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Abstract—In this paper, we study the interaction be- Providers (ISPs) are using traffic engineering (TE) to
tween overlay routing and Traffic Engineering (TE) in provide better and more robust intra-domain routing.
a single Autonomous System (AS). We formulate this  There is a misalignment between the objectives of
interaction as a two-player non-cooperative non-zero sum overlay routing and TE routing algorithms. An overlay
game, where the overlay tries to minimize the delay of its is interested in the optimal routes for its own group

traffic and the TE’s objective is to minimize network cost. f h TE is int ted in i . th
We study a Nash routing game with best-reply dynamics, O USers whereas IS Interested in improving the

in which the overlay and TE have equal status, and take whole network performance by considering all users

turns to compute their optimal strategies based on the including both overlay and non-overlay (or underlay)
response of the other player in the previous round. We users. It is well-known that counter-intuitive behavior

prove the existence, uniqueness and global stability of can arise when individual agents conduct selfish opti-
Nash equilibrium point (NEP) for a simple network. For mizations [6]. Conflicts in their objective functions re-
general networks, we show that the selfish behavior of an gy|ts in system performance degradation. Overlay routing
overlay can cause huge cost increases ar_1d os_qllatlons tqg rapidly being employed by a wide variety of emerging
the whole network. Even worse, we have identified Cases’applications. For example, Akamai runs a large overlay

both analytically and experimentally, where the overlay’s . . .
cost increases as the Nash routing game proceeds eVe,gletwork for high volume content distribution. This trend

though the overlay plays optimally based on TE’s routing N appl_ications_ demands a fundamenta_ll understanding
at each round. Experiments are performed to verify our Of the interaction between overlay routing and TE. In
analysis. this paper, we formally study the interaction between

the routing decisions made by an overlay network and
MPLS Traffic Engineering within a single ISP. Our work
THERE are two recent trends in network routings motivated in part by the work of Qiet al[7], in which
research. One is overlay routing, and the second is Trafff@ interaction between selfish overlay routing and TE is
Engineering (TE). Overlay routinge(g., Detour [1], brought up.
RON [2]) allows end hosts to choose routes by them- Overlay users view dogical network. Two overlay
selves. It occurs at the application level, where traffrtodes are connected byagical link. An overlay routing
is routed by application level routers (computers). Thedgorithm allocate overlay demands on logical links
logical paths and links of an overlay lie on top obased on current logical link delays. The traffic flow on
physical paths set by intra-domaia.g., OSPF, MPLS, a logical link between two overlay nodes is interpreted
IS-IS) and inter-domain routing protocole.§., BGP). by TE as a traffic demand between these two nodes. TE
It has been shown that these overlay routing schemntages as input the traffic demand matrix (each demand
are effective in dealing with some of the deficiencies ipair includes demand from the underlay traffic and/or
today’s IP routing structure ([1], [2], [3]). On the othedemand from overlay traffic), and computes a set of
hand, as pointed out by [4] and [5], Internet Servicghysical level routes using an algorithm such as that

I. INTRODUCTION



described in [4] to minimize overall network cost or
to minimize maximum link utilization. Figure 1 shows
conceptually how the overlay and TE interact with each «
other. Since both the overlay and TE optimize their

overlay demands
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Fig. 1. Interaction between overlay optimizer and Traffic Engineer- o
ing optimizer.

routes over time, the interaction between their decisions
can be understood as an iterative process. Throughout
this process, TE and the overlay modify each other's
the input in turn. Overlay routing decisions result in the
logical link traffic flows, which are in turn interpreted
as traffic demands by the TE algorithm. On the other
hand, TE changes the delays of logical links by adjusting
the actual physical-level routes of the overlay traffic,
therefore influence future routing decisions made by the
overlay.

In this paper, we focus on theynamics of this
interaction process. We formally model this interaction
as anon-cooperative non-zero sum two player gaiitee
overlay and the TE algorithm are essentially two players
with different optimization objectives. From now on, we
refer to an overlay routing optimizer asverlay, and
refer to a TE routing optimizer aBE. In the interaction

the routing interaction between an overlay and a
underlay network.

Based on the framework, we thoroughly study
an illustrative example. We prove the existence,
uniqueness and global stability of Nash equilib-
rium. Mathematical analysis enables us to gain a
fundamental understanding and subtle insights of
the intricate interaction process. In particular, we
demonstrate how the misalignment between overlay
and TE's objective function triggers oscillations in
their routes. We also show that the mapping from
logical links to physical paths alleviates the conflict
between TE and overlay, and helps them to reach
equilibrium.

For the illustrative example, we identify scenarios
where the Nash equilibrium is not Pareto effi-
cient [8]. The overlay’s cost increases when it plays
a best-reply Nash routing game with TE. We also
observed this phenomenon in experiments with a
14-node tier-1 ISP topology. Thus, it may not be
wise for an overlay to always optimize its routes
each time that TE recalculates its physical routes,
because in the long run, overlay’s cost may increase.
This observation is of practical importance to an
overlay routing structure, even though it is not
surprising from a game-theoretic point of view.
Analytical results are verified by experiments on
real network topologies. In those experiments, TE’s
costs are increased a lot in the interaction with
overlay, and the cost increase of TE is a function of
the percentage of overlay traffic. If overlay traffic
corresponds to approximately half of the total traf-
fic, then the overlay’s influence on TE performance
achieves the largest.

process, or best-reply dynamics, each player adjusts itSThe rest of the paper is organized as follows. Section Il

response optimally based on the other player's decisiofiSc ripes related work. In Section 1, we formally model

during the previous round. Given the misalignment _b?ﬁe interaction process as a two-person non-cooperative
tween the objectives of overlay and TE, we ask questloHan_Zero sum game. A Nash routing game on a simple

such as:does a Nash equilibrium exist in this gametopology is investigated in Section IV. Section V is

If a Nasﬁ equilibrium ex_|_sts., IS it unique: H.OW abgu evoted to experimental results with focus on the effect
the stability of Nash equilibriums? Does the interactiof)c overlay routing on the performance of underlay net-

ilibrium? ) i .
process always converge to a Nash equilibrium? Wh\%torks. We conclude the paper in Section VI and discuss
effects on the performance of TE and overlay can *E)%ssible directions for future work

caused by this interaction process?
The key contributions are summarized as follows: .

