
iPASS: Incentivized Peer-assisted System for
Asynchronous Streaming

Chao Liang†, Zhenghua Fu‡, Yong Liu†, and Chai Wah Wu‡
†Polytechnic Institute of NYU, Brooklyn, NY, USA 11201

‡IBM T.J.Watson Research Center, Hawthorne, NY, USA 10532
Email: cliang@photon.poly.edu, zfu@us.ibm.com, yongliu@poly.edu, cwwu@us.ibm.com

Abstract— As an efficient distribution mechanism, peer-to-
peer technology has become a tremendously attractive solution
to offload servers in large scale video streaming applications.
However, in providing on-demand asynchronous streaming ser-
vices, P2P streaming design faces two major challenges: howto
schedule efficient video sharing between peers with asynchronous
playback progresses? how to provide incentives for peers to
contribute their resources to achieve a high level of system-wide
Quality-of-Experience (QoE)? In this paper, we present iPASS, a
novel mesh-based P2P VoD system, to address these challenges.
Specifically, iPASS adopts a dynamic buffering-progress-based
peering strategy to achieve high peer bandwidth utilization with
low system maintenance cost. To provide incentives for peer
uploading, iPASS employs a differentiated pre-fetching design
that enables peers with higher contribution pre-fetch content
at higher speed. A distributed adaptive taxation algorithm is
developed to balance the system-wide QoE and service differen-
tiations among heterogeneous peers. To assess the performance
of iPASS, we built a detailed packet-level P2P VoD simulatorand
conducted extensive simulations. It was demonstrated thatiPASS
can completely offload server when the average peer upload
bandwidth is 1.2 more times the streaming rate. Furthermore, we
showed that the distributed incentive algorithm motivatespeers
to contribute and collectively achieve a high level of QoE.

I. I NTRODUCTION

Video-on-Demand (VoD) services enable users to watch
their favorite videos at their convenient time. YouTube, an
extremely popular VoD application on the Internet, serves100
million distinct videos daily [1]. Traditional VoD solutions em-
ploy video servers and content distribution network (CDN) to
stream video to viewers. The infrastructure cost grows linearly
with user population and video quality. It will become very
expensive for YouTube to stream higher resolution videos with
TV or even high-definition quality. On the other hand, P2P
technology utilizes resources available on peers and effectively
offloads servers in large scale content distribution, such as
file sharing [2] and live video streaming [3]. Recently, P2P
technology has also been adopted to provide VoD services. In
providing VoD services, P2P streaming design faces two major
challenges: how to schedule efficient video sharing between
peers with asynchronous playback progresses? how to provide
incentives for peers to contribute their resources to achieve a
high level of system-wide Quality-of-Experience (QoE)?

To address the asynchronous user playback issue, the
Cache-and-Relayapproach has been proposed. Peers store
downloaded video in memory or hard disk, and relay the
cached video to other peers in future, leading to asynchronous
P2P video sharing. Early Cache-and-Relay based systems
assume a small amount of video cache on peers and exploit
asynchronous sharing between peers with close playback pro-
gresses. Through batching, peers are organized into groups

according to their playback time and a tree-like topology is
formed for peers in the same group to exchange video [4],
[5]. Unfortunately, small video caching results in low P2P
sharing efficiency. The structured P2P topology incurs high
management overhead and is vulnerable to dynamic peer
arrivals and departures. The recent advances in computer
hardware technology make low-priced computers increasingly
equipped with abundant memory and storage. New P2P VoD
systems fully exploit the largely improved peer video caching
capability for higher P2P sharing efficiency. In [6], [7], peers
are effectively turned into distributed “video seeds” by caching
a large volume of video clips on their hard disks. Longer
video caching also makes it possible for P2P VoD systems
to adopt mesh-based topology. Mesh-topology is robust to
peer churn and easy to manage. It has demonstrated its
success in many large scale file sharing [2] and live streaming
systems [3]. Inspired by the successes of mesh, several mesh-
based P2P VoD systems have been proposed [8], [9], [10]. In
those systems, peers form one or multiple meshes randomly
and exchange data with neighbors. Unlike in file sharing,
in VoD systems, data sharing between peers are commonly
uni-directional. Data flows from a peer to its neighbors with
smaller playback progresses. We will show that random peer-
ing leads to poor peer resource utilization under this data flow
directionality. How to design P2P VoD systems with high peer
bandwidth utilization and low maintenance cost remains to be
a challenging research problem.

