only be halved once after recovered
(i.e., W = 40/2 = 20), which makes New-Reno can recover
quickly from the loss of a small burst.

Figure 2(b) shows that when the lost burst length is large,
(BL = 15 in simulation) while W is still relatively small when
the burst loss occurs (e.g., 40), New-Reno performs worse than
Reno. This is because New-Reno only retransmits one lost
packet in one round, and hence needs a long time to finish all
15 retransmissions during which no new packets can be sent.
Reno, on the other hand, will have a TO as before, but new
packets may be transmitted before the TO and in addition,
the TO value is much smaller than 15 RTT in New Reno’s
fast retransmission phase, and Reno’s transmission after TO
is much more efficient because it exponentially increases the
sending window size. Also from Figure 2(b), we can see that
in this case, SACK has a much better performance than Reno
and New-Reno due to its selective acknowledgements.

We note that if BL is small but W at the time burst loss
occurs is relatively large as in Fig. 2(b), Reno will not have a
TO, and hence its performance will be comparable to that of
New-Reno.

2) Fast TCP Flows: To simulate a fast TCP flow, we
assume that the access bandwidth is 1MBps, and the burst
assembly time is Tb = 0.2s. In this case, since there is only

one burst containing all the packets in one round, a burst loss
will trigger a timeout (TO) event in Reno, New-Reno and
SACK, which have exactly the same performance as they all
use Slow Start for retransmission after a TO loss as shown in
Figure 3.
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Fig. 3. Packet trace with one burst dropping for a fast TCP flow

B. Multiple Burst Losses

In this section, we compare the performances of the three
TCP implementations with multiple burst losses. For a fast
TCP flow, since all three TCP implementations apply the same
timeout retransmission mechanism every time a burst is lost,
they are expected to have the same performance with multiple
burst losses as well. Therefore, we only consider multiple burst
losses in a medium rate TCP flow.

Figure 4(a) illustrates the performances of the three different
TCP implementations with a medium-high loss rate. When
losses are scattered before time 12, the three TCP imple-
mentations have much different performances due to different
TD retransmissions, and when losses occur one after another
immediately, the three TCP implementations have the same
performance as multiple back to back burst losses will easily
trigger a TO event (after which, all TCP implementations
perform the same timeout retransmissions) as shown after time
28 in Reno, after time 21 in New-Reno and after time 16 for
SACK in Figure 4(a). On the other hand, Figure 4(b) shows
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TABLE I
THROUGHPUT RATIO OF NEW-RENO AND SACK OVER RENO, Tb = 0.04s

log(p) -3 -2.5 -2 -1.5 -1 -0.5
NewReno/Reno 1.0 1.1 1.29 1.19 1.03 0.93

SACK/Reno 1.0 1.07 1.58 1.4 1.33 1.07

TABLE II
THROUGHPUT RATIO OF NEW-RENO AND SACK OVER RENO, Tb = 0.2s

log(p) -3 -2.5 -2 -1.5 -1 -0.5
NewReno/Reno 1.0 0.94 0.9 0.76 0.93 1.06

SACK/Reno 1.0 1.03 1.02 1.1 1.0 1.0

that with a medium-low loss rate, SACK always has the best
performance as most, if not all, losses are TD losses.

Table I and II show the performance ratios of New-Reno
over Reno, and SACK over Reno, as the burst loss rate
varies from low to high. In general, for a low or high
loss rate, all the three TCP implementations tend to have
the similar performance. This is because the performance
difference for different TCP implementations comes from
the TD retransmission stage only. Accordingly, a high burst
loss rate usually leads to a higher probability of a TO with
which there is no difference in TO retransmissions in the
three TCP implementations. On the other hand, a low burst
loss rate leads a low TO probability but also a low TD loss
probability. Accordingly, there will also be little performance
difference between different TCP implementations. However,
with a medium-low to medium-high loss rate, the probability
of a TD event can be relatively high (compared to a TO event),
and accordingly, the performance difference among different
TCP implementations will be more obvious, as shown in the
middle two columns of Table I and II.