« We formally define the optimization problems for Noncooperative games in the context of routing have
overlay routing and TE, and formulate their inbeen studied in the areas of transportation networks for
teraction as a non-cooperative non-zero sum tveolong time. In that framework, each user controls just
player game. To the best of our knowledge, thianinfinitesimally small portiorof the network flow, and
is the first formal framework proposed to studyries to minimize its own delay or cost. Dafermos and

RELATED WORK



Sparrow [9] show that a simple transformation of the coéf/’t/), which assumes valukif logical link (s’,t) is on
function can make the routing game a standard netwddgical pathp, and0 otherwise. In Figure 2, four nodes
optimization problem called theser equilibriummodel.
On the other hand, aystem optimummodel has the

I o overl k
objective to minimize the overall delay of the whole eriay netwer

network. In the area of computer networks, thser logical path 1: 1"~ 4' — ¢ L9
equilibrium model is called selfish routing ([7], [10], hﬁ/? > ~
[11]) Orda [12] and Korilis [13] studied a model in a) logical link (4,9
which users control aon-negligible portionof flow. - WD
Orda [12] investigates the existence and uniqueness of a R &zl hgfw

— . . . . () 3
Nash equilibrium in a routing game in which each user ‘_:fl_:]?s

4

attempts to optimize its own performance by controlling a9
its own portion of traffic. In [13], a central manager is 1'%
introduced into the model. Other related work can be
seen in [14] and [15].

Our work differs from much of previous selfish routing
studies ([7], [16], [10]) in that each user or player
controls anon-negligible portionof flow in our work.
Our work also differs from [12] and [13] in the following Fig. 2. An example overlay network.
ways. In our work, the two players (overlay and TE) have

different views of the network. Overlay has a logical

view of the network, whereas TE has a physical view 4: 7,9 form an overlay network. There are three logical

1 /. / / /.
of the network. In addition, each player's decision ca'?ﬁ,‘s‘thS connecting overlay node to 9" 1" — 4" — 97

change the input for the other player. The interaction — 9,1 =7 =9

between selfish overlay routing and TE is first brought In the logical graphG’, an overlay routing algorithm

up in [7]. Two experimental studies were given to showallocates traffic demand between overlay node pairs onto

the interaction between overlay and MPLS TE, and tisifferent logical paths. Let*"*) be the traffic demand

interaction between overlay and OSPF TE. Our woifkom s’ to ¢/, P(*"*) be the set of logical paths frosi

starts from this base to formally study this interaction de ¢, and hf/’t') be the flow rate on logical path €

a noncooperative game. PG ) Given {dt), P6HE) W' ' € V'), an overlay

routing decision can be represented{mis"t/),v.s’,t’ €

V' ,¥p € P&}, For the previous example, the over-
In this section, we formally define the interactioday routing algorithm finds{hgl/’gl)jhgl’g/),hgll’gl)} to

between TE and overlay routing. implement the single demand paifr'9").

A. Physical v.s. Logical Network View

8
>®

.
3 o 7 physical link (7,9)

Physi cal network

I[Il. M ODELS OFINTERACTION

Overlay traffic on logical link(i’, ;') will be physically
On top of an underlay network, a group of nodes formsuted from node to j by TE. At the same time, TE
an overlay network and all the nodes forward traffic fagilso accounts for traffic demands from normal underlay
each other. At the application level, the overlay nodesers. Therefore, the TE demand on a physical node pair
view alogical network. We us&r = (V, E) to denote an (s,¢) can be expressed as
underlay network and”’ = (V’, E’) to denote an overlay O N C)
network on top ofG. In G, we usei’ to represent the overlay  “under
overlay node built upon nodein the underlay physical where dgf,gr),ay is the demand due to the overlay traffic

graphG. Overlay node!’ is connected tg” by alogical on logical link (s/,#), and d) is the demand from

link (¢',5"), which corresponds to a physical path fronthe underlay users. In Figure 2, overlay traffic on logical

itojin G.'In G’ alogical pathp is an ordered set path 1/ — 4’ — 9’ will %enerate two demands for TE:

of logical links connecting one overlay node to anothefl.4) _ ;(4.9) _ ;1.9
overlay node. We introduce the mapping coefficient™Ve"® overy
' "In the physical graphi, TE allocates all physical

. 1 .
LIf TE allows a single demand pair to use multiple paths, traffanﬁ'C demands{d(s )>v(f%)t € V} to all of the_ physical
on a logical link will be distributed among multiple physical pathslinks {a € E}. Let f,” denote the fraction of TE



(GNY .~ logical link.

