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Abstract

Recent study for congestion control in high speed networks indicates that the derivative
information for the congestion at the common buffer for multiple sources could be useful in
achieving efficient and fair allocation of the bandwidth (Kelly 1997, 1998). In this paper we
present an algorithm that estimates such derivatives for multiple on-off sources. The algo-
rithm has its root in the infinitesimal perturbation analysis (IPA) for the classical queueing
systems. Although the traditional IPA algorithm does not give unbiased derivative estimates
for multi-class arrivals, we are able to prove the unbiasedness in the case of multi-class on-off
sources. The results in this paper may motivate a new look at the end-to-end congestion
control issue.

1 Introduction

Congestion control is one of the crucial components in high speed network operation. Despite

the enormous success of the well-known TCP/IP congestion control protocol in the past decade,

the Internet has evolved to the state that pure end to end congestion control may not be enough.

Recently many studies on pricing for congestion control have shown that derivatives of congestion

at the common buffer with respect to individual sources may provide useful information for

efficient and fair use of the bandwidth (Kelly 1997,1998). This is quite natural viewed from the

well-known Arrow-Hurwize resource allocation theory (Arrow 1968). In fact Gallager has used

this theory to derive a distributed optimal routing algorithm for single class network (Gallager

1975). In essence this theory says that if a limited resource has to be shared by n users and that

the system utility is the sum of each user’s utility, then the best way to allocate the resource

is to equalize the derivatives of each user’s individual utility . In the case that the individual

utility is not known to the system, the system can pose a common price for the users to “buy”

the resource. Simple adjustment of such a price would eventually lead to an optimal allocation

of the resource. Since the essence is to equalize the users’ utility derivatives, it is clear that these
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derivatives are important and one can use the difference between the derivatives to drive the

price adjustment. In the case of deterministic setting this scheme has been done in, for example,

in economic systems. However in our current setting, the users send in stochastic on-off flows

to be processed by a common server and we are facing a sensitivity analysis problem for a fluid

queue. Basically we have a deterministic server with service rate c and n on-off sources flow into

the common buffer waiting to be processed. Thus the question is to find a simple algorithm to

estimate the derivatives of the backlog v at the common buffer with respect to the parameters

of each source. Our main result is that the IPA estimates for the steady state derivatives are

unbiased. This paves the way for further discussion of using such derivative information. We

make some remarks about our result.

• IPA for classical queueing systems was introduced in the early 80’s. See Ho and Cao (1991)

and Glasserman (1991) for details of IPA theory. Suri and Fu (1995) is the first paper

discussing IPA for fluid queues. The setting and motivation of Suri and Fu (1995) are

quite different from ours. A simpler version of this work was first presented in Liu and

Gong (1999).

• Although the derivation of the main result is based on the analysis of an infinite buffer

system, we will show that the principles carry over to the finite buffer case, with minor

modifications to the algorithm (see section 5). This is quite different from the case of

traditional IPA when applied to finite buffer queues, where the IPA algorithm usually

would not give unbiased result.

• We emphasize that IPA does not give unbiased derivative estimates for traditional discrete

event multi-class queues. Fluid models are much more friendly to the elegant IPA algo-

rithm. Since fluid queues are increasingly being used in high speed network analysis, we

hope our results would motivate more study along this line.

• The derivative estimates obtained in this paper are sample derivatives. The use of sample

derivatives in stochastic approximation type of algorithms for optimization has been well

studied and it is known that such algorithms do not converge very fast. However a study

in Chong and Ramadge (1993) shows that in queueing systems one can update rather

quickly in such schemes and expect quick convergence. For example in the setting of the

classical G/G/1 queue Chong and Ramadge (1993) prove that the optimization algorithm

could update once every departure. This gives the hope that sample path derivative based
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optimization algorithm could be realistic in online use for high speed networks. It is also

important to note that in quite generic situations it takes relatively few iterations to get

into a suboptimal allocation, which could be good enough (Ho, Sreeniva, 1992).

The rest of this paper is organized as follows. In Section 2 we briefly describe the pricing

theory introduced by Kelly et al. (Kelly 1997, 1998), which motivated our study of derivative

estimates. Section 3 presents our main results. By looking into the sample path performance

function, we prove that IPA gives unbiased derivative estimates for fluid queues feeded by mul-

tiple ON-OFF sources. Section 4 presents two numerical examples, one is a single source fluid

queue and the other is a multiple source fluid queue. IPA estimates are compared with theoret-

ical results. In Section 5, issues of unbiasedness of IPA for finite buffer systems and variance of

IPA for multiple sources are discussed. We conclude this paper in Section 6.

2 Pricing for Rate Control of Elastic Traffic

In this section we summarize the pricing theory developed by Kelly et al. (Kelly 1997, 1998).

Figure 1 depicts a small network with two users sharing one bottle-neck link, where x1 and x2
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Figure 1: Network of Users with Elastic Traffic
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are transmit rates of two users respectively; yef is available bandwidth at the bottle-neck link.

More generally, let’s consider a data communication network of links J . A group of users R

transmit data through the network. Let A = [Ajr] be the route matrix for all users: Ajr = 1

if user r traverses through link j; Ajr = 0, otherwise. Given a transmit rate xr, the user r’s

utility is Ur(xr), which is an increasing, strictly concave and continuously differentiable function.

We call traffic with this kind of utility function elastic traffic. The total rate on each link is

constrained. We may have a hard constraint such as

AX ≤ C,

where X = [x1, x2, · · · , x|R|]
T is the transmit rate vector for all the users, C = [c1, c2, · · · , c|J |]

T is

the capacity vector for all the links of the network. We can also approximate the hard constraint

by a group of cost functions for all links of the network
{

Cj(yj) = 0 if yj << cj

Cj(yj) → +∞ if yj → cj

,

where yj is the aggregate rate at link j. Let `(s) be the set of links traversed by user s. The

problem for the overall system is to maximize the objective function:

L(X) =
∑

r∈R

Ur(Xr) −
∑

j∈J

Cj(
∑

s:j∈`(s)

xs).