Table I and II also show the effect of the burst assembly time
Tb (or burst length) on the performance ratios of New-Reno
over Reno, and SACK over Reno, respectively, It is interesting
to note that New-Reno has a better performance for a smaller
assembly time (0.04s for possibly smaller burst size, e.g., up to
5), while Reno has better performance for a larger assembly
time (0.2s for possibly smaller bust size, e.g., up to 25) as
illustrated in Table I and II, respectively. In general, their
relative performances depend on the relationship between TCP
timeout value RTO, round trip time RTT and the number of
packets contained in the lost burst BL. When RTO is much
larger than BL × RTT , New-Reno has a better performance
than Reno, otherwise Reno has a better performance because
the interval between the time that the previous burst lost and
the time for next new packet to retransmit is approximately
RTO for Reno and BL × RTT for New-Reno. Since RTT
and RTO is almost fixed after TCP starts for some time, BL
usually decides the relative performances of Reno and New-
Reno. Also note that, when assembly time Tb (or burst length)
increases, SACK is still better than Reno but its advantage
diminishes due to the fact that TO can happen more easily as
fewer burst losses can trigger a TO event, where retransmission
mechanisms for all TCP implementations are the same.

For medium loss rates, the differences between their perfor-
mances are the highest since TD loss happens most often and
affect the total throughput more. With different burst length

or assembly time, Reno and New-Reno has tradeoffs in their
performances.

IV. BURST TCP (BTCP) WITH FALSE TIMEOUT
DETECTION

All current TCP implementations assume that a TO event
triggered by multiple packet losses indicates a serious conges-
tion in the network. This assumption is valid in (wired) packet-
switched networks because such multiple packet losses are
resulted from buffer overflows. However, it is not always valid
in OBS networks where one burst containing all packets in one
sending round may be lost due to contention, since multiple
packet losses are due to a single burst loss event, and such a
burst loss event is more or less random, and therefore, does
not necessarily indicate serious congestions in OBS networks.

We call a TO event a false TO (FTO) if it is caused by a
single burst loss in a OBS network which is not in serious
congestion. Such FTOs, which can occur quite often for a fast
TCP flow in OBS networks, can degrade the performance of
all current TCP implementations by forcing them to perform
Slow Start.

To improve the inefficiency of current TCP implementations
in dealing with FTOs, we propose a new TCP implementatin
called Burst TCP or BTCP, whose aim is to detect FTOs,
and treat them as TD losses, which is the way these packet
losses should be treated. In this section, we describe three FTO
detection methods that may be used by BTCP.

In order to determine whether a TO event is a FTO or
not, a BTCP sender needs to know if this TO is caused
by multiple packet losses within either or both of the two
IP access networks, called sender-side access network and
receiver-side access network. If so, then the TO is a true TO,
i.e., not a FTO. Otherwise, the multiple packet losses may be
caused by either a single burst loss or multiple burst losses
within the OBS newtork. In the former case, the TO is a FTO
but in the latter case, it is also a true TO.

The first FTO detection method we propose is for a BTCP
sender to estimate the maximal number of packets that can
be assembled in a burst. Such a method, called burst length
estimation or BLE for short, does not require any changes
to OBS networks, and is relatively simple to implement; The
second method we propose is to let OBS edge nodes send
burst ACK (BACK) to the BTCP sender, which contains the
information of the packets contained in a burst arriving at
an ingress and/or egress nodes. This BACK based method
therefore requires that the OBS edge nodes be able to process
TCP packets and send BACKs to the BTCP sender, but
can achieve a better FTO detection accuracy than the first
method BLE. Last but not least, the third method lets a
core OBS node at which a burst has to be dropped send the
information of the packets contained in a dropped burst using
a burst NAK (BNAK) to the BTCP senders, which requires
OBS core nodes to be able to handle TCP packet processing
and NAK sending. This BNAK based method can not only
achieves the highest FTO detection accuracy among the three
FTO detection methods, but also allows the BTCP sender to
start TD retransmissions even before a FTO occurs. On the
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(b) p = 0.01

Fig. 4. Packet traces with multiple burst losses for a medium-rate TCP flow

other hand, the best performance is achieved with the highest
implementation complexity among the three FTO detection
methods. In the following subsections, we will describe these
methods in more detail.