7 minimizes network cost:
Pt :  Set of logical paths froms’ to ¢'.

i Z fU(S’t)
FISE . Path mapping coefficient. — oD @
P . Overlay demand on paifs’, ). min J™= = Z o ) @
S : Overlay flow on logical patfp. ve acE Ya (;)Ua
ds? :  TE Demand on physical node pdis, t). . . ' . .
(,) : . subject to physical level flow conservation constraints
Qoveriay :  TE demand due to overlay flow on logical
link (s',¢) det oy =t,
dle) :  TE demand due to underlay traffic. Z vl — Z v = —dsh oy =5 (2)
d-t : Demand of TE to destination wd(@)—y ais(@)=y 0 otherwise
a = (i,7) . physical linka connecting nodé to ;.
Ca . Capacity of a physical link. Yy € V,V(s,t) € VxV,wheres(a) andd(a) denote the
e + Link traffic on a physical linka. source node and destination node of linkespectively.
. Fraction ?f TE demand**) on link a. On the other hand, the overlay routing algorithm
s, . s,t . ) . ; v}
va ; E:g"" gl;dt'ne dotrc‘t"g: b determines a logical path flow allocatidgi.® "} that
Ya : W dest inx a. minimizes the average delay experienced by overlay
TABLE | users. Overlay users can choose their routes indepen-
NOTATIONS dently by probing the underlay network, or a centralized

entity can calculate routes for all overlay users. Ideally,
if the centralized overlay routing entity knows exactly
demandd*") on physical linka. > Then the traffic rate the physical network topology, traffic demand and TE’s
of d(*!) assigned to physical link is va(f’t) :fgs’“d(&t). routing, optimal overlay routing can be obtained by

The total traffic rate on link: is solving the following non-linear optimization problem:
s,t s,t
lo= 32w = 3L (oghay + dinged) 51 gy
(s,t) (s,t) r(n/in/)J""e”ay: > e s ©®
All notations used in our formulations are summarized”» = @ Ca— (;){fa (dovertay + dunded }
in Table I. '

subject to logical level flow conservation constraints

B. Traffic Engineering v.s. Overlay Routing >0 ) = dE R > 0,9(s ) e VI X V.

) (s7,t")
We now formulate the operations of TE and over—pep (s,8)

lay routing. TE and overlay routing each individually The overlay demand;., in (3) can be calculated as
optimize some performance metric, such as delay. TE (st)  _ Z () 1, (s',t)

. . doverlay_ 510 hp
cares about network-wide performance, while overlay o

only cares about the performance of overlay users. Werlay source routing can be formulated similarly,

will observe in the following sections that this objeCinerested users are referred to a technical report for
tive misalignment between optimizations at logical angxtails [17].

physical level leads to bad interactions between TE afd Non-cooperative Non-zero Sum Two-player Game

overlay routing. _ Based on the above formulations, TE and overlay
We adopt congestion delay as the network perfofting are coupled through the mapping from the logical
mance metric and use the//M/1 delay formula 10 o e path to physical level links. They both optimize

calculate link cost [4]3 For a physical link with capacity ,, . N . : , )
C.,, if its traffic rate isl,, the mean delay experienced b>;helr objective functions using their own strategies. We

a single packet isc—lfl . Therefore, the total cost seerf@" formulate thlelr interaction as a non-cooperative non-
by TE on this link isclal . Given the demand matrix 260 SUm two-player game. .

(s.0) o ta . . The strategy used by overlay is represented by a vector
{d\®Y Vs, t € V}, the goal of TE is to choose a physical . . .
link fi I _ (5,) valentivl 501 th of logical link flows. A strategy of overlay is one flow
ink flow allocation{va "}, or equivalently{ fa™"}, that ., nfiaration on logical links for all overlay demand
pairs:

2TE doesn't distinguish between overlay and underlay traffic, and d(s,t) _ ( d(svt) ) (4)
uses the same routing fractigid®* for all traffic from s to ¢ overlay — 17 Zoverlay **

3 . . iy

In order to focus on the relationships between sets of routes gahoa|| thatd(*'t') denotes overlay demand, bdf’t)|
network congestion (or costs), we do not consider propagation delaa/s . ’ . veriay
in these examples. The case with propagation delays are alsodgiotes overlay traffic flow, which are interpreted as

interests to our future research. demands by TE. As a comparison, the demand seen by




TE that comes from underlay traffic is denotedclﬁ‘;]‘f%lﬁ)er IV. NASH ROUTING GAME
The strategy spacE*'*"® of an overlay network is the | this section, we explore the structure of the the

set of all feasible flow configurations on logical links Ofreviously defined Nash routing game through an il-
paths. _ _ lustrative example. Mathematical analysis enables us to
A strategy of TE is represented by one feasible floyain a fundamental understanding and subtle insights
configuration on the physical links for all TE demangt the intricate interaction process. Two types of over-
pairs: lay routing schemes are considered, centralized optimal
fTE— (.., f<(:,;>)’ ) (5) routing and selfish source routing. We analy_tically study
’ the best-reply dynamics of the game-playing process.
The strategy spacE'E of TE is the set of all feasible In particular, the existence, convergence and stability of
flow configurations on physical links. Nash equilibrium (NEP) are established for this example.
A strategy profile is7 = (fTE7d$gr)la)' The cost |nterestingly, even for this simple topology, we |_dent_|f_y
function of TE is./TE(fTE 4 ) and the cost function cases where the Nash game converges to an inefficient
' o oTE ’(S%\)/e”ay ~~ NEP for overlay. In other words, overlay’s performance
of overlay isJ™*"™(f'=, dg e q,,). We have the following degrades as the game proceeds. The best-reply strategy is
definition of Nash equilibriumfor this routing game.  not the best strategy for overlay to use when interacting
Nash Equilibrium A strategy profiley* is a Nash with TE.
equilibrium if, for both players, TE and overlay, We use the three node topology illustrated in Figure
JTE(ETE, d((;,etr)lzy) < JTE(£TE, df,f,’:r%;y), 3 and assume that the bandwidth on two physical links,
TE _ TE between node and 3, is large enough such that delay
vE'E el (6) : . , :
overlay e TE* 4(s.0) on both I!nks negligible. Wlthout Ioss of gengrallty, we
< JOEIET dovenay)s assume link(1,2) has a higher capacity than lin, 3).
vd®t) o poverlay @) Note, TE maintains a physical view of the network and

| >
overay overlay has a logical view of the network. Therefore,

For a TE optimizer, ov_erlay’s response is observeq Fb%;ical link (1/,2') is actually mapped onto two physical
part of the demand matrix. Since TE knows the physic Eths 1 - 2andl — 3 — 9. We assume the

network’s topology z_:md aII. link capacities, _and if w nly overlay demand is from nodé to 3'. We first
assume TE can estimate its demand matrix accurately
([18]), then TE can compute its optimal strategy. As

