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Abstract— In this paper, we study the interaction be-
tween overlay routing and Traffic Engineering (TE) in
a single Autonomous System (AS). We formulate this
interaction as a two-player non-cooperative non-zero sum
game, where the overlay tries to minimize the delay of its
traffic and the TE’s objective is to minimize network cost.
We study a Nash routing game with best-reply dynamics,
in which the overlay and TE have equal status, and take
turns to compute their optimal strategies based on the
response of the other player in the previous round. We
prove the existence, uniqueness and global stability of
Nash equilibrium point (NEP) for a simple network. For
general networks, we show that the selfish behavior of an
overlay can cause huge cost increases and oscillations to
the whole network. Even worse, we have identified cases,
both analytically and experimentally, where the overlay’s
cost increases as the Nash routing game proceeds even
though the overlay plays optimally based on TE’s routing
at each round. Experiments are performed to verify our
analysis.

I. I NTRODUCTION

THERE are two recent trends in network routing
research. One is overlay routing, and the second is Traffic
Engineering (TE). Overlay routing (e.g., Detour [1],
RON [2]) allows end hosts to choose routes by them-
selves. It occurs at the application level, where traffic
is routed by application level routers (computers). The
logical paths and links of an overlay lie on top of
physical paths set by intra-domain (e.g., OSPF, MPLS,
IS-IS) and inter-domain routing protocols (e.g., BGP).
It has been shown that these overlay routing schemes
are effective in dealing with some of the deficiencies in
today’s IP routing structure ([1], [2], [3]). On the other
hand, as pointed out by [4] and [5], Internet Service

Providers (ISPs) are using traffic engineering (TE) to
provide better and more robust intra-domain routing.

There is a misalignment between the objectives of
overlay routing and TE routing algorithms. An overlay
is interested in the optimal routes for its own group
of users whereas TE is interested in improving the
whole network performance by considering all users
including both overlay and non-overlay (or underlay)
users. It is well-known that counter-intuitive behavior
can arise when individual agents conduct selfish opti-
mizations [6]. Conflicts in their objective functions re-
sults in system performance degradation. Overlay routing
is rapidly being employed by a wide variety of emerging
applications. For example, Akamai runs a large overlay
network for high volume content distribution. This trend
in applications demands a fundamental understanding
of the interaction between overlay routing and TE. In
this paper, we formally study the interaction between
the routing decisions made by an overlay network and
MPLS Traffic Engineering within a single ISP. Our work
is motivated in part by the work of Qiuet al [7], in which
the interaction between selfish overlay routing and TE is
brought up.

Overlay users view alogical network. Two overlay
nodes are connected by alogical link. An overlay routing
algorithm allocate overlay demands on logical links
based on current logical link delays. The traffic flow on
a logical link between two overlay nodes is interpreted
by TE as a traffic demand between these two nodes. TE
takes as input the traffic demand matrix (each demand
pair includes demand from the underlay traffic and/or
demand from overlay traffic), and computes a set of
physical level routes using an algorithm such as that



described in [4] to minimize overall network cost or
to minimize maximum link utilization. Figure 1 shows
conceptually how the overlay and TE interact with each
other. Since both the overlay and TE optimize their
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Fig. 1. Interaction between overlay optimizer and Traffic Engineer-
ing optimizer.

routes over time, the interaction between their decisions
can be understood as an iterative process. Throughout
this process, TE and the overlay modify each other’s
the input in turn. Overlay routing decisions result in the
logical link traffic flows, which are in turn interpreted
as traffic demands by the TE algorithm. On the other
hand, TE changes the delays of logical links by adjusting
the actual physical-level routes of the overlay traffic,
therefore influence future routing decisions made by the
overlay.

In this paper, we focus on thedynamics of this
interaction process. We formally model this interaction
as anon-cooperative non-zero sum two player game. The
overlay and the TE algorithm are essentially two players
with different optimization objectives. From now on, we
refer to an overlay routing optimizer asoverlay, and
refer to a TE routing optimizer asTE. In the interaction
process, or best-reply dynamics, each player adjusts its
response optimally based on the other player’s decisions
during the previous round. Given the misalignment be-
tween the objectives of overlay and TE, we ask questions
such as:does a Nash equilibrium exist in this game?
If a Nash equilibrium exists, is it unique? How about
the stability of Nash equilibriums? Does the interaction
process always converge to a Nash equilibrium? What
effects on the performance of TE and overlay can be
caused by this interaction process?

The key contributions are summarized as follows:

• We formally define the optimization problems for
overlay routing and TE, and formulate their in-
teraction as a non-cooperative non-zero sum two
player game. To the best of our knowledge, this
is the first formal framework proposed to study

the routing interaction between an overlay and a
underlay network.

• Based on the framework, we thoroughly study
an illustrative example. We prove the existence,
uniqueness and global stability of Nash equilib-
rium. Mathematical analysis enables us to gain a
fundamental understanding and subtle insights of
the intricate interaction process. In particular, we
demonstrate how the misalignment between overlay
and TE’s objective function triggers oscillations in
their routes. We also show that the mapping from
logical links to physical paths alleviates the conflict
between TE and overlay, and helps them to reach
equilibrium.

• For the illustrative example, we identify scenarios
where the Nash equilibrium is not Pareto effi-
cient [8]. The overlay’s cost increases when it plays
a best-reply Nash routing game with TE. We also
observed this phenomenon in experiments with a
14-node tier-1 ISP topology. Thus, it may not be
wise for an overlay to always optimize its routes
each time that TE recalculates its physical routes,
because in the long run, overlay’s cost may increase.
This observation is of practical importance to an
overlay routing structure, even though it is not
surprising from a game-theoretic point of view.

• Analytical results are verified by experiments on
real network topologies. In those experiments, TE’s
costs are increased a lot in the interaction with
overlay, and the cost increase of TE is a function of
the percentage of overlay traffic. If overlay traffic
corresponds to approximately half of the total traf-
fic, then the overlay’s influence on TE performance
achieves the largest.

The rest of the paper is organized as follows. Section II
describes related work. In Section III, we formally model
the interaction process as a two-person non-cooperative
non-zero sum game. A Nash routing game on a simple
topology is investigated in Section IV. Section V is
devoted to experimental results with focus on the effect
of overlay routing on the performance of underlay net-
works. We conclude the paper in Section VI and discuss
possible directions for future work.