A. FTO Detection using Burst Length Estimation or BLE
To implement the proposed BLE method, the BTCP sender

needs to keep one piece of additional state information, which
is the burst window size (burst wd), to estimate the current
number of TCP packets contained in one burst in the OBS
network. When a TO event happens, the sender compares the
current congestion window with the burst window to decide
whether it is a FTO or not, and then takes appropriate actions.
The following are some of the implementation details:

First, we estimate the burst window size burst wd using
the following steps:

1. When a new BTCP flow starts to transmit, it resets
burst wd to zero, then enters the Slow Start phase. The BTCP
sender does not need to know about the assembly algorithm
and in particular the assembly time used by the OBS network.

2. If the first loss is a TD loss, it means that the current
congestion window cwnd is larger than the maximum number
of packets contained in a burst. TCP sender updates the
burst wd as half of the current congestion window size cwnd,
i.e., burst wd = cwnd/2. Otherwise if the first loss is a TO
loss, it is very possible that the sender’s congestion window
cwnd is smaller than the number of packets that have been
assembled in a lost burst, or in other words, the TO is a
FTO. In this case, we set the burst window size as the current
congestion window size: burst wd = cwnd.

3. If a loss is not the first loss, and it is a TD loss, then
we set the burst window size as minimum of current burst
window size and half of the congestion window: burst wd =
min{burst wd, cwnd

2 }.
4. If a loss is not the first loss, and it is a TO loss, then there

are two subcases: (1) if the TO loss is the first TO loss, then

set the burst window size as min{cwnd, burst wd}; (2) if the
TO loss is not the first TO loss, then set the burst window size
as max{cwnd, burst wd}.

To determine if a TO is FTO based on the estimated
burst wd:

1. For any TO loss, as long as cwnd ≤ burst wd and
burst wd > 3, the sender treats the TO as a FTO, and halves
its congestion window and starts fast retransmission of all
packets lost.

2. Otherwise, for a TO loss with cwnd > burst wd or
burst wd ≤ 3, the sender treats the TO as a true TO event,
and performs the same TO retransmissions as other TCP
implementations do.

Note that the above BLE method requires no coordination or
information exchange between the BTCP sender and the OBS
nodes. In addition, the method is simple to implement, and
can improve the throughput performance when compared to
current TCP implementations whose performances are plagued
by FTOs.

However, the estimated burst wd may not be accurate.
Accordingly, it is possible that a true TO will be taken as
a FTO by mistake when using the above BLE method for
medium rate TCP flows. In addition, even if it is accurate,
the above BLE method cannot distinguish multiple packet
losses within either or both of the local access network (which
are possible albeit with a small probability) from a single
burst loss within the OBS network. In other words, when
BLE declares a TO to be a FTO, it could be a true TO
instead. When it is a true TO, TCP should enter the Slow Start
phase immediately as it indicates serious congestion. However,
BTCP will enter the Slow Start phase only after several such
“FTO” events, which makes it less TCP friendly.

B. FTO Detection using Burst ACK or BACK
One possible enhancement to the previous FTO detection

method BLE is to enable an OBS ingress node to send
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information of the TCP packets in a burst back to the BTCP
sender via an Burst ACK or BACK packet. In this way, the
sender no longer needs to guess which packets are assembled
in the same burst or not. When a TO occurs, the sender will
know from the BACK whether all the packets are in the same
burst. If so, the TO is very likely a FTO (it is still possible
however, that all the packets are lost in the receiver-side access
network, but the sender has no way of knowing for sure one
way or the other). Otherwise, it is definitely a true TO. Of
course, if the BTCP sender did not receive a BACK and a TO
occurs, it is safely assume that it is a true TO (since either
the multiple packets sent earlier or the BACK packet is lost
in the sender-side access network).