Given {Ur(Xr)} and {Cj(yj)}, the problem can be solved in a centralized way. However the

utility function of each end user maybe unknown for other users in the network. A distributed

algorithm is presented in Kelly’s papers, which use the intelligence of end users to cooperatively

drive the system to its optimum. Briefly, each link looks at its aggregate rate and sends back the

derivative information dCj(yj)/dyj to all its users. This information is called shadow price. It can

be understood as a price for an unit traffic at link j within the network pricing framework. In a

cooperative environment, it can be treated as a marking mechanism for a router to communicate

with end users. For each user, upon receiving feedbacks from all the links on its route, it will

adjust its transmission rate according to current shadow prices and the derivative of its own

utility function.

One example of utility function is Ur(xr) = wr log xr. End user’s scheme of adjusting its

rate is

d

dt
xr(t) = k{wr − xr(t)

∑

j∈`(r)

µj(t)},
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where µj(t) is the feedback from link j:

µj(t) =
d

dy
Cj(y)|y=

∑

s:j∈`(s) xs(t),

k is a positive constant which determines the magnitude of user’s rate adaption. Within the

pricing framework, wr can be understood as the total amount of money that user r would like

to pay for its network transmission. This equation suggests additive increase in transmit rate

xr if there is no congestion (or µj(t) = 0, ∀j ∈ L(r)), and multiplicative decrease if there is

congestion (or xr(t)
∑

j∈r µj(t) dominates over wr). This is related to the way TCP congestion

control scheme works.

Kelly et al. have shown the stability of the algorithm by constructing a Lyapunov function

L(X) =
∑

r∈R

wr log xr −
∑

j∈J

Cj(
∑

s:j∈`(s)

xs).

For more general utility function Ur(xr), the user adapting scheme is

{

wr(t) = xr(t)
d

dxr
Ur(xr(t))

d
dt

xr(t) = k{wr(t) − xr(t)
∑

j∈L(r) µj(t)}
,

where wr(t) is called user adaption. The distributed algorithm will drive the system to the

optimum of the objective function

L(X) =
∑

r∈R

Ur(xr) −
∑

j∈J

Cj(
∑

s:j∈`(s)

xs).

More generally, if the link cost function is of the form Cj(x1, · · · , x|R|), link j sends partial

derivative ∂Cj(X)/∂xr to user r. Then the system can still converge to the optimum of

L(X) =
∑

r∈R

Ur(xr) −
∑

j∈J

Cj(X).

3 IPA Estimator for Infinite Buffer Queue

In Section 2, we see that derivatives of congestion at the common buffer with respect to the indi-

vidual sources is very important in resource management of congested network. But the model

used in Section 2 is a deterministic model. It doesn’t capture the statistical characteristics of

network traffic. In this paper, we use parameterized stochastic fluid models, such as Markov

ON-OFF model, to model users’ data transfer behavior. Each user’s utility is a function of the
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model parameters. In order to drive the network to its optimum state, derivatives information of

congestion is needed. We use the average backlog at a link to measure the congestion. Infinites-

imal Perturbation Analysis (IPA) enables us to get unbiased estimates for partial derivatives of

the link backlog with respect to the parameters of individual users.

3.1 System Model

Consider a fluid queueing system (see Figure 2) with one server and feeded by M ON-OFF

flows. Assume both ON and OFF periods of source i follow distributions with scale parameter

θ1
i and θ2

i respectively. The average length of the ith flow ’s ON periods is 1/µi. And the

average length of the ith flow ’s OFF periods is 1/λi. When flow i is on, workload is feeded into

the queue at rate hi. We assume that the queueing system has an infinite buffer. When the

buffer is non-empty, the server processes workload at rate c. Assume flow’s peak rate hi > c,

for i = 1, · · · , M . In order for the system to be stable, we enforce

M
∑

i=1

hiλi

λi + µi
< c.

h

h 3

2

h 1

Service rate c 

Figure 2: Fluid Queue Feeded by 3 ON-OFF Processes

For fluid queueing systems, Little’s Law still holds (Konstantopoulos, Zazanis 1997). The

expected waiting time is proportional to the average queue length. We are interested in the

average queue length of the system over a finite time period T , the performance index is

JT ({θ1
i , θ

2
i }) = E{LT ({θ1

i , θ
2
i }, ξ)}, where ξ is a sequence of i.i.d uniform random variables which

determine the lengths of ON and OFF periods in a sample path. We try to estimate the partial

derivatives {∂JT ({θ1
i , θ

2
i })/∂θ1

i , ∂JT ({θ1
i , θ

2
i })/∂θ2

i }, for i = 1, · · · , M . Our study focus on IPA

for {∂JT ({θ1
i , θ

2
i })/∂θ1

i }. It can be easily generalized to obtain IPA for {∂JT ({θ1
i , θ

2
i })/∂θ2

i }.
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Without lose of generality, we study the queue length derivative with respect to the first source.

Let θ = 1/θ1
1, h = h1. The length of the source 1’s ith active period Ai = θ × Ui, where

{Ui, i = 1, · · · } are independent samples of random variable U which determines the distribu-

tion of source 1 ’s active periods. Let q(t) be the queue length at time t, f1(t) be the total flow

from source 1 until time t, f2(t) be the total flow from all other sources until time t, c(t) be the

total flow served by the server until t. Then

q(t) = f1(t) + f2(t) − c(t),

dc(t)

dt
= c × 1(q(t) > 0),

df1(t)

dt
= h × 1(source 1 is on at t).

Sample path performance is

LT (θ, ξ) =
1

T

∫ T

0
q(t, θ, ξ)dt.

3.2 Unbiasedness of IPA Estimator

Given the above model, we are ready to show the unbiasedness of IPA estimator for multiple

source fluid queue. Let

δf1(t, θ, ξ) = f1(t, θ + δθ, ξ) − f1(t, θ, ξ),

δc(t, θ, ξ) = c(t, θ + δθ, ξ) − c(t, θ, ξ),

δq(t, θ, ξ) = q(t, θ + δθ, ξ) − q(t, θ, ξ),

then

LT (θ + δθ, ξ) − LT (θ, ξ) =
1

T

∫ T

0
δf1(t, θ, ξ) − δc(t, θ, ξ)dt.

Lemma 1 supt∈[0,T ] |δf1(t, θ, ξ) − δc(t, θ, ξ)| ≤ supt∈[0,T ] |δf1(t, θ, ξ)|.

Proof: Suppose δθ > 0, then δAi = δθ × Ui > 0. It is easy to see that for t ∈ [0, T ], f1(t)

is a non-decreasing function of {Ai}, so δf1(t) ≥ 0. Now we want to prove δc(t) ≥ 0 and

maxt∈[0,T ] δc(t) ≤ maxt∈[0,T ] δf1(t).