II. RELATED WORK

Noncooperative games in the context of routing have
been studied in the areas of transportation networks for
a long time. In that framework, each user controls just
an infinitesimally small portionof the network flow, and
tries to minimize its own delay or cost. Dafermos and



Sparrow [9] show that a simple transformation of the cost
function can make the routing game a standard network
optimization problem called theuser equilibriummodel.
On the other hand, asystem optimummodel has the
objective to minimize the overall delay of the whole
network. In the area of computer networks, theuser
equilibrium model is called selfish routing ([7], [10],
[11]) Orda [12] and Korilis [13] studied a model in
which users control anon-negligible portionof flow.
Orda [12] investigates the existence and uniqueness of a
Nash equilibrium in a routing game in which each user
attempts to optimize its own performance by controlling
its own portion of traffic. In [13], a central manager is
introduced into the model. Other related work can be
seen in [14] and [15].

Our work differs from much of previous selfish routing
studies ([7], [16], [10]) in that each user or player
controls anon-negligible portionof flow in our work.
Our work also differs from [12] and [13] in the following
ways. In our work, the two players (overlay and TE) have
different views of the network. Overlay has a logical
view of the network, whereas TE has a physical view
of the network. In addition, each player’s decision can
change the input for the other player. The interaction
between selfish overlay routing and TE is first brought
up in [7]. Two experimental studies were given to show
the interaction between overlay and MPLS TE, and the
interaction between overlay and OSPF TE. Our work
starts from this base to formally study this interaction as
a noncooperative game.

III. M ODELS OFINTERACTION

In this section, we formally define the interaction
between TE and overlay routing.
A. Physical v.s. Logical Network View

On top of an underlay network, a group of nodes forms
an overlay network and all the nodes forward traffic for
each other. At the application level, the overlay nodes
view a logical network. We useG = (V, E) to denote an
underlay network andG′ = (V ′, E′) to denote an overlay
network on top ofG. In G′, we usei′ to represent the
overlay node built upon nodei in the underlay physical
graphG. Overlay nodei′ is connected toj ′ by a logical
link (i′, j′), which corresponds to a physical path from
i to j in G. 1 In G′, a logical path p is an ordered set
of logical links connecting one overlay node to another
overlay node. We introduce the mapping coefficient,

1If TE allows a single demand pair to use multiple paths, traffic
on a logical link will be distributed among multiple physical paths

δ
(s′,t′)
p , which assumes value1 if logical link (s′, t′) is on

logical pathp, and0 otherwise. In Figure 2, four nodes
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Fig. 2. An example overlay network.

1, 4, 7, 9 form an overlay network. There are three logical
paths connecting overlay node1′ to 9′: 1′ → 4′ → 9′;
1′ → 9′; 1′ → 7′ → 9′.

In the logical graphG′, an overlay routing algorithm
allocates traffic demand between overlay node pairs onto
different logical paths. Letd(s′,t′) be the traffic demand
from s′ to t′, P (s′,t′) be the set of logical paths froms′

to t′, and h
(s′,t′)
p be the flow rate on logical pathp ∈

P (s′,t′). Given {d(s′,t′), P (s′,t′), ∀s′, t′ ∈ V ′}, an overlay
routing decision can be represented by{h

(s′,t′)
p , ∀s′, t′ ∈

V ′, ∀p ∈ P (s′,t′)}. For the previous example, the over-
lay routing algorithm finds{h(1′,9′)

1 , h
(1′,9′)
2 , h

(1′,9′)
3 } to

implement the single demand paird(1′,9′).

Overlay traffic on logical link(i′, j′) will be physically
routed from nodei to j by TE. At the same time, TE
also accounts for traffic demands from normal underlay
users. Therefore, the TE demand on a physical node pair
(s, t) can be expressed as

d(s,t) = d
(s,t)
overlay+ d

(s,t)
under,

where d
(s,t)
overlay is the demand due to the overlay traffic

on logical link (s′, t′), and d
(s,t)
under is the demand from

the underlay users. In Figure 2, overlay traffic on logical
path 1′ → 4′ → 9′ will generate two demands for TE:
d

(1,4)
overlay = d

(4,9)
overlay = h

(1′,9′)
1 .

In the physical graphG, TE allocates all physical
traffic demands{d(s,t), ∀s, t ∈ V } to all of the physical
links {a ∈ E}. Let f

(s,t)
a denote the fraction of TE



(i′, j′) : logical link.
P (s′,t′) : Set of logical paths froms′ to t′.

δ
(s′,t′)
p : Path mapping coefficient.

d(s′,t′) : Overlay demand on pair(s′, t′).

h
(s′,t′)
p : Overlay flow on logical pathp.

d(s,t) : TE Demand on physical node pair(s, t).
d
(s,t)
overlay : TE demand due to overlay flow on logical

link (s′, t′)

d
(s,t)
under : TE demand due to underlay traffic.

d(·,t) : Demand of TE to destinationt.
a = 〈i, j〉 : physical linka connecting nodei to j.
Ca : Capacity of a physical linka.
la : Link traffic on a physical linka.
f

(s,t)
a : Fraction of TE demandd(s,t) on link a.

v
(s,t)
a : Flow of d(s,t) on link a.

vt
a : Flow destined tot on link a.

TABLE I

NOTATIONS

demandd(s,t) on physical linka. 2 Then the traffic rate
of d(s,t) assigned to physical linka is v

(s,t)
a = f

(s,t)
a d(s,t).

The total traffic rate on linka is

la =
∑

(s,t)

v(s,t)
a =

∑

(s,t)

{f (s,t)
a · (d

(s,t)
overlay+ d

(s,t)
under)}

All notations used in our formulations are summarized
in Table I.

B. Traffic Engineering v.s. Overlay Routing

We now formulate the operations of TE and over-
lay routing. TE and overlay routing each individually
optimize some performance metric, such as delay. TE
cares about network-wide performance, while overlay
only cares about the performance of overlay users. We
will observe in the following sections that this objec-
tive misalignment between optimizations at logical and
physical level leads to bad interactions between TE and
overlay routing.