The algorithm based on BACK from the ingress node is
illustrated as follows:

1. When a burst is created and leaves the ingress node,
ingress node collects the sequence number and TCP sender’s
information for all TCP packets in the burst, and sends
an BACK packet to each BTCP sender with the sequence
numbers.

2. When the timer expires, a BTCP sender checks the most
recent BACK to see if all the lost packets are in the same
burst: (1) If they are, then treats the timeout as a FTO and
follows the normal TD retransmission as described above. (2)
Otherwise, (or if the packet sequence numbers cannot be found
in any BACK packets), treats the TO as a true TO and starts
retransmission using Slow Start.

Note that one may also ask an OBS egress node to send a
BACK packet instead. In such a case, when a BACK packet
is received, the sender will know that any losses must have
occurred within the receiver-side access network. However, if
no BACK is received, then the sender cannot tell multiple
packet losses within the sender-side access network from a
burst loss within the OBS network.

To help distinguish a burst loss within the OBS network
from multiple packet losses within either or both of the access
networks, one can let both ingress and egress nodes send a
BACK packet. In this way, the sender can detect FTOs with
accuracy, i.e., BTCP sender knows a TO is a FTO when only
a BACK containing all packets from ingress is received but
without BACK from egress node, and knows it is a true TO
otherwise. Hence, BTCP using BACK based FTO detection
can achieve better throughput performance than the current
TCP implementations while being as responsive to serious
congestion within the IP access networks as the current TCP
implementations.

Note that, the OBS ingress and egress nodes have proper
electronic interfaces to IP routers on one side as well as
electronic memory to assemble and disassemble packets into
and from a burst, respectively. Nevertheless, they are required
by the BACK method to be able to understand TCP and send
BACK to BTCP senders.

C. FTO Detection using Burst NAK (BNAK)
In an OBS network, a (OBS) control packet is generated

and sent by an ingress node for each (data) burst the ingress
node assembles and sends. Such a control packet contains in-
formation about the burst (including the routing information),

and is processed at each and every core node so as to reserve
bandwidth and set up the switching fabric for the burst.

In the proposed FTO detection method using burst NAK
or BNAK packets, we can let each control packet contain the
information of the (TCP) packets within the corresponding
burst. At any core node where the burst runs into contention
and has to be dropped, the core node constructs a BNAK
packet based on the control packet corresponding to the
dropped burst, and sends the BNAK to the BTCP sender.

If the sender receives such a BNAK that contains informa-
tion on all packets in the cwnd, then it knows for certain that
any TO associated with a packet mentioned in the BNAK is a
FTO. Otherwise, (either no BNAK is received or the BNAK
received does not contain information on all packets), then the
TO is a true TO.

Based on the above discussion, the BNAK based FTO
detection can achieve the same highest accuracy in FTO
detection as the BACK based FTO detection where both the
ingress and egress nodes send a BACK packet. Moreover,
BNAK can result in a much better performance than BACK
(although the former requires more complex implementation
as well). This is because, as mentioned earlier, with a fast
TCP flow, all the packets transmitted in one sending round
are assembled into one burst. Accordingly, a TCP sender will
be notified of each packet loss (as a part of a burst loss) in OBS
networks by a TO event only. As the TCP timeout value is
set to be several times larger than its RTT, waiting for the TO
to occur before retransmission starts can be quite inefficient.
Using the the proposed FTO detection method BNAK, the
sender can start retransmission of lost packets as soon as the
BNAK is received, which should be less than a RTT and
thus much earlier than TOs for these lost packets. Therefore,
this method improves the throughput of BACK or BLE based
methods further while remaining to be as responsive to serious
congestion as the current TCP implementations.