Providing incentives for peers to contribute their resources
is an essential design component for P2P systems in general.
In file sharing systems, peers are motivated to upload to
other peers in order to achieve a higher download rate from
the system. By employing thetit-for-tat policy, BitTorrent
punishes free-riders who do not contribute bandwidth to the
system. In live streaming systems, peers are motivated to
contribute more in order to get better playback quality. It
was proposed in [11], [12] that, with scalable video coding,
peers uploading more will be rewarded with higher video
quality. Due to the asynchronous peer playback progress and
the data flow directionality, tit-for-tat type of direct reciprocity
incentive mechanism is not applicable in P2P VoD systems. In
addition, to maintain the playback continuity, each peer needs
to download video data before their playback deadlines. It is
critical to design incentive mechanism for P2P VoD systems
to balance the system-wide QoE and service differentiations
among heterogeneous peers.

In this paper, we present iPASS, a novel mesh-based P2P
VoD system, to address the previously described efficiency and
incentive issues. iPASS adopts a dynamic Buffering-Progress-

Based (BPB) peering strategy to achieve high peer bandwidth
utilization with low system maintenance cost. To provide
incentives for peer uploading, iPASS employs a differentiated
pre-fetching design that enables peers with higher contribution
pre-fetch content at higher speed. A distributed adaptive tax-
ation algorithm is developed to balance the system-wide QoE
and service differentiations among heterogeneous peers. The
contribution of this paper is three-fold:

1) We analytically study the impact of asynchronous peer
playback progresses on the efficiency of mesh-based
P2P sharing. We propose a distributed BPB peering
strategy. Through analysis and simulation, we show that,
with BPB peering, it is possible to achieve high peer
bandwidth utilization, low maintenance cost and high
peer churn robustness in mesh-based P2P VoD systems.

2) To the best of our knowledge, we are the first to to use
differentiated pre-fetching as an incentive mechanism
to motivate capable peers to contribute in P2P VoD
system. We demonstrate that pre-fetchings on peers can
be coordinated by an adaptive taxation algorithm to
simultaneously maintain system-wide QoE and provide
service differentiations among peers with different con-
tributions.

3) To assess the performance of iPASS, we built a detailed
packet-level P2P VoD simulator and conducted extensive
simulations. Compared with previous P2P streaming
simulators, our simulator simulates packet-level details.
In addition, it can prolong the simulation duration to
hours in order to study long-term system behaviors under
a rich set of simulated scenarios.

The remaining of this paper is organized as follows. We
briefly discuss the related work in Section II. The main design
components are outlined in Section III. The detailed system
implementation is presented in Section IV. The simulation
setting and numerical results are presented in Section V. The
paper is concluded in Section VI.

II. RELATED WORK

P2P sharing can greatly reduce server bandwidth cost to
provide on-demand streaming service [13]. Early P2P VoD
systems adopt structured streaming topologies and requiredel-
icate system management. P2Cast [5] groups peers according
to their arrival time. Peers in the same group are organized
into a multicast tree. Peers retrieve video content througha
combination of streaming along the tree and patching from
peers who arrived earlier. dPAM [4] employs distributed
pre-fetching to improve system performance. oStream [14]
constructs media distribution trees at the application layer
to realize asynchronous media delivery. Recent advances in
computer hardware technology largely improve peers’ video
caching capability and broaden the design spaces of VoD
systems. Influenced by P2P file sharing systems, mesh-based
data swarming has been adopted by new P2P VoD systems.
BiTos [10] customized the Bittorrent protocol for on-demand
video streaming. PONDER [9] divides video into multiple
sub-clips and forms multiple meshes, one for each sub-clip.
Peer selection and measurement based admission control was
proposed to manage swarms. BASS [15] combines streaming
from the server with Bittorrent-assisted downloading. The

authors of [8] discussed the impact of segment scheduling,
overlay management and network coding on the performance
of swarming-based VoD systems. To combat free-riders, more
and more attentions have been given to the design of incentive
mechanisms in P2P streaming systems. Atit-for-tat type of
substream trading algorithm was developed in [12] to provide
incentive in live streaming systems with layered video coding.
Authors of [16] proposed a taxation scheme to improve the
overall social welfare through subsidizing resource-poorpeers
by exploiting resource-rich peers. The work in [11] utilizes
a similar taxation scheme. Peers with more contribution join
more substream trees to get better quality. However, providing
incentive in on-demand systems remains a challenging prob-
lem.