If for some t1 ∈ [0, T ], δc(t1) < 0, we prove by contradiction. Since δc(t) is continuous and

δc(0) = 0, ∃T0 < t1, s.t. δc(T0) = 0, and δc(t) < 0 for t ∈ (T0, t1]. δc(t) is piecewise linear, thus
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∃T1 ∈ (T0, t1), s.t. for t ∈ (T0, T1],

dδc(t)

dt
=

dc(t, θ + δθ)

dt
−

dc(t, θ)

dt
< 0,

⇒
dc(t, θ + δθ)

dt
= 0 and

dc(t, θ)

dt
= c,

⇒ q(t, θ + δθ) = 0 and q(t, θ) > 0,

⇒ δq(t) = δf1(t) − δc(t) < 0,

⇒ δf1(t) < δc(t) < 0.

This contradicts δf1(t) ≥ 0, therefore if δθ > 0, then δc(t) ≥ 0 for all t ∈ [0, T ].

δc(t) is a piecewise linear continuous function of t,

dδc(t)

dt
=











c if q(t, θ + δθ) > 0 and q(t, θ) = 0,

−c if q(t, θ + δθ) = 0 and q(t, θ) > 0,

0 otherwise.

Suppose it reaches its maximum at point t∗. If d−c(t, θ)/dt|t=t∗ = c, since c(t, θ) is piecewise

linear, we can find a T0 < t∗, s.t. dc(t, θ)/dt|t=t∗ = c for t ∈ (T0, t
∗) and d−c(t, θ)/dt|t=T0 = 0.

Because dc(t, θ + δθ)/dt ≤ c, for t ∈ (T0, t
∗),

dδc(t)

dt
≤ 0, ⇒ δc(t∗) ≤ δc(T0), ⇒

d−c(t, θ)

dt
|t=T0 = 0,

⇒ q(T0, θ) = 0 and c(T0, θ) = f1(T0, θ) + f2(T0).

So we have

δc(t∗) ≤ δc(T0) ≤f1(T0, θ + δθ) + f2(T0) − c(T0, θ)

= f1(T0, θ + δθ) − f1(T0, θ) = δf1(T0) ≤ sup
t∈[0,T ]

δf1(t).

Thus for t ∈ [0, T ], if δθ > 0, δf1(t) ≥ 0, δc(t) ≥ 0,

sup
t∈[0,T ]

|δf1(t, θ, ξ) − δc(t, θ, ξ)| ≤max{ sup
t∈[0,T ]

δc(t, θ, ξ), sup
t∈[0,T ]

δf1(t, θ, ξ)}

= sup
t∈[0,T ]

|δf1(t, θ, ξ)|.

For δθ < 0, we have similar argument for the conclusion δc(t) ≤ 0 and mint∈[0,T ] δc(t) ≥

mint∈[0,T ] δf1(t). So we have

sup
t∈[0,T ]

|δf1(t, θ, ξ) − δc(t, θ, ξ)| ≤ sup
t∈[0,T ]

|δf1(t, θ, ξ)|.
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Lemma 2 If θmin ≤ θ and θmin ≤ θ + δθ, then

|
LT (θ + δθ, ξ) − LT (θ, ξ)

δθ
| ≤

T × h

θmin
. (1)

Proof:

|LT (θ + δθ, ξ) − LT (θ, ξ)| =
1

T
|

∫ T

0
δf1(t, θ, ξ) − δc(t, θ, ξ)dt|

≤
1

T

∫ T

0
|δf1(t, θ, ξ) − δc(t, θ, ξ)|dt

≤ sup
t∈[0,T ]

|δf1(t, θ, ξ) − δc(t, θ, ξ)|

≤ sup
t∈[0,T ]

|f1(t, θ + δθ, ξ) − f1(t, θ, ξ)|.

If θmin ≤ θ ≤ θ + δθ, f1(t, θ, ξ) is the total flow injected by source 1 until time t,

f1(t, θ, ξ) = h × {

N(t,θ,ξ)
∑

i=1

Ai(θ) + R(t, θ, ξ)},

where N(t, θ, ξ) is the number of complete ON periods within [0, t], R(t, θ, ξ) is the truncated

length of the possible ON period crossing over t.

f1(t, θ + δθ, ξ) − f1(t, θ, ξ) =h × {

N(t,θ+δθ,ξ)
∑

i=1

Ai(θ + δθ)

+ R(t, θ + δθ, ξ) −

N(t,θ,ξ)
∑

i=1

Ai(θ) − R(t, θ, ξ)}.

It is clear that N(t, θ, ξ) is a non-increasing function of θ. If N(t, θ, ξ) > N(t, θ + δθ, ξ), then

N(t,θ+δθ,ξ)
∑

i=1

Ai(θ + δθ) + R(t, θ + δθ, ξ) ≤

N(t,θ,ξ)
∑

i=1

Ai(θ + δθ).

If N(t, θ, ξ) = N(t, θ + δθ, ξ) = k, then the (k + 1)th ON period of θ must begin earlier then the

(k + 1)th ON period of θ + δθ, which means R(t, θ + δθ, ξ) < R(t, θ, ξ). In both cases,

f1(t, θ + δθ, ξ) − f1(t, θ, ξ) ≤ h

N(t,θ,ξ)
∑

i=1

(Ai(θ + δθ) − Ai(θ)) = h

N(t,θ,ξ)
∑

i=1

(δθ × Ui)

≤ hδθ

N(t,θmin,ξ)
∑

i=1

Ui =
hδθ

θmin

N(t,θmin,ξ)
∑

i=1

Ai(θmin) ≤
h × δθ × T

θmin
. (2)
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Then we have

|
LT (θ + δθ, ξ) − LT (θ, ξ)

δθ
| ≤

h × T

θmin
. (3)

Similar argument holds for θmin ≤ θ + δθ < θ. So, as long as θmin ≤ θ and θmin ≤ θ + δθ,

inequality (3) holds.

Theorem 1 For fixed ξ, LT (θ, ξ) is uniformly continuous with respect to θ over [θmin, θmax].

Proof: It is an immediate consequence of Lemma 2.