* b))%
J overlay(fTE ) df)f/er)lay)

logical link (1',2")

for the implementation, if TE uses MPLS, it can ex- aver! ay "ﬂpf to two physical paths
actly realize its strategy; if TE uses OSPF, it can only derand 2

approximately realize its optimal strategy. However, an et“’*“’):_l> Clj’//”Q‘\\%- logical Ievel
overlay optimizer mayot be able to compute its optimal e LT

strategy because it may not know all of the necessary

: N2
information as mentioned in last section. To gain insights under | ay /O\ physi cal I evel
! 3
1 -—

into the interaction between TE and overlay routing, in demnd |
the following sections, we first assume that overlay has
the necessary information to compute its optimal routes, Fig. 3. Topology of a three-node network.

and model this interaction asNash routing gamé§19].

This assumption is relaxed when we study overlay sourggsume that a centralized entity has all of the information

routing. the situation where overlay only has limitegecessary to calculate the optimal overlay routes. This

information will be discussed in Section VI assumption is relaxed when we study selfish overlay
Our Nash routing game model is @discrete time source routing, where overlay users probe the underlay

model. One basic assumption is that, during its turn, onetwork and choose the shortest logical paths to send

player completes its optimization before the other playéieir traffic.

starts. It could be true of course that a player starts its _ ) ,

turn even when the other player has not yet finished. e Centralized Optimal Overlay Routing

are not concerned with such an interaction process inSince link costs between nod2sind3 are negligible,

this paper. A similar process is studied in [20], [21]TE’s task is to allocate physical traffic demadid? and

[22], and [23]. d3) onto link (1,2) and (1,3). For this example, the



optimal link flow aIIocation{vg’;),vﬁ’%)} is not unique. A2 >0 andh(13) > 0 is :

However, the optimal link rate vectofl; o, .3} is 0 jovertay _ _ 0 joverlay (15)
unique and is the solution to: - ont2) On(13)
l I which is equivalent to
min JTE = N L) C
{lazylas Caz —laz  Cuz —lag (1,2)
. A 1,2 1,3
subject to . g | (Crrzy — f<(1’2)>h(1,2) _ f<(172>)h(173))2
ligy +lag = dew;d)er + di(u;dlr +d%,(8) Clg) (16)
The constraint is due to the fact that TE can arbitrarily (é<1’3> _ ffi’;)h(lv?) _ f<(11”§’>)h(173))2

allocated:?) andd) onto links(1,2) and(1, 3). This
formulation also suggests that for this example, T _ )
optimal cost is invariant to overlay’s routing. This isof link rate is: - ~
because we assume the link costs between Qaaled 3 Cu) _ Cus) (17)
are negligible. (Cug —la2)?  (Cug —lag)?
Existence of NEP Equation (17) and (9) demonstrate
The necessary condition for the TE optimum ithe misalignment of the objectives of TE and overlay.

Etggether with (13), (14), the necessary condition in terms

ey J"P = g2 J"F, which translates into It results in oscillations of routes at both logical and
Cliay Cous physical levels. To reach any NEP with!2). (1:3) > 0,
(Crra —7l<1 )2 - (Cira _’l<1 5)? ) we must haveg% = % It is easily satisfied for the

.. 1,2) i .
Based on (8) and (9), TE can calculate its optimal trafff&'v'al case \(vhen there is no underlay traffic. We have
- i Uity i . shown that ifd’2) =0, d% > 0 andd? <
as&gnmen{lj1 2 11 3>}. To avoid ambiguity in the link “under ' Qunder = everlay
flow allocation, we force TE to route traffic directly ad/ 2. there exists one unique NEP with!2) . p(13) >
much as possible. This is consistent with actual practioe On the other hand, % > 0 andd*® = o,

. . . - p under under
where the bandwidth on links between nddand3 is Ca. ”; giiii the possible NEPs are on the boundary,

e , Ciiz
always finite. So we have: i.é.’, R12) =0 or K13 = 0. Since the delay on logical
f(1,2) L d? < l?l,Q) (10) path (1,2) is always smaller than on logical path, 3),
(L2) — ;?(11,72‘23 d12) > ) {n(12) = dglvf?}lay,h(lv?’) =0} is the only NEP.
and ’ Characteristics of NEP We are interested in the char-

acteristics of NEP, namely, stability and efficiency (for
either overlay or TE), which are of practical importance.
It is easy to show that those NEPs occurring on the
Overlay divides the demand!*) among the two boundary are stable and give overlay lower cost com-

logical paths. To simplify notation without causing conpared with initial cost. One interesting NEP is identified
fusion, we usé:(1-*) andh(!%) to denote overlay traffic jn the following theorem:

on logical pathl’ — 2’ — 3’ and1’ — 3’ respectively. Theorem 1:1f a2 — 0 and d'3) < [* the
. - <1 2 ]

i) =maz{0, (I, 5, — i3] x d*2)/d9}. @1)