V. PERFORMANCE OF BTCP

In this section, we evaluate the performance of BTCP
with different FTO detections via both analysis and simula-
tions. Since BTCP differs from existing TCP implementations
mainly in their reactions to FTOs, we will focus on a fast TCP
flow for which FTOs are most likely to occur.

A. Analytical Results

As in Sec.III, we will focus on the impact of the loss within
the OBS network. More specifically, we assume the number
of packets from one TCP flow contained in one burst does not
affect the loss probability of the burst. Such an assumption is
reasonable given that the size of the burst is determined by
the total number of packets from many flows.

1) BTCP using BLE or BACK: If each burst is assumed
to have the same independent loss probability p, then the
average number of rounds successfully transmitted between
two “TO” loses is 1−p

p [2]. When the loss rate is not very
low, the maximum window limitation is relatively high, i.e.,
Wm > 1/p, and in addition, TO losses are distributed evenly
over time, then the sender starts retransmission from W0 will
reach W (W < Wm) before the next TO event occurs.
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For a fast TCP flow without FTO detection (whether it is
Reno, New-Reno or SACK, they has the same performance as
discussed in Sec.III), W0 = 1 and E[W ] = 1−p

p , and the TCP
sender begins transmitting W−1 packets in log2(

E[W ]
2 ) rounds

during the Slow Start phase, and continues to transmit W/2
rounds during the congestion avoidance phase. Therefore, the
average total number of packets transmitted between two TO
events, denoted by E[H1], is:

E[H1] = (E[W ] − 1) +
E[W ]

2
× (

E[W ]

2
+ E[W ])/2

=
3

8
E[W ]2 + E[W ] − 1 (4)

As we can also represent the transmission rounds as

1 − p

p
= log2(

E[W ]

2
) +

E[W ]

2
(5)

we can obtain E[W ] in (4) by solving (5), and then obtain
E[H1].

For the fast TCP flow in BTCP with FTO detection based
on BLE, we have W0 = W/2, therefore E[W − W/2] =

E[W/2] = 1−p
p and E[W ] = 2(1−p)

p . The total number
of packets transmitted between two TO events, denoted by
E[H2], is:

E[H2] =
1 − p

p
× (

E[W + W
2

]

2
) =

3(1 − p)2

2p2
(6)

Note that under the assumption that there is no loss in the
local access networks, BTCP using BLE performs the same
as BTCP using BACK.

Since the time between two TOs called time out period (or
TOP) in BTCP using BLE/BACK (which is 1−p

p RTT +RTO)
are the same as TCP without FTO detection, their throughput
ratio is E[H2]/E[H1], whose numerical results are illustrated
in Figure 5(a) for the case where Wmp > 1. The figure
also shows the average congestion window size ratio between
BTCP and TCP, which is always larger than 1 since BTCP can
start with a larger congestion window size W (up to Wm/2)
after a FTO while TCP will always start at W = 1. This
increase in the window size is a reason for the increase in the
throughput.

When the loss rate is low, and the maximum window
limitation is relatively low too, i.e., Wm < 1/p, the maximal
limit on the congestion window size can be easily reached for
most of the time. In such a case, E[H1] and E[H2] can be
similarly recalculated as:

E[H1] = (Wm − 1) +
3Wm

8
+ Wm(

1

p
−

Wm

2
− log2(

Wm

2
))

=
Wm

p
−

W 2

m

8
+ Wm − 1 − Wmlog2(

Wm

2
) (7)

and

E[H2] = (
1

p
−

Wm

2
) × Wm +

3W 2

m

8
=

Wm

p
−

W 2

m

8
(8)

Thus, the throughput ratio becomes:

E[H2]