The trajectory of q(t) over [0, T ] can be divided into N busy periods and one possible residual

period crossing over T. In Figure 3, we have a trajectory consisting of three busy periods and

one residual period. The trajectory is determined by the timing of all the jump events of Markov

ON-OFF sources. We call the trajectory of θ the nominal trajectory, the trajectory of θ + δθ

the perturbed trajectory.

q(t)

TimeTB1 E1 B2 E2 B3 E3 B4

Figure 3: Sample Path of q(t) over [0, t]

Definition 1 The nominal and the perturbed trajectory is said to be similar as long as all the

jump events within the ith busy period (or the residual period) of the nominal trajectory still

belong to the ith busy period (or the residual period) of the perturbed trajectory and that the

order of all these jump events remain unchanged after perturbation.

In Figure 4, we show an example of similar nominal and perturbed sample paths.

Lemma 3 Denote by Trac(θ, ξ), Trac(θ + δθ, ξ) the nominal and the perturbed trajectory re-

spectively, ∀θ ∈ [θmin, θmax], for a.s. ξ, ∃ ε(θ, ξ), s.t., Trac(θ, ξ) is similar to Trac(θ + δθ, ξ), if

|δθ| < ε(θ, ξ).
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Figure 4: Similar Nominal and Perturbed Sample Path

Proof: 1) For a.s. ξ, ∃ ε1(θ, ξ), s.t., the order of all jump events remains unchanged after a

perturbation of |δθ| < ε1(θ, ξ).

Let Jmin be the minimum of all intervals between jumps. Because intervals between two

consecutive jumps of one source are continuous random variable, P{ξ : Jmin(ξ) = 0} = 0. The

upper bound of perturbation on one particular jump event is

|

N(t,θmin,ξ)
∑

i=1

δθ × Ui| =
|δθ|

θmin

N(t,θmin,ξ)
∑

i=1

Ai(θmin) ≤
|δθ| × T

θmin
.

So we can select ε1(θ, ξ) = Jmin × θmin/T to ensure the order of jump events unchanged.

2) For a.s. ξ, ∃ ε2(θ, ξ), s.t., two busy periods will not merge into one busy period after a

perturbation of |δθ| < ε2(θ, ξ).

Let Bi(θ), Ei(θ) be the start and end time of the ith busy period of the nominal trajectory,

and B1
i (θ), E1

i (θ) be the time of source 1 ’s first and last jump event within the ith busy

period. Figure 5 is an example of a busy period starting with source 2 and ending with source

1. Let B1
i (θ + δθ), E1

i (θ + δθ) be the time of those two jumps in the perturbed trajectory.

As in 1), |δB1
i |, |δE

1
i | ≤ T |δθ|/θmin. For the perturbed trajectory, let Bi(θ + δθ) be the time

of the earliest jump of all jumps within the ith busy period of the nominal trajectory; let

Ei(θ + δθ) be the virtual finish time for all ON periods within the ith nominal busy period.

If we have Bi+1(θ + δθ) > Ei(θ + δθ) for all two adjacent busy periods, no two busy periods
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Figure 5: Server Busy Period starting with source 2

will merge together. Let Smin be the minimum length of server’s silence periods. We have

P{ξ : Smin(ξ) = 0} = 0. It suffices to require |δEi| < Smin/2 and |δBi+1| < Smin/2. It is clear

that |δBi| ≤ |δB1
i |, and

|δEi| < |δE1
i | + |

f1(E
1
i + δE1

i , θ + δθ) − f1(E
1
i + δE1

i , θ)

c
|

≤ |δE1
i | +

supt∈[0,T ] |δf1(t)|

c
≤

|δθ| × (h + c) × T

θmin × c
.

So if we set ε2(θ, ξ) = cSminθmin/(2(h + c)T ), for |δθ| < ε2, |δEi| < Smin/2 < Si+1/2 and

|δBi+1| < Smin/2 < Si+1/2, then the ith and (i + 1)th busy period will not merge into one busy

period.

3) For a.s. ξ, ∃ ε3(θ, ξ), s.t., one busy period will not split into several busy periods after a

perturbation of |δθ| < ε3(θ, ξ).

Suppose {V Tk(θ, ξ)}, k = 1, · · · , K are the times of all the jump up events in the nominal

trajectory within [0,T], Vk(θ, ξ) = q(V Tk(θ, ξ), θ, ξ). For a.s. ξ, K is finite. If for all {k :

Vk(θ, ξ) > 0}, we have Vk(θ + δθ, ξ) > 0, then no busy period will split. If the jump up event is
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not from source 1, then V Tk(θ + δθ, ξ) = V Tk(θ, ξ), so

|Vk(θ + δθ, ξ) − Vk(θ, ξ)| ≤ sup
t∈[0,T ]

|δq(t, θ, ξ)| ≤
|δθ| × T × h

θmin
.

If the jump up event is from source 1, then δV Tk(θ, ξ) < |δθ|×T
θmin

, so

|Vk(θ + δθ, ξ) − Vk(θ, ξ)| < |(h +
M
∑

i=2

hi) × δV Tk(θ, ξ)| + sup
t∈[0,T ]

|δq(t, θ, ξ)|

<
|δθ| × T × (2h +

∑M
i=2 hi)

θmin
.

Let Vmin(θ, ξ) = min{k:1≤k≤K,Vk>0} Vk(θ, ξ), then Vmin(θ, ξ) > 0. So if we set

ε3(θ, ξ) =
Vmin(θ, ξ) × θmin

T × (2h +
∑M

i=2 hi)
,

no busy period will split.

From argument 1), 2), 3), we have ∀θ, for a.s.ξ, Trac(θ, ξ) is similar to Trac(θ + δθ, ξ),

provided that δθ < ε(θ, ξ) = min{ε1(θ, ξ), ε2(θ, ξ), ε3(θ, ξ)}

Theorem 2 ∂LT (θ, ξ)/∂θ exists at any θ with probability 1.

Proof: Suppose the sample path of the fluid queue consists of N complete busy periods and one

residual period. Define

Si
T (θ, ξ) =

∫ Ei

Bi

q(t, θ, ξ)dt i = 1, · · · , N,

which is the integration of queue length over the ith busy period. Similarly, for the residual

period define

SN+1
T (θ, ξ) =

∫ T

BN+1

q(t, θ, ξ)dt.

Let

Ω1 = {i : the ith busy period is started by source 1},

Ω2 = {i : the ith busy period is started by a source other than source 1}.