We adopt congestion delay as the network perfor-
mance metric and use theM/M/1 delay formula to
calculate link cost [4].3 For a physical link with capacity
Ca, if its traffic rate isla, the mean delay experienced by
a single packet is 1

Ca−la
. Therefore, the total cost seen

by TE on this link is la
Ca−la

. Given the demand matrix
{d(s,t), ∀s, t ∈ V }, the goal of TE is to choose a physical
link flow allocation{v(s,t)

a }, or equivalently{f (s,t)
a }, that

2TE doesn’t distinguish between overlay and underlay traffic, and
uses the same routing fractionf (s,t)

a for all traffic from s to t
3In order to focus on the relationships between sets of routes and

network congestion (or costs), we do not consider propagation delays
in these examples. The case with propagation delays are also of
interests to our future research.

minimizes network cost:

min
v
(s,t)
a

JTE =
∑

a∈E

∑

(s,t)

v
(s,t)
a

Ca −
∑

(s,t)

v
(s,t)
a

(1)

subject to physical level flow conservation constraints

∑

a:d(a)=y

v(s,t)
a −

∑

a:s(a)=y

v(s,t)
a =











d(s,t) y = t,

−d(s,t) y = s,

0 otherwise

, (2)

∀y ∈ V, ∀(s, t) ∈ V ×V , wheres(a) andd(a) denote the
source node and destination node of linka respectively.

On the other hand, the overlay routing algorithm
determines a logical path flow allocation{h(s′,t′)

p } that
minimizes the average delay experienced by overlay
users. Overlay users can choose their routes indepen-
dently by probing the underlay network, or a centralized
entity can calculate routes for all overlay users. Ideally,
if the centralized overlay routing entity knows exactly
the physical network topology, traffic demand and TE’s
routing, optimal overlay routing can be obtained by
solving the following non-linear optimization problem:

min
h
(s′,t′)
p

Joverlay =
∑

a

∑

(s,t)

f
(s,t)
a d

(s,t)
overlay

Ca −
∑

(s,t)

{f
(s,t)
a (d

(s,t)
overlay+ d

(s,t)
under)}

(3)

subject to logical level flow conservation constraints
∑

p∈P (s′,t′)

h(s′,t′)
p = d(s′,t′), h(s′,t′)

p ≥ 0,∀(s′, t′) ∈ V ′ × V ′.

The overlay demandd(s,t)
overlay in (3) can be calculated as

d
(s,t)
overlay =

∑

s′,t′,p

δ(s,t)
p h(s′,t′)

p

Overlay source routing can be formulated similarly,
interested users are referred to a technical report for
details [17].
C. Non-cooperative Non-zero Sum Two-player Game

Based on the above formulations, TE and overlay
routing are coupled through the mapping from the logical
level path to physical level links. They both optimize
their objective functions using their own strategies. We
can formulate their interaction as a non-cooperative non-
zero sum two-player game.

The strategy used by overlay is represented by a vector
of logical link flows. A strategy of overlay is one flow
configuration on logical links for all overlay demand
pairs:

d
(s,t)
overlay = (..., d

(s,t)
overlay, ...) (4)

Recall thatd(s′,t′) denotes overlay demand, butd
(s,t)
overlay

denotes overlay traffic flow, which are interpreted as
demands by TE. As a comparison, the demand seen by



TE that comes from underlay traffic is denoted asd
(s,t)
under.

The strategy spaceΓoverlay of an overlay network is the
set of all feasible flow configurations on logical links or
paths.

A strategy of TE is represented by one feasible flow
configuration on the physical links for all TE demand
pairs:

f
TE = (..., f

(s,t)
〈i,j〉 , ...) (5)

The strategy spaceΓTE of TE is the set of all feasible
flow configurations on physical links.

A strategy profile isγ̄ = (fTE,d
(s,t)
overlay). The cost

function of TE isJTE(fTE,d
(s,t)
overlay) and the cost function

of overlay isJoverlay(fTE,d
(s,t)
overlay). We have the following

definition of Nash equilibriumfor this routing game.
Nash Equilibrium A strategy profile γ̄∗ is a Nash
equilibrium if, for both players, TE and overlay,

JTE(fTE∗

,d
(s,t)∗
overlay) ≤ JTE(fTE,d

(s,t)∗
overlay),

∀fTE ∈ ΓTE (6)

Joverlay(fTE∗

,d
(s,t)∗
overlay) ≤ Joverlay(fTE∗

,d
(s,t)
overlay),

∀d
(s,t)
overlay∈ Γoverlay (7)

For a TE optimizer, overlay’s response is observed as
part of the demand matrix. Since TE knows the physical
network’s topology and all link capacities, and if we
assume TE can estimate its demand matrix accurately
([18]), then TE can compute its optimal strategy. As
for the implementation, if TE uses MPLS, it can ex-
actly realize its strategy; if TE uses OSPF, it can only
approximately realize its optimal strategy. However, an
overlay optimizer maynot be able to compute its optimal
strategy because it may not know all of the necessary
information as mentioned in last section. To gain insights
into the interaction between TE and overlay routing, in
the following sections, we first assume that overlay has
the necessary information to compute its optimal routes,
and model this interaction as aNash routing game[19].
This assumption is relaxed when we study overlay source
routing. the situation where overlay only has limited
information will be discussed in Section VI

Our Nash routing game model is adiscrete time
model. One basic assumption is that, during its turn, one
player completes its optimization before the other player
starts. It could be true of course that a player starts its
turn even when the other player has not yet finished. We
are not concerned with such an interaction process in
this paper. A similar process is studied in [20], [21],
[22], and [23].

IV. NASH ROUTING GAME

In this section, we explore the structure of the the
previously defined Nash routing game through an il-
lustrative example. Mathematical analysis enables us to
gain a fundamental understanding and subtle insights
of the intricate interaction process. Two types of over-
lay routing schemes are considered, centralized optimal
routing and selfish source routing. We analytically study
the best-reply dynamics of the game-playing process.
In particular, the existence, convergence and stability of
Nash equilibrium (NEP) are established for this example.
Interestingly, even for this simple topology, we identify
cases where the Nash game converges to an inefficient
NEP for overlay. In other words, overlay’s performance
degrades as the game proceeds. The best-reply strategy is
not the best strategy for overlay to use when interacting
with TE.

We use the three node topology illustrated in Figure
3 and assume that the bandwidth on two physical links,
between node2 and 3, is large enough such that delay
on both links negligible. Without loss of generality, we
assume link〈1, 2〉 has a higher capacity than link〈1, 3〉.
Note, TE maintains a physical view of the network and
overlay has a logical view of the network. Therefore,
logical link (1′, 2′) is actually mapped onto two physical
paths 1 → 2 and 1 → 3 → 2. We assume the
only overlay demand is from node1′ to 3′. We first

1’ 3’

2’overlay 
demandª�« ¬ ­ ® ¯ ­ °7±³²

1

3

2

underlay 
demand

logical level

physical level

logical link (1’,2’)
maps to two physical paths

Fig. 3. Topology of a three-node network.

assume that a centralized entity has all of the information
necessary to calculate the optimal overlay routes. This
assumption is relaxed when we study selfish overlay
source routing, where overlay users probe the underlay
network and choose the shortest logical paths to send
their traffic.