The overlay optimization can be formulated as: under . . ;
¥ op NEP between TE and overlay is unique and globally
in Joverlay P @) 4+ a0 stable, i.e. overlay routing always converges to the NEP
{h<1,g)‘7l,[‘<1,3>} - Cliy — f<(11’22>)h<172) _ f<(11,§>)h(1,3> regardless of its initial routing.
F12,0.2 +’f(173)h(1’3) ’ Proof: See Appendix A. [
+ {1,3) (1,3) (12) One interesting observation is that this NERnisfficient
é _ f(l’Q)h(1’2) _ f(173)h(1’3) f e el o _
(1,3) (1,3) 1,3) or overlay for some initial conditions, namely, over

subject toh(12) 4 p(13) — ¢(1'3), where C/; 5 and lay’s cost at NEP is higher that its initial cost at the

é<173> are available bandwidth for overlay on lirfk, 2) beginning of the interaction process. To illustrate, we

and (1, 3): present results from one experiment. We Sgty) = 1,
N _ @3y _ 413 _
Crroy = Clizy — f<(1122>)d£1n§)w _ fffgfdilrj)w @3) Cus = 0.5,d dyrier = 0.5. Overlay takes

. (19) 41.2) (1.3) {(1.3) its turn at even rounds, TE at odd rounds. We use the
Cusy = Cus) = Fi sy dunder — F137under - (14 Matlab optimization toolbox to solve (8) and (12). We
The necessary condition for an overlay optimum witperformed two experiments with different initial overlay



route: h1:2(0) = d'3); R (0) = 0. Figure 4(a) subject tol;; o) + 1 3 = d1? + d(13). The necessary
shows that in both cases overlay routing converges dendition for the TE's optimal solution i ‘1’<12> =
the NEP. Figure 4(b) shows overlay cost as the Nash,, s,
game proceeds. dlas
It is interesting to observe that for the case whetgi—1: )
h1:2)(0) = d'3), overlay cost actually increases over
rounds even though it tries to minimize its cost at each s
round. This is because after overlay chooses its routes, ‘¢
TE will adjust its routes to minimize the whole network loygs +1p5 = d09
cost. The updated TE routes will increase overlay’s cost. ’ ' lap —lap =Cap - Cags
The interaction between TE and overlay routing is bad [Tf,T*]
for overlay and overlay cost increases until the game ’
converges to its NEP. We observe the same phenomenon
in experiments on a 14-node tier-1 ISP network later.
For the current example, the best strategy for overlay is
to place all of its traffic on logical patfi, 2). This is to
say it maynot be wise for overlay to play a Nash game
with TE. This is consistent to the inefficiency property
of NEP. A Stackelberg routing strategy for overlay will
be discussed in Section VI.

which means% falls into the same region
as é“”. To illustrate, we plot the two-

Cass

§\ B

o lags
Fig. 5. Traffic allocation on two physical link&l, 2) and (1, 3)

dimension link rate vectofl »),l(13} in Figure 5.

' _ We draw vertical lines at; 5y = ;Ci19y,1 < i <
B. Selfish Overlay Source Routing m. Between two adjacent vertical lines— 1 and 7,
dq><1Y2>

In practice, it is difficult to have a centralized entityai,,, — k- Similarly, We draw horizontal lines at
calculate optimal routes for the overlay users. In mo&t.3) = ®iCq3),1 <i<m ar;g between two adjacent
cases, overlay users choose their own routes by probfigfizontal linesj — 1 and j, " = kj. As shown
the underlay network. Based on the TE routes, overl#y Figure 5, the plane is part|t|oned into blocks. Within
users try to move their traffic to the minimum delagach block, the link cost derivatives are constant. Since
logical path. Just as in normal selfish source routing; increases ir, two link cost derivatives are equal only
an equilibrium between competing selfish users will b&hen the link rate vector falls into those shaded blocks
reached if delays on all paths utilized by one user a#ong the diagonal. Therefore, the TE’s optimal solution
equal. For our current example, selfish overlay use¥§t is[17,75], the intersection between the constraint
reach an equilibrium either when the delay on the twiie C'D and the shaded area. The non-uniqueness of the
logical paths are equal or all overlay users shift thelfE optimal solution is due to the piece-wise linear link
traffic to the minimum delay logical path. We assumeost function. As more linear segments used in the piece-
there is no underlay traffic, and TE and overlay takatise linear function, the smaller the shaded area. As
turns in doing optimizations. We prove that a NEP existge size of the linear segments goes to zero, the shaded

and can still be reached when overlay employs selfighea degenerates to the diagonal li8 and TE has a

source routing. unique optimal solutiof™. TE’s optlmal routes are still

For the clarity of the proof, we approximate thé&alculated as in (10), (11) anﬂ<(1 oy > iy 12 ) always.

M/M/1 link cost function by a convex piece-wise lineafl e average delay on logical links can be calculated as:
function [4]: Delay(; o) = f(LQ))Delay<1,2> +(1- f(1 2))Delay1 3 (19)

< (12)
kil + by le [07 Qg - C) DE|ay(173) = f<(11:§>) Delay<1,2) + (1 - f<(1,72)))De|ay<1v3> (20)

Theorem 2:The Nash routing game defined above
kel + b L€ [am-1-C,0), always converges to a NEP.
where the slopé; increases with. As described in (1), Proof: Becausef(l 2) S f ! 2 , the only way to
the objective of TE is to minimize the summation of thenatch the average delays on two logical paths is to match
costs on physical linkgl, 2) and (1, 3): the average delays on physical links 2) and(1, 3). We
min  J'® = ®(Cl19),li19) + ®(Ci13).l1,3) (18) introduce in Figure 5 the Equal Delay Lin€B, where

o(C,1) =
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(a) Overlay routing globally converges to the NEP (b) Overlay cost decreases/increases with two different

initial routings

Fig. 4. Convergence of Routing Game Between Overlay and TE

the rate vector makes the physical delay on ljik2) required by overlay to a physical flow assignment. This
and (1, 3) equal, or equivalently mapping of logical links to physical paths by TE plays a
Caay — gy = Cas — Lo key r_ole in resolving the rOL_Jtlng cor)fllch at logical and

physical levels. However, this mapping is network topol-

1[')h(|an any ra[t)elallocatlor:j 'S IareaEBFD V:"" make ogy dependent, it is difficult to draw general conclusions
ClaY 3 > DeAYy ) and DeRY, s < DeIYuz) N - ¢ o hitrary network topologies.
areaE'GB. Let pointO* be the intersection between line