Then

LT (θ, ξ) =
1

T
(
∑

i∈Ω1

Si
T (θ, ξ) +

∑

i∈Ω2

Si
T (θ, ξ) + SN+1

T (θ, ξ)).
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From Lemma 3, for a.s. ξ, when |δθ| < ε(θ, ξ), the perturbed sample path is similar to the

nominal sample path. Then we have

δLT (θ, ξ) =
1

T
(
∑

i∈Ω1

δSi
T (θ, ξ) +

∑

i∈Ω2

δSi
T (θ, ξ) + δSN+1

T (θ, ξ)). (4)

We will establish the existence of ∂LT (θ, ξ)/∂θ by proving the existence of ∂Si
T (θ, ξ)/∂θ for

i ∈ Ω1, i ∈ Ω2 and i = N + 1.

For the t ∈ [Bi, Ei], let

f1
i (t, θ, ξ) , f1(t, θ, ξ) − f1(Bi, θ, ξ) and W i

1(θ, ξ) ,

∫ Ei

Bi

f1
i (t, θ, ξ)dt,

f2
i (t, θ, ξ) , f2(t, ξ) − f2(Bi, ξ) and W i

2(θ, ξ) ,

∫ Ei

Bi

f2
i (t, θ, ξ)dt,

ci(t, θ, ξ) , c(t, θ, ξ) − c(Bi, θ, ξ) and W i
c(θ, ξ) ,

∫ Ei

Bi

ci(t, θ, ξ)dt.

Then

Si
T (θ, ξ) = W i

1(θ, ξ) + W i
2(θ, ξ) − W i

c(θ, ξ).

Let {Aij , Uij , j = 1, · · · , J(i)} be source 1’s ON and OFF periods within the ith busy period.

Then

W i
1(θ, ξ) = h × (

1

2
(

J(i)
∑

j=1

Aij)
2 +

J(i)
∑

j=1

(

j
∑

k=1

Aik) × Uij).

For k = 1, · · · , J(i) − 1, δUik = 0, δUiJ(i) = δEi − δB1
i −

∑J(i)
k=1 δAik,

δW i
1(θ, ξ) = h(

J(i)
∑

j=1

Aij

J(i)
∑

j=1

δAij +

J(i)
∑

j=1

(

j
∑

k=1

δAik)Uij +

J(i)
∑

j=1

AijδUiJ(i)) + o(|δθ|)

= h(

J(i)
∑

j=1

(

j
∑

k=1

δAik)Uij +

J(i)
∑

j=1

Aij(δEi − δB1
i )) + o(|δθ|).
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Case I: If i ∈ Ω2, δBi(θ, ξ) = 0, δW i
2(θ, ξ) = f2

i (Ei, θ, ξ) × δEi and

δW i
c(θ, ξ) = c(Ei(θ, ξ) − Bi(θ, ξ))δEi + o(δθ) = ci(Ei, θ, ξ) × δEi + o(δθ),

δSi
T (θ, ξ) = δW i

1(θ, ξ) + δW i
2(θ, ξ) − δW i

c(θ, ξ)

= h × (

J(i)
∑

j=1

(

j
∑

k=1

δAik) × Uij −

J(i)
∑

j=1

Aij × δB1
i ) + (f1

i (Ei, θ, ξ)

+ f2
i (Ei, θ, ξ) − ci(Ei, θ, ξ)) × δEi + o(|δθ|)

= h ×

J(i)
∑

j=1

(

j
∑

k=1

δAik) × Uij − f1
i (Ei, θ, ξ) × δB1

i + o(|δθ|).

Let δθ → 0, ∂Si
T (θ, ξ)/∂θ exists and

∂Si
T (θ, ξ)

∂θ
=

1

θ
(h ×

J(i)
∑

j=1

(

j
∑

k=1

Aik) × Uij − f1
i (Ei, θ, ξ) ×

f1(Ei−1, θ, ξ)

h
). (5)

Case II: If i ∈ Ω1, δBi(θ, ξ) = δB1
i (θ, ξ), δW i

1(θ, ξ) and δW i
2(θ, ξ) are the same as in the

previous case, and

δW i
c(θ, ξ) = δ

c

2
(Ei(θ, ξ) − Bi(θ, ξ))

2 = ci(Ei, θ, ξ) × (δEi − δB1
i ) + o(δθ),

δSi
T (θ, ξ) = h ×

J(i)
∑

j=1

(

j
∑

k=1

δAik) × Uij + f2
i (Ei, θ, ξ) × δB1

i + o(|δθ|).

Let δθ → 0, we have

∂Si
T (θ, ξ)

∂θ
=

1

θ
(h ×

J(i)
∑

j=1

(

j
∑

k=1

Aik) × Uij + f2
i (Ei, θ, ξ) ×

f1(Ei−1, θ, ξ)

h
). (6)

Case III: For i = N + 1, let J(N + 1) be the number of complete active periods of source

1, EN+1 = T . If the residual period begins with a jump event of a source other than source 1,

then

δBN+1 = δEN+1 = 0 and δWN+1
2 (θ, ξ) = δWN+1

c (θ, ξ) = 0.
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Similar to a busy period, we have

δWN+1
1 (θ, ξ) = h

J(N+1)
∑

j=1

(

j
∑

k=1

δA(N+1)k)U(N+1)j − f1
N+1(T, θ, ξ)δB1

N+1 + o(|δθ|).

Then

δSN+1
T (θ, ξ) = h

J(N+1)
∑

j=1

(

j
∑

k=1

δA(N+1)k)U(N+1)j − f1
N+1(T, θ, ξ)δB1

N+1 + o(|δθ|).

Let δθ → 0, we have

∂SN+1
T (θ, ξ)

∂θ
=

1

θ
(h

J(N+1)
∑

j=1

(

j
∑

k=1

A(N+1)k)U(N+1)j − f1
N+1(T, θ, ξ)

f1(EN , θ, ξ)

h
). (7)

For the residual period which begins with a jump event from source 1, δW N+1
1 (θ, ξ) is the same

as in the previous case, and

δBN+1 = δB1
N+1,

δWN+1
2 (θ, ξ) = 0,

δWN+1
c (θ, ξ) = δ

c

2
(T − BN+1(θ, ξ))

2 = −cN+1(EN+1, θ, ξ) × δB1
N+1 + o(|δθ|),

δSN+1
T (θ, ξ) = h ×

J(N+1)
∑

j=1

(

j
∑

k=1

δA(N+1)k) × U(N+1)j + (cN+1(EN+1, θ, ξ)

− f1
N+1(T, θ, ξ)) × δB1

N+1 + o(|δθ|).