A. Centralized Optimal Overlay Routing

Since link costs between nodes2 and3 are negligible,
TE’s task is to allocate physical traffic demandd(1,2) and
d(1,3) onto link 〈1, 2〉 and 〈1, 3〉. For this example, the



optimal link flow allocation{v(1,2)
〈1,2〉 , v

(1,3)
〈1,2〉} is not unique.

However, the optimal link rate vector{l〈1,2〉, l〈1,3〉} is
unique and is the solution to:

min
{l〈1,2〉,l〈1,3〉}

JTE =
l〈1,2〉

C〈1,2〉 − l〈1,2〉
+

l〈1,3〉

C〈1,3〉 − l〈1,3〉

subject to

l〈1,2〉 + l〈1,3〉 = d
(1,2)
under + d

(1,3)
under + d(1′,3′), (8)

The constraint is due to the fact that TE can arbitrarily
allocated(1,2) andd(1,3) onto links〈1, 2〉 and〈1, 3〉. This
formulation also suggests that for this example, TE’s
optimal cost is invariant to overlay’s routing. This is
because we assume the link costs between node2 and3
are negligible.

The necessary condition for the TE optimum is
∂

∂l〈1,2〉
JTE = ∂

∂l〈1,3〉
JTE , which translates into

C〈1,2〉

(C〈1,2〉 − l〈1,2〉)2
=

C〈1,3〉

(C〈1,3〉 − l〈1,3〉)2
(9)

Based on (8) and (9), TE can calculate its optimal traffic
assignment{l∗〈1,2〉, l

∗
〈1,3〉}. To avoid ambiguity in the link

flow allocation, we force TE to route traffic directly as
much as possible. This is consistent with actual practice
where the bandwidth on links between node2 and3 is
always finite. So we have:

f
(1,2)
〈1,2〉 =

{

1 d(1,2) ≤ l∗〈1,2〉
l∗〈1,2〉

d(1,2) d(1,2) > l∗〈1,2〉

(10)

and

f
(1,3)
〈1,2〉 = max{0, (l∗〈1,2〉 − f

(1,2)
〈1,2〉 × d(1,2))/d(1,3)}. (11)

Overlay divides the demandd(1′,3′) among the two
logical paths. To simplify notation without causing con-
fusion, we useh(1,2) andh(1,3) to denote overlay traffic
on logical path1′ → 2′ → 3′ and 1′ → 3′ respectively.
The overlay optimization can be formulated as:

min
{h(1,2),h(1,3)}

Joverlay =
f

(1,2)
〈1,2〉h

(1,2) + f
(1,3)
〈1,2〉h

(1,3)

C̃〈1,2〉 − f
(1,2)
〈1,2〉h

(1,2) − f
(1,3)
〈1,2〉h

(1,3)

+
f

(1,2)
〈1,3〉h

(1,2) + f
(1,3)
〈1,3〉h

(1,3)

C̃〈1,3〉 − f
(1,2)
〈1,3〉h

(1,2) − f
(1,3)
〈1,3〉h

(1,3)
(12)

subject toh(1,2) + h(1,3) = d(1′,3′), where C̃〈1,2〉 and
C̃〈1,3〉 are available bandwidth for overlay on link〈1, 2〉
and 〈1, 3〉:

C̃〈1,2〉 = C〈1,2〉 − f
(1,2)
〈1,2〉d

(1,2)
under − f

(1,3)
〈1,2〉d

(1,3)
under (13)

C̃〈1,3〉 = C〈1,3〉 − f
(1,2)
〈1,3〉d

(1,2)
under − f

(1,3)
〈1,3〉d

(1,3)
under (14)

The necessary condition for an overlay optimum with

h(1,2) > 0 andh(1,3) > 0 is :
∂

∂h(1,2)
Joverlay =

∂

∂h(1,3)
Joverlay (15)

which is equivalent to

C̃〈1,2〉

(C̃〈1,2〉 − f
(1,2)
〈1,2〉h

(1,2) − f
(1,3)
〈1,2〉h

(1,3))2

=
C̃〈1,3〉

(C̃〈1,3〉 − f
(1,2)
〈1,3〉h

(1,2) − f
(1,3)
〈1,3〉h

(1,3))2
(16)

together with (13), (14), the necessary condition in terms
of link rate is:

C̃〈1,2〉

(C〈1,2〉 − l〈1,2〉)2
=

C̃〈1,3〉

(C〈1,3〉 − l〈1,3〉)2
(17)

Existence of NEPEquation (17) and (9) demonstrate
the misalignment of the objectives of TE and overlay.
It results in oscillations of routes at both logical and
physical levels. To reach any NEP withh(1,2) ·h(1,3) > 0,

we must haveC̃〈1,2〉

C〈1,2〉
=

C̃〈1,3〉

C〈1,3〉
. It is easily satisfied for the

trivial case when there is no underlay traffic. We have
shown that ifd(1,2)

under = 0, d
(1,3)
under > 0 and d

(1,3)
overlay <

l∗〈1,2〉, there exists one unique NEP withh(1,2) · h(1,3) >

0. On the other hand, ifd(1,2)
under > 0 and d

(1,3)
under = 0,

C̃〈1,2〉

C〈1,2〉
6=

C̃〈1,3〉

C〈1,3〉
, the possible NEPs are on the boundary,

i.e., h(1,2) = 0 or h(1,3) = 0. Since the delay on logical
path(1, 2) is always smaller than on logical path(1, 3),
{h(1,2) = d

(1,3)
overlay, h

(1,3) = 0} is the only NEP.
Characteristics of NEP We are interested in the char-
acteristics of NEP, namely, stability and efficiency (for
either overlay or TE), which are of practical importance.
It is easy to show that those NEPs occurring on the
boundary are stable and give overlay lower cost com-
pared with initial cost. One interesting NEP is identified
in the following theorem:

Theorem 1:If d
(1,2)
under = 0 and d(1′,3′) < l∗〈1,2〉, the

NEP between TE and overlay is unique and globally
stable, i.e. overlay routing always converges to the NEP
regardless of its initial routing.