E[H1]
= 1 +

Wm(log2
Wm

2
− 1) + 1

E[H1]
(9)

which is shown in Figure 5(b). From the Figure, we can
see that the benefit of FTO detection in BTCP increases with
the maximum window limitation Wm. This is because with a

larger Wm, BTCP can start with a larger W = Wm/2 after
a FTO while current TCP has to start with W = 1, similar
to the explanation provided for Figure 5 (a). In addition, the
large the loss rate p, the better the improvement as more TO
events may occur.
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Fig. 5. Analytic results of BTCP vs TCP

2) BTCP using BNAK: For BTCP with FTO detection
method based on BNAK, the number of packets transmitted
between two TOs is also identical to that by TCP without
FTO detection. However, for a FTO, the retransmission round
can start as soon as a BNAK is received, which is RTT
time after the loss round, instead of RTO time in TCP
without FTO detection. That is, the total time between two
TOs in BTCP using BNAK is |TOP2| = RTT

p , while the
total time between two TOs in TCP without FTO detection
is |TOP1| = 1−p

p RTT + RTO. Therefore, the throughput
enhancement due to BTCP using BNAK when compared to
TCP without FTO detection is:

E[H2]/|TOP2|

E[H1]|TOP1|
=

E[H2]

E[H1]
×

1−p
p

RTT + RTO
RTT

p

=
E[H2]

E[H1]
(1 +

RTO − RTT

RTT
×

p

1 − p
) (10)

As RTO − RTT > 0, the above analysis also implies
that BTCP using BNAK will achieve better performance
improvement than BTCP using either BLE or BACK, and such
an improvement will increase with p.

Note that, the above analysis in (10) did not consider
consecutive FTOs, which are possible when the loss is un-
evenly distributed and the loss rate is high. Since BTCP
with BNAK can also eliminate the exponential backoff time
when compared to current TCP implementations (which will
treat them as multiple true TOs), the enhancement of BTCP
using BNAK according to our analysis in (10), may be an
underestimation. In fact, BTCP using BLE/BACK can also
eliminate the exponential backoff time, and accordingly, the
previous analysis results for BTCP using BLE/BACK, which is
shown in Figure 5 (b), may also underestimate its performance
enhancement. We will discuss the case with consecutive FTOs
in more details later
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B. Numerical Results
We highlight the performance enhancement due to BTCP

for a fast TCP flow via simulations in this section. As dis-
cussed earlier in Figure 3, there is no significant performance
differences among Reno, New-Reno and SACK because they
deal with TOs in the same way. Accordingly, we will compare
BTCP, which enhances Reno with FTO detection, with Reno.

Figure 6 shows the details of how BTCP using BLE deals
with TOs. When the first TO occurs at time 11, Reno triggers
TO retransmission and Slow Start, while BTCP can detect that
it is a FTO because its current burst window size is equal to
the congestion window (i.e., burst wd = cwnd = 40 in this
example). Therefore, BTCP treats this TO event as a TD loss
and triggers fast recovery, which enhances the performance
when compared to Reno. Also note that for consecutive
TO losses during time 28 to 55, BTCP can still respond
to temporarily high loss situations in the OBS network by
halving the congestion window multiple times in consecutive
retransmissions and eventually triggering a true TO event. This
means that BTCP can not only improve Reno’s performance,
but also remains to be as responsive to serious congestion in
the OBS network as Reno.
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Fig. 6. Packet Trace of TCP and BTCP

1) Throughput Performance: Figure 7 compares the
throughput of a single fast TCP flow in an OBS network with
fixed loss rate p = 0.1, and randomly distributed losses. Here,
p is chosen to be relatively large to highlight the performance
differences between BTCP using BLE/BACK, BTCP using
BNAK and Reno.

As can be seen from the figure, all BTCP versions have a
better performance than Reno. While BTCP using BLE and
BTCP using BACK have the same performance (since there
is no loss in the access networks as discussed in the previous
analysis), BTCP using BNAK achieves the best performance
since it reduces the waiting time before retransmissions (in
response to a FTO) from RTO to RTT .