Let δθ → 0, we have

∂SN+1
T (θ, ξ)

∂θ
=

1

θ
(h

J(N+1)
∑

j=1

(

j
∑

k=1

A(N+1)k) × U(N+1)j + (cN+1(EN+1, θ, ξ)

− f1
N+1(T, θ, ξ)) ×

f1(EN , θ, ξ)

h
).

(8)

In all three cases, ∂Si
T (θ, ξ)/∂θ exists for a.s. ξ. We have

∂LT (θ, ξ)

∂θ
=

1

T
(
∑

i∈Ω1

∂Si
T (θ, ξ)

∂θ
+

∑

i∈Ω2

∂Si
T (θ, ξ)

∂θ
+

∂SN+1
T (θ, ξ)

∂θ
)

exists at any θ with probability 1.
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Theorem 3 IPA is an unbiased derivative estimate, namely we have

E{
∂

∂θ
LT (θ, ξ)} =

d

dθ
E{LT (θ, ξ)}.

Proof: From Theorem 1, for θ ∈ [θmin, θmax]

|
LT (θ + δθ, ξ) − LT (θ, ξ)

δθ
| ≤

h × T

θmin
.

From Theorem 2 at any θ,

lim
δθ→0

LT (θ + δθ, ξ) − LT (θ, ξ)

δθ
=

∂LT (θ, ξ)

∂θ
exists with probability 1.

By Lebesgue ’s dominated convergence theorem, and choose g(ξ) , h × T/θmin as the dom-

inating function, we have

d

dθ
E{LT (θ, ξ)} = lim

δθ→0

∫

Ω

LT (θ + δθ, ξ) − LT (θ, ξ)

δθ
dP

=

∫

Ω
lim

δθ→0

LT (θ + δθ, ξ) − LT (θ, ξ)

δθ
dP

= E{
∂LT (θ, ξ)

∂θ
}.

3.3 IPA Algorithm

We have proved the unbiasedness of IPA estimator for multiple source fluid queue. For the

clarity of presentation, we summarize the IPA algorithm here.

Suppose we are developing the IPA estimator for a fluid queue feeded by multiple Markov

ON-OFF sources as described in Section 3.1. We can calculate IPA estimates from the queue’s

sample path between [0, T ]:

• Divide the queue sample path into N busy periods and one possible residual period crossing

over T. Let {Aij , Uij , j = 1, · · · , J(i)} be source 1’s ON and OFF periods within the ith

busy period. Suppose the length of the residual period is R, and it contains J(N + 1)

complete active periods of source 1: {A(N+1)j , j = 1, · · · , J(N + 1)}. Also introduce

notations

– v1
i : the volume of fluid generated by source 1 during the ith busy period (for the

residual period, i = N + 1)

– v2
i : the volume of fluid generated by all other sources during the ith busy period

17



– Li: the total volume of fluid generated by source 1 till the end of the ith busy period

• If the ith busy period begins with a jump up event of a source other than source 1, calculate

Si =
1

θ
(h ×

J(i)
∑

j=1

(

j
∑

k=1

Aik) × Uij −
v1
i × Li−1

h
).

• If the ith busy period begins with a jump up event of source 1, calculate

Si =
1

θ
(h ×

J(i)
∑

j=1

(

j
∑

k=1

Aik) × Uij +
v2
i × Li−1

h
).

• If the residual period begins with a jump up event of a source other than source 1, calculate

SN+1 =
1

θ
(h ×

J(N+1)
∑

j=1

(

j
∑

k=1

A(N+1)k)U(N+1)j −
v1
N+1 × LN

h
).

• If the residual period begins with a jump up event of source 1, calculate

SN+1 =
1

θ
(h ×

J(N+1)
∑

j=1

(

j
∑

k=1

A(N+1)k)U(N+1)j + (c × R −
v1
N+1 × LN

h
).

• After calculating {Si, i = 1 · · ·N + 1}, the IPA estimate is simply
∑N+1

i=1 Si/T .

4 Numerical Examples

Using the previous IPA algorithm, we do simulations for both single source fluid queue and

multiple source fluid queue.

4.1 Single Source Fluid Queue

For the first set of simulations, the fluid queue is feeded by one Markov ON-OFF source. Let c

be the service rate of the server; h be the peak rate of the ON-OFF source; 1/µ and 1/λ be the

average length of source ON and OFF periods respectively. The following formula characterizes

the stationary queue length (see Anick and Mitra, 1982)

E[q(0)] =
λh(h − c)

(µ + λ)(µc − λh + λc)
.
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θ 0.5000 0.6500 0.8000 0.9500 1.1000 1.2500 1.4000
Theoretical Value 0.3331 0.4281 0.5261 0.6302 0.7431 0.8685 1.0104

IPA Esitmate 0.3298 0.4334 0.5268 0.6272 0.7579 0.8731 1.0080
Sample Variance 0.0089 0.0115 0.0220 0.0304 0.0408 0.0658 0.1009
95% Conf. Intv. 0.0117 0.0133 0.0184 0.0216 0.0250 0.0318 0.0394

Table 1: IPA Estimates for Single Source Fluid Queue

T 200 400 800 1600 3200 6400
Theoretical Value 0.33306 0.33306 0.33306 0.33306 0.33306 0.33306

IPA Esitmate 0.33749 0.33690 0.33327 0.32656 0.33381 0.3345
Sample Variance 0.0174 0.01017 0.00842 0.00989 0.00701 0.00676

Table 2: Impact of Simulation Length on Single Source IPA Estimator

If we choose θ = 1/µ, the formula for queue length derivative with respect to θ is

dE[q(0)]

dθ
=

λh(h − c)µ2(2µc − λh + 2λc)

(µ + λ)2(µc − λh + λc)2
.

We set h = 1.5, c = 1.0, λ = 0.5 and vary θ = 1/µ from 0.5 to 2 with step size 0.015. At

each θ, we run 1000 simulations, each of which simulates the fluid queue for 10000 seconds. We

then take the average for both the mean queue length over [0, T ] and IPA estimates of queue

length derivative with repect to θ. The total running time is 315 seconds on a 2GHz linux box.