Proof: See Appendix A.
One interesting observation is that this NEP isinefficient
for overlay for some initial conditions, namely, over-
lay’s cost at NEP is higher that its initial cost at the
beginning of the interaction process. To illustrate, we
present results from one experiment. We setC〈1,2〉 = 1,

C〈1,3〉 = 0.5, d(1′,3′) = d
(1,3)
under = 0.5. Overlay takes

its turn at even rounds, TE at odd rounds. We use the
Matlab optimization toolbox to solve (8) and (12). We
performed two experiments with different initial overlay



route: h(1,2)(0) = d(1′,3′); h(1,2)(0) = 0. Figure 4(a)
shows that in both cases overlay routing converges to
the NEP. Figure 4(b) shows overlay cost as the Nash
game proceeds.

It is interesting to observe that for the case where
h(1,2)(0) = d(1′,3′), overlay cost actually increases over
rounds even though it tries to minimize its cost at each
round. This is because after overlay chooses its routes,
TE will adjust its routes to minimize the whole network
cost. The updated TE routes will increase overlay’s cost.
The interaction between TE and overlay routing is bad
for overlay and overlay cost increases until the game
converges to its NEP. We observe the same phenomenon
in experiments on a 14-node tier-1 ISP network later.
For the current example, the best strategy for overlay is
to place all of its traffic on logical path(1, 2). This is to
say it maynot be wise for overlay to play a Nash game
with TE. This is consistent to the inefficiency property
of NEP. A Stackelberg routing strategy for overlay will
be discussed in Section VI.

B. Selfish Overlay Source Routing

In practice, it is difficult to have a centralized entity
calculate optimal routes for the overlay users. In most
cases, overlay users choose their own routes by probing
the underlay network. Based on the TE routes, overlay
users try to move their traffic to the minimum delay
logical path. Just as in normal selfish source routing,
an equilibrium between competing selfish users will be
reached if delays on all paths utilized by one user are
equal. For our current example, selfish overlay users
reach an equilibrium either when the delay on the two
logical paths are equal or all overlay users shift their
traffic to the minimum delay logical path. We assume
there is no underlay traffic, and TE and overlay takes
turns in doing optimizations. We prove that a NEP exists
and can still be reached when overlay employs selfish
source routing.

For the clarity of the proof, we approximate the
M/M/1 link cost function by a convex piece-wise linear
function [4]:

Φ(C, l) =











k1l + b1 l ∈ [0, α1 · C)

· · · · · ·

kml + bm l ∈ [αm−1 · C, C),

where the slopeki increases withi. As described in (1),
the objective of TE is to minimize the summation of the
costs on physical links〈1, 2〉 and 〈1, 3〉:

min JTE = Φ(C〈1,2〉, l〈1,2〉) + Φ(C〈1,3〉, l〈1,3〉) (18)

subject tol〈1,2〉 + l〈1,3〉 = d(1,2) + d(1,3). The necessary

condition for the TE’s optimal solution isdΦ〈1,2〉

dl〈1,2〉
=

dΦ〈1,3〉

dl〈1,3〉
, which means l〈1,2〉

C〈1,2〉
falls into the same region

[αj−1, αj) as l〈1,3〉

C〈1,3〉
. To illustrate, we plot the two-
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Fig. 5. Traffic allocation on two physical links〈1, 2〉 and 〈1, 3〉

dimension link rate vector{l〈1,2〉, l〈1,3〉} in Figure 5.
We draw vertical lines atl〈1,2〉 = αiC〈1,2〉, 1 ≤ i ≤
m. Between two adjacent vertical linesj − 1 and j,
dΦ〈1,2〉

dl〈1,2〉
= kj . Similarly, We draw horizontal lines at

l〈1,3〉 = αiC〈1,3〉, 1 ≤ i ≤ m and between two adjacent

horizontal linesj − 1 and j, dΦ〈1,3〉

dl〈1,3〉
= kj . As shown

in Figure 5, the plane is partitioned into blocks. Within
each block, the link cost derivatives are constant. Since
kj increases inj, two link cost derivatives are equal only
when the link rate vector falls into those shaded blocks
along the diagonal. Therefore, the TE’s optimal solution
set is [T ∗

1 , T ∗
2 ], the intersection between the constraint

line CD and the shaded area. The non-uniqueness of the
TE optimal solution is due to the piece-wise linear link
cost function. As more linear segments used in the piece-
wise linear function, the smaller the shaded area. As
the size of the linear segments goes to zero, the shaded
area degenerates to the diagonal lineAB and TE has a
unique optimal solutionT ∗. TE’s optimal routes are still
calculated as in (10), (11) andf (1,2)

〈1,2〉 > f
(1,3)
〈1,2〉 always.

The average delay on logical links can be calculated as:

Delay(1,2) = f
(1,2)
〈1,2〉 Delay〈1,2〉 + (1 − f

(1,2)
〈1,2〉 )Delay〈1,3〉 (19)

Delay(1,3) = f
(1,3)
〈1,2〉 Delay〈1,2〉 + (1 − f

(1,3)
〈1,2〉 )Delay〈1,3〉 (20)

Theorem 2:The Nash routing game defined above
always converges to a NEP.

Proof: Becausef (1,2)
〈1,2〉 > f

(1,3)
〈1,2〉 , the only way to

match the average delays on two logical paths is to match
the average delays on physical links〈1, 2〉 and〈1, 3〉. We
introduce in Figure 5 the Equal Delay LineEB, where
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the rate vector makes the physical delay on link〈1, 2〉
and 〈1, 3〉 equal, or equivalently

C〈1,2〉 − l〈1,2〉 = C〈1,3〉 − l〈1,3〉

Then any rate allocation in areaAEBF will make
Delay〈1,3〉 > Delay〈1,2〉 and Delay〈1,3〉 < Delay〈1,2〉 in
areaEGB. Let pointO∗ be the intersection between line
EB and the demand lineCD. If O∗ falls in TE’s optimal
solution interval[T ∗

1 , T ∗
2 ], thenO∗ achieves optimum for

both TE and overlay. ThereforeO∗ is a NEP and will be
reached after one round of TE and overlay optimization.