As mentioned earlier in the analysis (see Fig. 5), the benefit
of FTO detection in BTCP increases with the maximum
window limitation Wm. This is verified in simulations by
comparing Figure 7(b) where Wm = 20 with Figure 7(a)

TABLE III
PERFORMANCE ENHANCEMENT OF BTCP VS p (Tb = 0.04)

log(p) -3 -2.5 -2 -1.5 -1
RBNAK r 1.00 1.00 1.05 1.06 1.76

RBLE/BACK r 1.00 1.00 1.05 1.05 1.17
RBLE/BACK e 1.00 1.01 1.02 1.05 1.28
RBLE/BACK b 1.01 1.05 1.07 1.193 1.46

TABLE IV
PERFORMANCE ENHANCEMENT OF BTCP VS Tb (p = 0.1)

Tb 0.01 0.02 0.04 0.06 0.08 0.1
RBNAK r 1.48 1.43 1.35 1.31 1.27 1.16

RBLE/BACK r 1.20 1.19 1.17 1.18 1.16 1.07
RBLE/BACK e 1.24 1.24 1.24 1.24 1.24 1.24
RBLE/BACK b 1.59 1.58 1.46 1.47 1.43 1.43

where Wm = 10. Note that the throughput of all BTCP
versions and Reno decrease with Tb due to the (burst assembly)
delay penalty to a fast TCP flow as discussed in [2], [12].
The reason that the throughputs are low when Tb = 0.01 and
Wm = 20 (in Figure 7) (b)) is because the TCP flow simulated
no longer qualifies as a fast TCP flow according to (3) (see
[12] for throughput analysis of such a medium-fast TCP flow).

With randomly distributed losses, the performance enhance-
ment ratio of BTCP using BNAK over Reno, denoted by
RBLE/BACK r, as well as the enhancement of BTCP using
BLE or BACK over Reno, denoted by RBLE/BACK r, are
further illustrated in the first and second rows in Table III
and IV for various loss rates and assembly times, respectively.
It can be seen from the two tables that both BTCP using
BNAK and BTCP using BLE/BACK, especially the former,
can be significantly better than TCP when the loss rate is high.
Hereafter, we will focus on BTCP using BLE/BACK although
most of the discussions apply to BTCP using BNAK as well.

It is noted that the performance enhancement due to BTCP
not only depends on the average loss rate as shown in Table
III, but also the distribution of the burst losses (Note that for a
fast TCP flow, a burst loss is the same as a FTO loss), which
can be either randomly distributed as mentioned above, or one
of the two additional distributions namely, evenly distributed,
or (evenly distributed) batches (e.g., 4 losses occur back to
back as a batch, and there is a fixed amount of time between
two batches of losses). The last two rows in Tables III and
IV show the enhancement ratios with the two additional loss
distributions between BTCP using BLE/BACK over Reno,
denoted by RBLE/BACK e and RBLE/BACK b, respectively.

As can be seen from Table III, for the same average loss rate,
if several burst losses occur back to back in a batch, BTCP
can enhance the throughput a lot by eliminating the significant
amount of exponential backoff time in TCP due to consecutive
TO events. However, if the burst losses occur randomly (but
not back to back) or evenly, there is no exponential backoff
in TCP, and in addition, when these losses occur closely
(but not consecutively), the congestion window can hardly
increase in BTCP. This is why RBLE/BACK r is not as high
as RBLE/BACK b.