From Figure 6, we can see the simulation results match very well with the theoretical stationary

formula. Table 1 lists statistics for IPA estimator for 7 different values of θ, including theoretical

Value, sample variance and length of 95% confidence interval.

In order to assess the impact of simulation length T on IPA estimates, we do another set

of experiments with fixed θ = 0.5, but with T varying from 200 seconds to 6400 seconds. The

results are presented in Table 2. For single source IPA estimator, the longer the simulation

length, the better the estimate.

4.2 Multiple Source Fluid Queue

Now let’s look at IPA for fluid queue with M Markov ON-OFF sources. Denote by c the service

rate of the server. For source i, let hi be the its peak rate; 1/µi and 1/λi be the average length

of its ON and OFF periods respectively. The stationary queue length formula can be established
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Figure 6: Simulation Result for single Source Fluid Queue

20



θ 0.4000 0.4500 0.5000 0.5500 0.6000 0.6500 0.7000
Theoretical Value 0.7138 0.8040 0.8993 1.0005 1.1086 1.2248 1.3503

IPA Esitmate 0.7351 0.8017 0.8510 1.0166 1.0507 1.3121 1.3172
Sample Variance 33.11 39.01 45.49 52.97 62.47 69.46 82.18
95% Conf. Intv. 0.1842 0.1999 0.2159 0.2329 0.2530 0.2667 0.2901

Table 3: IPA Estimates for Two Sources Fluid Queue

T 200 400 800 1600 3200 6400
Theoretical Value 0.71384 0.71384 0.71384 0.71384 0.71384 0.71384

IPA Esitmate 0.678 0.71230 0.74279 0.68437 0.65596 0.62039
Sample Variance 2.5758 5.217 10.284 20.672 41.204 83.901

Table 4: Impact of Simulation Length on Two Sources IPA Estimator

through Poisson Driven Stochastic Differential Equation, (see Brockett and Gong, 1999)

E[q(0)] =
1

c −
∑M

i=1 ri

M
∑

i=1

riτi(hi − c +
M
∑

k=1,k 6=i

rk),

where τi = 1/(λi + µi), ri = hiλi/(λi + µi). We simulate a fluid queue feeded by two Markov

ON-OFF sources. IPA is used to esitmate the mean queue length derivative with respect to the

average length of source 1’s ON periods, i.e., θ = 1/µ1. We change θ = 1/µ1 from 0.4 to 0.8

with step size 0.01. For each θ, we run 15000 simulations with different random sequences. Each

simulation simulate the multiple source fluid queue for 2500 seconds. Averages are taken for

both the mean queue length and its derivative with respect to θ. Other simulation parameters

are: c = 1.0, h1 = 1.5, λ1 = 0.5, h2 = 1.5, λ2 = 0.5, µ2 = 3. The total running time is 1584

seconds on a 2GHz linux box. The results are shown in Figure 7. IPA estimate for multiple

sources fluid queue is still unbiased, but the variance is much bigger than the single source case.

Table 3 lists statistics for IPA estimator at 7 different θ.

The impact of simulation length T on IPA estimator is investigated by another set of exper-

iments with fixed θ = 0.5, but with T varying from 200 seconds to 6400 seconds. The results

are presented in Table 2. We can see the variance of multiple source IPA increase linearly with

the simulation length. We will discuss this variance problem in Section 5.
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Figure 7: Simulation Result for Two Sources Fluid Queue

22



5 Discussions

We have proved in Theorem 3 that IPA gives an unbiased estimate for the derivative of buffer

content in the fluid queueing system with infinite buffer and multiple ON-OFF sources. In this

section, we address some issues of both the unbiasedness of IPA for finite buffer system and the

variance issue of multiple sources seen in the numerical example two above.

5.1 IPA for Finite Buffer Fluid Queue

For a fluid queueing system with finite buffer, using similar techniques as in Section 3, we are able

to prove uniform continuity of the sample path function LT (θ, ξ) by showing that inequality (1)

still holds. We can still ensure the similarity of the perturbed trajectory to its nominal trajectory

if the parameter perturbation δθ is small enough. Based on these, IPA estimate can be derived

similarly and is unbiased.

Without showing the derivation, we give the IPA estimate formula for finite buffer fluid

queue feeded by a single source. The trajectory of q(t) can still be divided into busy periods and

possible one residual period crossing over T . Denote by Bi, Ei the start and end time of busy

period i. If q(t) doesn’t hit the buffer upper bound Q during the ith busy period, ∂S i
T (θ, ξ)/∂θ

can be derived in the same way as in infinite buffer case. If q(t) hits the buffer upper bound

mi times during the ith busy period, let H j
i denote the jth hitting time, Dj

i denote the jth

departure time of q(t) from the upper bound for 1 ≤ j ≤ mi, and D0
i , Bi, Dmi+1

i , Ei. We

can divide the ith busy period into mi + 1 sub-periods: ηij = [Dj−1
i , Dj

i ), for 1 ≤ j ≤ mi + 1.

Figure 8 shows the trajectory of q(t) within a busy period which is split into 3 sub-periods.

q(t)

B TimeEi iH HD D
i
2

i
2

i
1

i
1

Q

Figure 8: Trajectory of q(t) with Finite Buffer
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For the ith busy period we have

∂Si
T

∂θ
=

mi+1
∑

j=1

∂

∂θ

∫

ηij

q(t)dt. (9)

Suppose that there are n(i, j) active periods of the source within ηij : A1
ij , · · · , A

n(i,j)
ij . Let Uk

ij

be the source silent period right after Ak
ij , then

∂

∂θ

∫

ηij

q(t)dt =
h

θ

n(i,j)−1
∑

k=1

k
∑

l=1

Al
ij × Uk

ij +
1

θ

n(i,j)
∑

k=1

Ak
ij × Q for 1 ≤ j ≤ mi (10)

and

∂

∂θ

∫

ηi(mi+1)

q(t)dt =
h

θ

n(i,mi+1)
∑

k=1

k
∑

l=1

Al
i(mi+1) × Uk

i(mi+1). (11)

For the residual busy period [BN+1, EN+1], if q(t) doesn’t hit Q, then IPA is the same as in

the infinite buffer case. If q(t) does hit Q and q(T ) < Q, divide the residual busy period

into mN+1 + 1 sub-periods in the same way as we did for a busy period. IPA estimates for

all the sub-periods other than the last one are the same as in (10). For the last sub-period

ηl , η(N+1)(mN+1+1), let nl = n(N + 1, mN+1 + 1),

∂

∂θ

∫

ηl

q(t)dt =
h

θ

nl
∑

k=1

k
∑

l=1

Al
(N+1)(mN+1+1)U

k
(N+1)(mN+1+1) −

f1(D
mN+1

N+1 )q(T )

hθ
. (12)

If q(t) does hit Q and q(T ) = Q, which means D
mN+1

N+1 = T , then divide the residual busy period

into mN+1 sub-periods. For the first mN+1−1 sub-periods, IPA estimate is the same as in (10).