If EB falls outside of[T ∗
1 , T ∗

2 ], then after TE’s opti-
mization, we have Delay〈1,2〉 < Delay〈1,3〉 and f

(1,2)
〈1,2〉 >

f
(1,3)
〈1,2〉 . Therefore, from (19), we will have Delay(1,2) <

Delay(1,3). When overlay takes its turn, it always try to
move some of its demand from logical path(1, 3) to
logical path(1, 2) until either all of its demand has been
moved to path(1, 2) or the rate vector reach pointO∗.
For the first case, when TE takes over, it will pull the
rate vector back into[T ∗

0 , T ∗
1 ]. And when overlay takes

its turn, it still sees Delay(1,2) < Delay(1,3). Since all of
its demand has already been placed on path(1, 2), the
game reaches its NEP. For the second case, TE again will
pull the rate vector back into[T ∗

0 , T ∗
1 ]. When overlay

takes its turn, it will increased(1,2) and drive the rate
vector back toO∗. The interaction continues andd(1,2)

keeps increasing until all of the overlay traffic is moved
to logical path(1, 2). The game converges as in the first
case.

Again, we see from this proof that the objective
misalignment between TE and overlay causes traffic
oscillations on network links. In addition, the driving
force for this process to converge to a Nash equilibrium
is that TE can always map a set of logical link loads

required by overlay to a physical flow assignment. This
mapping of logical links to physical paths by TE plays a
key role in resolving the routing conflicts at logical and
physical levels. However, this mapping is network topol-
ogy dependent, it is difficult to draw general conclusions
for arbitrary network topologies.

V. I MPACT OF OVERLAY ROUTING ON UNDERLAY

NETWORK

The existence and stability of Nash equilibria are
much more difficult to establish for general network
topologies and traffic demand patterns. And, even if a
Nash equilibrium exists, the interaction process may not
converge to it, as will be shown in our experiments.
A more important question we want to answer is how
the selfish behavior of overlay routing influences the
performance of TE in this game. In this section, we prove
that TE’s performance will never be improved in this
Nash routing game. Various experimental results on a 9-
node network given in [7], and a 14-node tier-1 POP
network in [18] are presented to demonstrate overlay
routing’s impact on the underlay network’s performance.
Similar to the inefficient NEP in Section IV-A, we
identify in our experiments some case where the routing
interaction is inefficient for overlay, i.e., overlay’s cost
increases as the iterative process proceeds even though
it plays optimally based on TE’s routing at each round.

A. Overlay Routing’s Impact on the Cost of TE

While overlay routing aims at improving the perfor-
mance of overlay traffic, the improvement comes at the
cost of degrading the performance of underlay traffic.
In addition, if we assume TE can perfectly implement
the optimal solution, overlay routing cannot improve the
overall network performance. In many cases, overlay



routing increases the network cost that TE tries to
minimize.

Base cost of TE.The base costof TE refers to the
optimal cost achieved when overlay simply provides
its demand matrix to TE without making any routing
decisions on the overlay level, i.e.,d

(s,t)
overlay = d(s′,t′).

Theorem 3:Overlay routing never improves TE’s per-
formance.

Proof: We compare the network cost with
and without overlay routing. LetPO be the set
of source-destination pairs of overlay demands and
{D

(s′,t′)
O , (s′, t′) ∈ PO} the overlay demand vector.

Without overlay routing, TE will take overlay demand
and underlay demand directly as its overall physical
demand:

d(s,t) =

{

D
(s′,t′)
O + d

(s,t)
under (s′, t′) ∈ PO

d
(s,t)
under (s′, t′) 6∈ PO

(21)

Then TE’s optimal set of routes{v̄(s,t)
a } produces the

minimum cost over all feasible sets of routes under
constraint (2), i.e., all{v(s,t)

a } which satisfy flow con-
servation and implement all TE demand (21).

Overlay can assign traffic between any overlay de-
mand pair{(s′, t′) ∈ PO} on all associated logical paths
{p ∈ P (s′,t′)}. The traffic demand seen by TE can be
calculated as:

d(s,t) =







d
(s,t)
under+

∑

(i′,j′,p)

δ
(s′,t′)
p h

(i′,j′)
p (s′, t′) ∈ E′

d
(s,t)
under (s′, t′) 6∈ E′

(22)

Any set of TE routes{ṽ(s,t)
a } (and consequently{f̃ (s,t)

a })
based on any set of overlay routes{h(s′,t′)

p , (s′, t′) ∈
PO, p ∈ P (s′,t′)} must implement TE demand as de-
scribed in (22). At the same time, we calculate the
amount of traffic which is from overlay demand pair
(s′, t′) and is placed on each physical link as:

v̂over(s′,t′)
a =

∑

p∈P (s′,t′)

h(s′,t′)
p · (

∑

(i′,j′)∈E′

δ(i′,j′)
p f̃ (i,j)

a ) (23)

Based on (23), we construct TE link flow routes

v̂(s,t)
a =

{

f̃
(s,t)
a d

(s,t)
under+ v

over(s′,t′)
a (s′, t′) ∈ PO

f̃
(s,t)
a d

(s,t)
under (s′, t′) 6∈ PO

(24)

Here {v̂
(s,t)
a } accounts for both underlay and over-

lay traffic demands in the absence of overlay rout-
ing as described in (21). Therefore,JTE({v̂

(s,t)
a }) ≥

JTE({v̄
(s,t)
a }). At the same time, the aggregate traffic

rate vector on all physical links{l̂a} under {v̂(s,t)
a } is

the same as the link rate vector{l̃a} under {ṽ(s,t)
a }

with overlay routing. Since link cost is only a func-
tion of its aggregate rate, we haveJTE({ṽ

(s,t)
a }) =

JTE({v̂
(s,t)
a }) ≥ JTE({v̄

(s,t)
a }).

B. Experimental Study

To verify our analysis, we performed extensive ex-
periments on different network topologies. Due to page
limits, we report two sets of experiments here. In our
experiments, we solve overlay and TE’s optimization
problem numerically. Following a similar approach in
[4], we use a piece-wise linear version of the non-
linear programming formulations of TE and overlay
optimizers defined in (1) and (3) respectively. We then
use lp solve[24] to solve these linear programming
problems.