E B and the demand l[in€ D. If O* falls in TE's optimal V. IMPACT OF OVERLAY ROUTING ON UNDERLAY
solution interval T, T+ ], thenO* achieves optimum for NETWORK
both TE and overlay. Therefo@” is a NEP and willbe 1o eyistence and stability of Nash equilibria are

reached after one round of TE and overlay optimizatiog, ,ch more difficult to establish for general network

If EB falls outside of[T}, 7], then after TE’s opti- topologies and traffic demand patterns. And, even if a
mization, we have Delqy2> < Delay<1 3) and f(l’z) ~ Nash equilibrium exists, the interaction process may not

1,2 . . . .
‘L2 converge to it, as will be shown in our experiments.

(1»3) 1
f<1,2>' Therefore, from (19), we will hav_e Delgy,) < A more important question we want to answer is how
Delay(l,g). When overlay takes its turn, it always try to

move some of its demand from logical path, 3) to the selfish behavior of overlay routing influences the

logical path(1,2) until either all of its demand has bee erformance of TE in this game. In this section, we prove

moved to path(1,2) or the rate vector reach poir*. hat TE's performance will never be improved in this

For the first case, when TE takes over, it will pull th('a\laSh routing game. Various experimental resuilts on a 9-

rate vector back intd7, 7;]. And when overlay takes node network given in [7], and a 14-node tier-1 POP
ts turn, it still sees Delgy ) < Delay, 5. Since all of network in [18] are presented to demonstrate overlay

its demand has already been placed on att), the routing’s impact on the underlay network’s performance.

) S Si[pilar to the inefficient NEP in Section IV-A, we
game reaches its NEP. For the second case, TE again will " . . . .
pull the rate vector back intdZ],7;]. When overlay !dentn‘y'm o.ur.expgr!ments some case where the routing
takes its turn. it will increasel(l?i) ;nd drive the rate interaction is inefficient for overlay, i.e., overlay’s cost
vector back t('JO* The interaction continues anf{!2) increases as the iterative process proceeds even though

keeps increasing until all of the overlay traffic is moveg plays optimally based on TE's routing at each round.

to logical path(1,2). The game converges as in the first, Overlay Routing’s Impact on the Cost of TE

case. u While overlay routing aims at improving the perfor-

Again, we see from this proof that the objectivenance of overlay traffic, the improvement comes at the
misalignment between TE and overlay causes trafftost of degrading the performance of underlay traffic.
oscillations on network links. In addition, the drivingin addition, if we assume TE can perfectly implement
force for this process to converge to a Nash equilibriuthe optimal solution, overlay routing cannot improve the
is that TE can always map a set of logical link loadsverall network performance. In many cases, overlay



routing increases the network cost that TE tries ®. Experimental Study
minimize. T ) vsi ¢ d extensi
veri r an is, W rform xtensive ex-
Base cost of TE.The base costof TE refers to the ove fy our analysis, we periormed extensive €
. ; . ._periments on different network topologies. Due to page
optimal cost achieved when overlay simply provid

e demand matrix to TE without making anv routin imits, we report two sets of experiments here. In our
g any %xperiments, we solve overlay and TE’s optimization

isi i@t g(st) . . - )
decisions on the overlay Igvel, |- @loverlay = 4° " problem numerically. Following a similar approach in

Theorem 3:Overlay routing never improves TE's per{4], we use a piece-wise linear version of the non-
formance. linear programming formulations of TE and overlay

Proof: ~We compare the network cost Withoptimizers defined in (1) and (3) respectively. We then

and without overlay routing. LetPo be the set se ;) solve[24] to solve these linear programming
of source-destination pairs of overlay demands arbéoblems

{Dg ’t),(s’,t’) € Po} the overlay demand vector. ,
Without overlay routing, TE will take overlay demand 1) TE cost ghange.as a function of_the percentage
and underlay demand directly as its overall physich overlay traffic: We first present experimental results

demand: for the 9-node example ([7]) in Figure 2. Three overlay
t P er(s,&s) (s',') € Po nodes are considered; 4,7. They may have demands
de0 =979y e (21) to each other, or to other nodes not in the overlay. In any
dunder (s',t") & Po

case, each overlay node can forward traffic originating
Then TE’s optimal set of routeéﬁff’t)} produces the from any other overlay node. There a&possible over-
minimum cost over all feasible sets of routes Und(ﬁy demand pairs in this example. We randomly choose
constraint (2), i.e., al{v{™"} which satisfy flow con- 70% of them. We use a bimodal traffic matrix ([18])
servation and implement all TE demand (21). generated by a mixture of two Gaussians, one with=
Overlay can assign traffic between any overlay de-5, 0, = 0.2), and the second withug = 4, 09 = 0.2).
mand pair{(s’,t') € Po} on all associated logical pathsThese means and standard deviations are proportional
{p € P} The traffic demand seen by TE can bgy those used in [18]. We set the overlay demands to

calculated a(.:,:t) iy be 60% of the total traffic demands. Specifically, we
S0 — dynger+ E op " Chy (s',t) € B 27 divided demand on each Source-Destination pair into two
=\ ey P L ) (22) parts: one is overlay; the other one is underlying. Overlay
dynder (s\t) ¢ E

demands take&)% of the total demand. To prevent flows
Any set of TE routeg o} (and consequently7{*"”1)  from exceeding link capacities, we set all of the link
based on any set of overlay routésgfl’t/), (s',t') € capacities to bé8. We also perform experiments when
Po,p € P&} must implement TE demand as delink capacities are randomly distributed. For brevity, we
scribed in (22). At the same time, we calculate th@o not present results for the random link capacity case

amount of traffic which is from overlay demand paifere. Heterogeneous link capacity cases can be seen in