It is also noted that the performance enhancement due to
BTCP depends on the assembly time as shown in Table IV
(as well as in Figure 7) where p = 0.1. To explain the results
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Fig. 7. Simulation Comparison of BTCP and TCP

TABLE V
PERFORMANCE OF BTCP WITH TO IN ACCESS NETWORKS

Tb 0.01 0.02 0.04 0.06 0.08 0.1
Rt 1.1059 1.0696 1.1197 1.0450 1.0526 0.9940
Rl 1.0203 1.0160 1.0363 1.0133 1.0189 1.0180

in the table, consider the case with batch losses first. On one
hand, TCP will go through several exponential backoff periods
as mentioned earlier according to it timeout value RTO,
which is independent of the assembly time Tb. On the other
hand, BTCP will enter the fast retransmission phase and then
eventually the Slow Start phase (due to a true TO triggered
by several FTOs). Assume that the length of the batch loss
period is fixed as αb × RTO and αt × RTO for BTCP and
TCP respectively, where αb and αt are two constants and we
should have αb < αt. Also suppose that RTT = RTT0 + Tb,
where RTT0 is the round trip time without burst assembly,
and the total data transmitted in the N rounds (which is fixed
for evenly distributed batch losses) before and within the lost
batch is Wb for BTCP and Wt for TCP, then the performance
enhancement for batch losses is calculated as

RBLE/BACK b =
Wb/[αb × RTO + (RTT0 + Tb) × N ]

Wt/[αt × RTO + (RTT0 + Tb) × N ]

=
Wb

Wt
[1 +

(αb − αt)RTO

αb × TO + (RTT0 + Tb) × N
] (11)

Since all other parameters are treated as constant and αt −
αb > 0, RBLE/BACK b in (11) decreases with Tb. For evenly
distributed losses, αt = αb (because there is no exponential
backoffs in both BTCP and TCP), and thus the corresponding
enhancement RBLE/BACK e is insensitive to Tb. Finally,
since the case with random losses is in between the case with
batch losses and evenly distributed losses, the corresponding
enhancement RBLE/BACK r also decreases with Tb.

2) Responsiveness to Congestion: When a (true) TO occurs
due to multiple packet losses in either or both of the IP access
networks, BTCP using BLE may treat the true TO as a FTO by

mistake because it cannot distinguish losses within the OBS
network from those within the IP access networks. As a result,
BTCP may not respond to serious congestion as effectively as
Reno, and hence the loss rate in the network will be higher.

To highlight the effect of true TOs on the responsiveness of
BTCP using BLE, we assume, in this set of simulations, that
the IP access networks are lossy but the OBS network is not.
We compare the performance of BTCP using BLE and Reno
by injecting several UDP and other TCP flows in the two IP
access networks.

Table V shows the performance differences in terms of their
throughput ratio Rt and loss rate ratio Rl as a function of
assembly time Tb. Generally speaking, wrong FTO detection
in IP access networks can increase the loss rate in the IP access
networks. Although it can also increase the throughput of a
single BTCP flow, the performance of the other TCP flows’
will be degraded due to increased loss rate.

From Table V, we can see that the increase in the loss
rate of the network is not significant, and becomes less as the
assembly time increases. This is mainly due to the fact that
serious congestion that causes a true timeout event can last
for some time (considering the long range dependent nature
of Internet traffic [5], [8]). Accordingly, even though a BTCP
using BLE may treat the first true TO as a FTO, (and transmits
data with half of previous congestion window), most likely
it will receive another true TO, and eventually its window
size will be reduced to less than 3, which will trigger a true
TO. Having a large assembly time may result in both poor
throughput and loss rate as more true TOs will be mistakenly
considered as FTOs by BTCP using BLE.

VI. SUMMARY

This paper have evaluated the performances of three most
popular TCP implementations: Reno, New-Reno and SACK in
OBS networks. It has been demonstrated that although SACK
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performs better than Reno and New-Reno, none of them can
effectively handle a false timeout (FTO) in a medium or fast
TCP flow, which could be quite common in OBS networks. We
have proposed a new TCP implementation called Burst TCP
or BTCP using three FTO detection methods based on burst
length estimation, burst ACK and burst NAK, respectively,
which involve the tradeoffs between FTO detection accuracy
(and throughput performance), performance and implementa-
tion complexity. We have compared BTCP with the current
TCP implementations, and shown that BTCP can improve TCP
throughput without undermining the congestion control ability
of normal TCP.
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