1) TE cost change as a function of the percentage
of overlay traffic: We first present experimental results
for the 9-node example ([7]) in Figure 2. Three overlay
nodes are considered:1, 4, 7. They may have demands
to each other, or to other nodes not in the overlay. In any
case, each overlay node can forward traffic originating
from any other overlay node. There are24 possible over-
lay demand pairs in this example. We randomly choose
70% of them. We use a bimodal traffic matrix ([18])
generated by a mixture of two Gaussians, one with (µ1 =
1.5, σ1 = 0.2), and the second with (µ2 = 4, σ2 = 0.2).
These means and standard deviations are proportional
to those used in [18]. We set the overlay demands to
be 60% of the total traffic demands. Specifically, we
divided demand on each Source-Destination pair into two
parts: one is overlay; the other one is underlying. Overlay
demands takes60% of the total demand. To prevent flows
from exceeding link capacities, we set all of the link
capacities to be18. We also perform experiments when
link capacities are randomly distributed. For brevity, we
do not present results for the random link capacity case
here. Heterogeneous link capacity cases can be seen in
experiments with a 14-node tier-1 ISP network.

Initially, overlay demand pairs are given to TE without
any forwarding among overlay nodes, achieving thebase
cost of TE. We let TE begin the interaction game. TE
takes a turn at every odd step, and overlay takes a turn
at every even step. We let this interaction process run
for 100 steps. Taking the cost at step1 as the baseline,
we calculate the percentage of deviation from it at the
following steps. These percentages of deviation of both
TE and overlay are plotted in Figure 6.

We observe from these graphs that there are large
oscillations in both players’ costs during the observed
time interval (this game does not converge). At each even
step, overlay’s response causes an increase to TE’s cost,
and then TE reacts optimally to reduce its cost at the
following odd step. Overlay does the same thing. On
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Fig. 7. Cost change of TE and overlay. Percentage of deviation
from cost at step 1. Nine-node network. BWs of all links are 18.
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Fig. 6. Cost change of TE and overlay. Percentage of deviation from
cost at step 1 at each step in the interaction process.

average, overlay’s cost decreases1% in this interaction
process, but TE’s cost increases35.9% as expected.

We are interested in how the cost change of TE
varies as the percentage of overlay traffic varies. Our
conjecture is as follows. If there is little overlay traffic,
then overlay’s routing decisions will have little influence
on TE’s cost. If all traffic consists of overlay traffic, then
overlay’s routing decision would be the same as that of
TE, so, the interaction process will always converge, and
TE’s cost will not be affected. If there is some significant
fraction of overlay traffic, e.g.50%, TE’s cost increase

will be maximal.
In Figure 7, we plot the cost deviation percentage

for different overlay traffic percentages. Our conjecture
is verified through these experiments. In addition, we
notice that, when overlay demand is approximately half
of total network demand, not only is the average cost
increase to TE the largest, but also the variation range
is the largest. Larger variations in TE cost reflect greater
oscillations in the interaction process, which is clearly
harmful to TE.

Another interesting observation is that, if we increase
link capacities, the decrease in overlay cost by playing
Nash game is not as large as that when link capacities are
smaller. This can be seen by comparing Figure 7 with
Figure 8. Furthermore, TE’s cost is not affected much
by overlay’s selfish behavior if link capacities increase.
Intuitively speaking, this is because TE optimizer has
more freedom to allocate traffic to achieve the same
minimal cost when link capacities are large.

2) Experiments with a tier-1 ISP network:We also
perform extensive experiments on a 14-node tier-1 POP
network described in [18]. We invert the weights of links
to obtain link capacities. This is based on the assumption
that weights are set by turning around capacities as
recommended by Cisco. Depending on the traffic matrix
used, we multiply these capacities by a certain factor
to make sure that, for the traffic matrix we use, no
link capacity is exceeded by traffic on that link. Our
experimental results confirm our hypotheses presented
in previous sections. We present the results of two
experiments here.

In these two experiments, we use a bimodal traffic
matrix for underlay traffic which is the same as used
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Fig. 9. Cost change of TE and overlay. Percentage of deviation
from cost at step 1. A tier-1 ISP network. Experiment setting 1.
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Fig. 10. Cost change of TE and overlay. Percentage of deviation
from cost at step 1. A tier-1 ISP network. Experiment setting 2.

in the earlier nine-node experiments. We choose three
nodes6, 10, 11 as overlay nodes, and randomly choose
32 overlay demand pairs among all possible39 overlay
demand pairs. We add an additionalp% overlay de-
mands. Specifically, for a node pair that is chosen as
an overlay demand pair, if the underlay traffic demand
is d, we addd · p% overlay traffic.

In one experiment, we choosep = 50. Thus, the total
overlay traffic among all network traffic is8.1%. We run
this experiment100 steps and cost oscillations for TE
and overlay during these100 steps is plotted in Figure 9.
The mean cost increase for TE is3.5%, and the mean
cost decrease for overlay is52.1%. Since the percentage
of overlay traffic is small, the cost increase to TE is
not big, but still, this small percentage of overlay causes
significant oscillations to TE’s cost. The highest increase
to TE’s cost can reach12%. In another experiment, we
choosep = 68. Thus, the total overlay traffic among all
network traffic is10.8%. We run this experiment 100
steps. The results are plotted in Figure 10. The mean
cost increase for TE is3%. We observe an increasing
trend of overlay cost in these100 steps. At the final step,
even after overlay’s optimization, the cost of overlay
is 3% higher than the cost in the very first step when
overlay does nothing to optimize its routes. The results
of this experiment are consistent with our analysis on
inefficient NEP in Section IV-A. This experiment verifies
our counter-intuitive conclusion that it isnotalways good
for an overlay to optimize its routes based on TE’s routes
at each step. We will briefly discuss aStackelberg game
strategy for overlay to address this in the next section.

VI. CONCLUSIONS ANDFUTURE WORK

Using game-theoretic models, we provide insights into
the fundamental problem on the interaction between
the overlay routing optimizer and Traffic Engineering
optimizer. Our analytical results for a simple network
example provides us with a clear understanding of the
existence, uniqueness and stability of Nash equilibrium
for this interaction game. We demonstrate, both analyti-
cally and experimentally, that the objective misalignment
between overlay and TE triggers oscillations in their
routes. The selfish behavior of overlay routing optimizer
degrades the performance of regular users and the un-
derlay network as a whole. Large oscillations in the
TE and overlay costs can be expected in this routing
interaction process when overlay accounts for a non-
negligible portion of the total network traffic. Even more
surprisingly, overlay cost can increase even if overlay
optimizes its routing at each iteration, which is not
only explained clearly in our analysis of an example
network, but also observed in our experiments in a tier-
1 ISP network. Even though this observation seems
counter-intuitive at first thought, it actually points out
the inefficiency of NEP in general.