Y ; i ; .
(s,¢") and is placed on each physical “nlf as. experiments with a 14-node tier-1 ISP network.
pouertht) = N bt (N 0 D) (23)  nitially, overlay demand pairs are given to TE without
peP(/ ) (@,5") € B any forwarding among overlay nodes, achievingliase
Based on (23), we construct TE link flow routes costof TE. We let TE begin the interaction game. TE
o ﬁgs,t)dsigg# pover(st) (s',t') € Po (24) takes a turn at every odd step, qnd overlay takes a turn
a Flet gt (s',') & Po at every even step. We let this interaction process run

(s.0) for 100 steps. Taking the cost at stépas the baseline,
Here {0,""} accounts for both underlay and overye caiculate the percentage of deviation from it at the
lay traffic demands in the absence of o(v%rlay rOUsllowing steps. These percentages of deviation of both
ing as described in (21). Thereford”({6.™"}) > TE and overlay are plotted in Figure 6.
JTE({og"}). At the same time, the aggrega}e traffic \we observe from these graphs that there are large
rate vector on all physical linkgl,} under {65} is  oscillations in both players’ costs during the observed
the same as the link rate vectdi,} under {5:""}  time interval (this game does not converge). At each even
with overlay routing. Since link cost is only a func-step, overlay’s response causes an increase to TE’s cost,
tion of its aggregate rate, we havdZ({5$*}) = and then TE reacts optimally to reduce its cost at the
JTELo85) > JTE({ol). m following odd step. Overlay does the same thing. On
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In Figure 7, we plot the cost deviation percentage
‘ ‘ for different overlay traffic percentages. Our conjecture
is verified through these experiments. In addition, we
6or notice that, when overlay demand is approximately half
aof of total network demand, not only is the average cost
20} ‘ increase to TE the largest, but also the variation range
0 ‘ ‘ e L ‘ ‘ ‘ ‘ . is the largest. Larger variations in TE cost reflect greater
o s 8 W ™ gecillations in the interaction process, which is clearly
Change of Overlay Cost (deviation percentage relative to step 1) harmful to TE.

10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Another interesting observation is that, if we increase
link capacities, the decrease in overlay cost by playing
Nash game is not as large as that when link capacities are
smaller. This can be seen by comparing Figure 7 with
Figure 8. Furthermore, TE’s cost is not affected much
-5F 1 by overlay’s selfish behavior if link capacities increase.
v ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Intuitively speaking, this is because TE optimizer has
1 2 3 4 s e o & w w0 more freedom to allocate traffic to achieve the same
Iteration step (TE takes turn at odd step and overlay takes turn at even step) minimal cost when link capacities are large.

Fig. 6. Cost change of TE and overlay. Percentage of deviation from 2) Experiments with a tier-1 ISP networkNe_ also
cost at step 1 at each step in the interaction process. perform extensive experiments on a 14-node tier-1 POP

_ o _ network described in [18]. We invert the weights of links
average, overlay's cost decreasés in this interaction 4 opyain link capacities. This is based on the assumption
process, but TE's cost increas#s9% as expected.  hat weights are set by turning around capacities as

We are interested in how the cost change of TEcommended by Cisco. Depending on the traffic matrix
varies as the percentage of overlay traffic varies. Oused, we multiply these capacities by a certain factor
conjecture is as follows. If there is little overlay trafficto make sure that, for the traffic matrix we use, no
then overlay’s routing decisions will have little influencdink capacity is exceeded by traffic on that link. Our
on TE’s cost. If all traffic consists of overlay traffic, therexperimental results confirm our hypotheses presented
overlay’s routing decision would be the same as that wf previous sections. We present the results of two
TE, so, the interaction process will always converge, agaperiments here.

TE’s cost will not be affected. If there is some significant In these two experiments, we use a bimodal traffic
fraction of overlay traffic, e.g50%, TE’s cost increase matrix for underlay traffic which is the same as used
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in the earlier nine-node experiments. We choose three  VI. CONCLUSIONS ANDFUTURE WORK