For the last sub-period ηl , η(N+1)mN+1
, let nl = n(N + 1, mN+1),

∂

∂θ

∫

ηl

q(t)dt =
h

θ

nl−1
∑

k=1

k
∑

l=1

Al
(N+1)mN+1

Uk
(N+1)mN+1

−
f1(D

mN+1−1
N+1 )Q

hθ
. (13)

Using this algorithm, we repeat the single source example in Section 4, with the buffer length Q

set to be 1. Theoretical value of E[q(0)] can be obtained through (2.18)− (2.23) in Elwalid and

Mitra (1991). From Figure 9, we can see IPA estimate for finite buffer case is still unbiased.

5.2 IPA Variance for Multiple Source Fluid Queue

Theorem 3 shows that IPA gives an unbiased estimate for derivative d
dθ

E{LT (θ, ξ)}. We also

see in Table 4 that multiple source IPA variance increases with the simulation length. In order
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Figure 9: Simulation Result for Finite Buffer Fluid Queue

to obtain good estimate in practice, variance of the IPA estimate is also very important. In this

Section, we discuss the variance issue of IPA estimates for multiple source fluid queue.

Based on equation (4), the IPA estimator reads

∂

∂θ
LT (θ, ξ) =

1

T
(

N
∑

i=1

∂Si
T (θ, ξ)

∂θ
+

∂SN+1
T (θ, ξ)

∂θ
).

For the convenience of derivation, let’s omit the residual term ∂SN+1
T (θ, ξ)/∂θ, which corresponds

to the case that queue is empty at time T . We consider two cases: 1) single source; 2) multiple

sources.

In case 1), every busy period is started by source 1, by using equation (6), we can see

∂

∂θ
LT (θ, ξ) =

h

Tθ

N
∑

i=1

J(i)
∑

j=1

j
∑

k=1

Aik × Uij , (14)

where J(i) is the number of the source’s ON periods which belong to the server’s ith busy

period, Aij , Uij are the length of the jth ON and OFF period within ith busy period. Because
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server’s busy periods are independent, in long run, V ar( ∂
∂θ

LT (θ, ξ)) is inversely proportional to

simulation length T . This suggests when T → ∞, we can get consistent IPA estimate for single

source fluid queue.

In case 2), let Ω1 = {i : the ith busy period is started by source 1 } and Ω2 = {i :the ith

busy period is started by a source other than 1 }. Combining equation (5) and (6), we will have:

∂

∂θ
LT (θ, ξ) =

h

Tθ

N
∑

i=1

J(i)
∑

j=1

j
∑

k=1

AikUij +
1

Tθh

∑

i∈Ω1

f2
i (Ei, θ, ξ)f1(Ei−1, θ, ξ)

−
1

Tθh

∑

i∈Ω2

f1
i (Ei, θ, ξ)f1(Ei−1, θ, ξ),

(15)

where f1
i (Ei, θ, ξ) is the amount of workload generated by source 1 in the server’s ith busy

period; f2
i (Ei, θ, ξ) is the workload generated by all other sources. f1(Ei−1, θ, ξ) is the total

amount of workload generated by source 1 till the end of server’s i − 1th busy period. We have

proved that | ∂
∂θ

LT (θ, ξ)| is bounded by hT/θmin, which is a very loose bound when T is big.

Let’s look at the variance of the IPA estimate. The first term in equation (15) is exactly the

same as the only term in equation (14). Its variance goes down to zero as T goes to ∞. When

T is big, variance of the second and third term tend to grow proportionally to T and there

is no explicit relationship between these two terms which can ensure their contribution to the

variance of ∂
∂θ

LT (θ, ξ) can cancel each other. It has been shown in our numerical example for

multiple sources that the experimental variance of IPA estimates increases with the simulation

length. This explains why the IPA estimates for multiple sources are not as good as those for

the single source case.

6 Conclusions and Future Work

We have seen that the derivative information is important to achieve high network resource

utilization. However it is not easy to obtain such information in a stochastic network environ-

ment. Gibbens and Kelly (1999) have shown an example of sample path shadow prices, where

they use a Poisson model for packet arrivals. They show that a simple marking scheme will send

accurate shadow prices information to end users. Unfortunately, this is not true for arrivals with

more general statistical properties. In this paper, we use parameterized stochastic model for end

users’ traffic. Based on this, we develop an infinitesimal perturbation analysis type of derivative

estimation algorithm to obtain the shadow price at each common buffer. The unbiasedness of
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the estimator has been established. Such derivative estimator could be useful in pricing schemes

for congestion management in high speed communication networks.

We would like to provide some general comments in the conclusion of this paper. In the

derivation of the derivative estimates, we saw that perturbation analysis techniques give better

estimates for the single class queue than for the multi-class queue. Since in multi-class queue a

small change of a parameter would lead to accumulated changes in the sample path performance

index, we would expect that the derivative estimates to incur larger variance. In this paper, we

actually show that the estimates are not consistent. In other words, the PA estimates for multi-

class queues have increasing variance with the observation length. Although methods exploring

regenerative structure of the sample paths could be applied to obtain consistent estimates, the

variances are still much bigger than in the single class case. This observation could be significant

for network queue management issues in general. Mathematically speaking, any “correct” queue

management scheme should make use of the sensitivity information. We believe that to obtain

such information based on sample path observations may not be trivial. In general, when

multiple flows go through a queue, the sample path queue behavior does not contain enough

information for the mean queue length sensitivities for on-line management. This issue needs

to be investigated in more depth. We hope the study of this paper will draw more attentions in

this direction.
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