We believe our work provides a starting point in the
search for a complete understanding of the interaction
between overlay routing and traffic engineering. Our
analytical and experimental studies have identified a rich
set of research problems to be investigated. Future work
can be pursued in the following directions:
I. In this paper, we assume TE and overlay have equal
status and play a Nash game at the same frequency. In
current network operation, TE usually happens at a much
slower time-scale than that of overlay. This misalignment



of time-scale deserves more investigation. Another situ-
ation of interest to us is when one player can predict
the other player’s response (equivalent to knowing the
other player’s optimization algorithm.) In this case, the
player who has this information and can move faster may
choose to play a Stackelberg game ([25], [19]) against
the other player (follower.) For example, if an overlay
optimizer knows the optimization algorithm used by TE
optimizer, then it can predict TE’s new physical routings
in response to overlay’s logical level routing decisions,
and then choose an optimal set of logical level routings
in consideration of TE’s potential responses. We can
model this interaction as astatic Stackelberg routing
game[25]. Some preliminary results on this type of game
are reported in [17].
II. A natural extension of our work in this paper is the
interaction between multiple overlays and TE. This is a
much harder problem. For example, we can assume TE
does not change its routings during the game playing
process betweenN overlays. We can think of each
overlay as a single user who controls a non-negligible
amount of traffic and tries to minimize its own group’s
average cost. Then, this problem is similar to the routing
games studied in [12] and [13]. However, there is a
significant difference. In [12] and [13], all users work
at the samephysical level, and a link’s cost is only a
function of load on this link. But in our case, all users
work at thelogical level, and multiple logical links may
share the same physical link, so, the cost of a single
logical link might be coupled with the cost of other
logical links. This logical link loadcoupling makes the
existence of Nash equilibrium problem dependent (on
network topology, traffic demand patterns.) Furthermore,
even if a Nash equilibrium exists for a certain network
routing game, the dynamic process of playing a Nash
game may not be able to converge to that point.
III. One basic assumption of our models is that TE
and overlay have the same frequency and timing of
adjusting strategies. But frequency and timing exert an
important influence on the structure on this routing
game. For example, if overlay knows the starting time
of TE’s optimization, it can take advantage by doing its
optimization immediately after TE’s turn. In practice, an
overlay most likely will not have all of the necessary
information to play with TE. Thus, the estimation of
useful information and choice of good strategies for both
TE and an overlay optimizer are also important topics.
The interaction between overlay routing and the policy
based inter-AS routing is another interesting problem to
look into.
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VII. A PPENDIX

A. Global Stability of the NEP of the Routing game in
Section IV-A

Proof: Let x denote overlay demand on the logical
path (1, 2). When TE takes turn, it updates routing
fraction f

(1,2)
〈1,2〉 andf

(1,3)
〈1,2〉 as a function ofx as described

in (10) and (11). Sinced(1,2)
under = 0, andd(1′,3′) < l∗〈1,2〉,

we always havef (1,2)
〈1,2〉 = 1 and f

(1,3)
〈1,2〉 decreasing with

x. Consequently, the available bandwidth{C̃〈1,2〉, C̃〈1,3〉}
can be recalculated according to (13), (14). It is easy
to show C̃〈1,2〉 (C̃〈1,3〉) is an increasing (decreasing)
function of x. Therefore there is only one solutionx0

satisfying

C̃〈1,2〉(x)

C〈1,2〉
=

C̃〈1,3〉(x)

C〈1,3〉
.

As discussed in Section IV-A,x0 is the only NEP.
Let x(k) denote overlay demand on the logical path

(1, 2) after thekth overlay optimization. In order to prove
that the NEPx0 is globally stable, it is sufficient to show
that if x(k) < x0, thenx(k) < x(k+1) < x0; if x(k) >
x0, then x(k) > x(k + 1) > x0. We prove here for
x(k) < x0 only, the case forx(k) > x0 can be proved
similarly.

First we want to show ifx(k) < x0, thenx(k + 1) >
x(k). Let’s construct a function of{x(k), x} as

g(x(k), x) =
(C̃〈1,2〉 − f

(1,2)
〈1,2〉x − f

(1,3)
〈1,2〉 (d

(1,3)overlay − x))2

(C̃〈1,3〉 − f
(1,2)
〈1,3〉x − f

(1,3)
〈1,3〉 (d

(1,3)overlay − x))2
,

where{C̃〈·〉, f
(·)
〈·〉 } are functions ofx(k). Since we have

f
(1,2)
〈1,2〉 = 1 ≥ f

(1,3)
〈1,2〉 , and f

(1,2)
〈1,3〉 = 0, it is easy to

verify that for any fixedx(k), g(x(k), x) is a decreasing
function of x. After TE’s optimization and before the
k + 1th round overlay optimization, the overlay routing
variable isx(k) and the traffic rate vector on physical
links is TE’s optimal solution. Based on (9), we have
g(x(k), x(k)) =

C〈1,2〉

C〈1,3〉
. After overlay’s optimization,

x(k + 1) satisfies (16). Therefore,g(x(k), x(k + 1)) =
C̃〈1,2〉(xk)

C̃〈1,3〉(xk)
. Since C̃〈1,2〉(x)

C̃〈1,3〉(x)
is an increasing function ofx,

C̃〈1,2〉(xk)

C̃〈1,3〉(xk)
<

C̃〈1,2〉(x0)

C̃〈1,3〉(x0)
=

C〈1,2〉

C〈1,3〉
= g(x(k), x(k)).

Therefore,g(x(k), x(k +1)) < g(x(k), x(k)) andx(k +
1) > x(k).

Now we have to show ifx(k) < x0, then x(k +
1) < x0. Since C̃〈1,2〉 is increasing withx, we have
C̃〈1,2〉(x0) > C̃〈1,2〉(x(k)). Let loverlay

〈1,3〉 denote aggregate
overlay traffic on physical link〈1, 3〉. After overlay’s
optimization as in (12),l∗overlay

〈1,3〉 (x0) < l∗overlay

〈1,3〉 (x(k)).
And we have

l∗overlay

〈1,3〉 (x(k)) = (d(1,3)overlay − x(k + 1))f
(1,3)
〈1,3〉 (x(k))

l∗overlay

〈1,3〉 (x0) = (d(1,3)overlay − x0)f
(1,3)
〈1,3〉 (x0).

Since f
(1,3)
〈1,3〉 (x) is increasing with x, f

(1,3)
〈1,3〉 (x0) >

f
(1,3)
〈1,3〉 (x(k)), therefore we must havex(k + 1) < x0.