nodes6, 10,11 as overlay nodes, and randomly choose ygjng game-theoretic models, we provide insights into
32 overlay demand pairs among all possibleoverlay he fundamental problem on the interaction between
demand pairs. We add an additiongllo overlay de- {he gyerlay routing optimizer and Traffic Engineering
mands. Specifically, for a node pair that is chosen I%Etimizer. Our analytical results for a simple network
an overlay demand pair, if the underlay traffic demangample provides us with a clear understanding of the
is d, we addd - p% overlay traffic. existence, uniqueness and stability of Nash equilibrium
for this interaction game. We demonstrate, both analyti-
cally and experimentally, that the objective misalignment
In one experiment, we chooge= 50. Thus, the total between overlay and TE triggers oscillations in their
overlay traffic among all network traffic &1%. We run routes. The selfish behavior of overlay routing optimizer
this experimentl00 steps and cost oscillations for TEdegrades the performance of regular users and the un-
and overlay during thesB)0 steps is plotted in Figure 9.derlay network as a whole. Large oscillations in the
The mean cost increase for TE 3$5%, and the mean TE and overlay costs can be expected in this routing
cost decrease for overlay i2.1%. Since the percentageinteraction process when overlay accounts for a non-
of overlay traffic is small, the cost increase to TE isegligible portion of the total network traffic. Even more
not big, but still, this small percentage of overlay causessirprisingly, overlay cost can increase even if overlay
significant oscillations to TE'’s cost. The highest increasmtimizes its routing at each iteration, which is not
to TE’s cost can reach2%. In another experiment, weonly explained clearly in our analysis of an example
choosep = 68. Thus, the total overlay traffic among allnetwork, but also observed in our experiments in a tier-
network traffic is10.8%. We run this experiment 1001 ISP network. Even though this observation seems
steps. The results are plotted in Figure 10. The meaounter-intuitive at first thought, it actually points out
cost increase for TE i8%. We observe an increasingthe inefficiency of NEP in general.
trend of overlay cost in thesé0 steps. At the final step, We believe our work provides a starting point in the
even after overlay's optimization, the cost of overlagearch for a complete understanding of the interaction
is 3% higher than the cost in the very first step whehetween overlay routing and traffic engineering. Our
overlay does nothing to optimize its routes. The resuléalytical and experimental studies have identified a rich
of this experiment are consistent with our analysis @et of research problems to be investigated. Future work
inefficient NEP in Section IV-A. This experiment verifiescan be pursued in the following directions:
our counter-intuitive conclusion that itmot always good 1. In this paper, we assume TE and overlay have equal
for an overlay to optimize its routes based on TE’s routssatus and play a Nash game at the same frequency. In
at each step. We will briefly discussstackelberg game current network operation, TE usually happens at a much
strategy for overlay to address this in the next sectiorslower time-scale than that of overlay. This misalignment



of time-scale deserves more investigation. Another situ- ACKNOWLEDGMENT

ation of interest to us is when one player can predict The authors would like to thank reviewers for their

the other player's response (equivalent to knowing th@|uable comments. This work is supported in part by
other player's optimization algorithm.) In this case, thRSF under grants ITR-0325868, ITR-0085848 and EIA-
player who has this information and can move faster m@ygp119, and DARPA under contract DOD F30602-00-
choose to play a Stackelberg game ([25], [19]) againgé54. Any opinions, findings, and conclusions of the
the other player (follower.) For example, if an overlaythors do not necessarily reflect the views of NSF and

optimizer knows the optimization algorithm used by TIHARPA.

optimizer, then it can predict TE's new physical routings
in response to overlay’s logical level routing decisions,
and then choose an optimal set of logical level routingtl
in consideration of TE's potential responses. We can
model this interaction as atatic Stackelberg routing
game[25]. Some preliminary results on this type of game2]
are reported in [17].

II. A natural extension of our work in this paper is the
interaction between multiple overlays and TE. This is g3]
much harder problem. For example, we can assume TE
does not change its routings during the game playing
process betweenV overlays. We can think of each 4
overlay as a single user who controls a non-negligible
amount of traffic and tries to minimize its own group’s
average cost. Then, this problem is similar to the routin&s]
games studied in [12] and [13]. However, there is a
significant difference. In [12] and [13], all users work
at the samephysicallevel, and a link's cost is only a [©!
function of load on this link. But in our case, all users;
work at thelogical level, and multiple logical links may
share the same physical link, so, the cost of a single
logical link might be coupled with the cost of other
logical links. This logical link loadcoupling makes the
existence of Nash equilibrium problem dependent (ofe]
network topology, traffic demand patterns.) Furthermore,
even if a Nash equilibrium exists for a certain network
routing game, the dynamic process of playing a Nagiy
game may not be able to converge to that point.

II1. One basic assumption of our models is that TE
and overlay have the same frequency and timing fu
adjusting strategies. But frequency and timing exert an
important influence on the structure on this routing?l
game. For example, if overlay knows the starting time
of TE’s optimization, it can take advantage by doing itg 3
optimization immediately after TE’s turn. In practice, an
overlay most likely will not have all of the necessary
information to play with TE. Thus, the estimation of, ,
useful information and choice of good strategies for both
TE and an overlay optimizer are also important topics.
The interaction between overlay routing and the poli
based inter-AS routing is another interesting problem to
look into.

] E. Altman, T. Basar, and R. Srikant,

] S. H. Rhee and T. Konstantopoulos,
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VIl. A PPENDIX overlay traffic on physical link(1,3). After overlay’s
optimization as in (12)]:°u" < rrevertay (. (k).
A. Global Stability of the NEP of the Routing game iﬁ?\d we have WDy (@0) <Ly (k)
Section IV-A xoverla 1,3)overl (1,3)
LT (k) = (d(3)overlay _ g (f; 4 1) [y 5 (x(k))
Proof: Let 2 denote overlay demand on the logical erla (L 3)overd (1.3) ’
path (1,2). When TE takes turn, it updates routing s  (¥0) = (d52T — ) f ;) (o).

i (172) (1’3) 1 i
fraction f<172> andfu,2> as a function ofr as described gjnce f<(11’§>)(x) is increasing with z, f<(11,§>)($0) >

in (10) and (12). Sincel(\?), = 0, andd() < 12y f<(11’;>)(:c(k)), therefore we must have(k + 1) < .
we always havef<(117’22>) =1 and f<(117’23>) decreasing with [ |
x. Consequently, the available bandwidt; 5, C\y 3}

can be recalculated according to (13), (14). It is easy

to show Cy 9 (Ci13) is an increasing (decreasing)

function of x. Therefore there is only one solutiarn,

satisfying

Cu2) (z) Ca 3 (z)

Ch 2 Ch3)

As discussed in Section IV-Ax is the only NEP.

Let z(k) denote overlay demand on the logical path
(1,2) after thekth overlay optimization. In order to prove
that the NEPx is globally stable, it is sufficient to show
that if z(k) < xo, thenz(k) < x(k+1) < xo; if z(k) >
xo, thenz(k) > z(k + 1) > z9. We prove here for
z(k) < zy only, the case for:(k) > xo can be proved
similarly.