III. IPASS: DESIGN OVERVIEW

In this section, we present the two major design compo-
nents of iPASS:Buffering-Progress-Based (BPB) peeringand
Adaptive-Taxation-Based (ATB) pre-fetching.

A. Modeling of Swarming-based Peer-assisted VoD System

In peer-assistedVoD systems, servers host publishers’
videos and stream them to peers upon requests. To save
bandwidth consumption on servers, peers viewing the same
video form a P2P overlay network and redistribute videos
among themselves. Severs are responsible for maintaining
peers’ playback continuity. If a peer cannot download video
data from other peers before the playback deadline, it will
download the missing data from the server directly, conse-
quently, increase server bandwidth cost. A key design issue
of P2P VoD systems is to minimize the server bandwidth
cost by efficiently utilizing peers’ upload bandwidth. P2P VoD
systems have two unique features: the playback progresses on
peers areasynchronous; peers can download content beyond its
current playback range. In addition, to cope with bandwidth
variations and peer churn, a peer normally buffers a certain
amount of video beyond its playback progress.

1) Notations: To model a typical P2P VoD system, we
introduce the following notations for peeri in the system:

• Playback progresspi: the current playback position of
peer i, indexed by the sequence number of the video
chunk being played.

• Buffering progressbi: the sequence number of the first
missing chunk beyond current playback positionpi.

• Buffering levelτi: the number of continuous buffered
chunks beyond the current playback progress point. By
definition, τi = bi − pi.

• Playback buffering thresholdwrd: the number of buffered
chunks necessary for smoothing playback. We call the
sliding window[pi, pi+wrd] peeri’s continuous playback
range.

• Contribution levelci: the number of chunks that peeri
has uploaded to other peers since it joins the system.

Fig. 1 illustrates two different peer buffer statuses. On Peer
1, the buffer levelτ1 is lower than the playback buffering
thresholdwrd. It is downloading the missing chunks in the
continuous playback range. We call peer1 is in the normal
playback mode. On peer2, the buffer levelτ2 is higher than
the playback buffering thresholdwrd. Peer2 is downloading

chunks outside of the playback range. We call peer2 is in the
pre-fetch mode.

p1 b1

︸ ︷︷ ︸

τ1

︸︷︷︸

wrd

p2 b2

︸ ︷︷ ︸

τ2

︸︷︷︸

wrd

sequence

(a)peer1 (b)peer2

Fig. 1. Peer buffer status

Peers are assumed to have enough storage to cache what
they ever playbacked. In terms of copyright issue, the content
in the cache will disappear once the belonging peer quits
the application (Similar as YouTube), and cannot serve as
seed when it logins in the system next time. We also assume
peers are notstrategic but obedient to unveil their truthful
information to each other.

2) Impact of Asynchronous Playback on P2P Sharing:First
we investigate the impact of asynchronous peer playback on
the efficiency of content sharing among peers. Let’s start with
a P2P VoD system with homogenousN peers, each of them
with upload bandwidthu. Suppose each peer randomly selects
k peers as its neighbors. The video length isL. At a given time
instant, we assume peers’ playback progresses are uniformly
distributed among[0, L]. Peers store the content they have
already played. Obviously, a peer can only serve peers with
playback progress behind him. In addition, a peer divides its
upload bandwidth equally to all its receivers.

Proposition 1: The expected download rate of a peer with
playback progressx from other peers can be approximated by
u(lnL− lnx) +O(u).

Proof: Suppose the random variableX denotes se-
lected neighbor playback progress and is uniformly distributed
among [0, L]. Since peer selectsk neighbors randomly and
independently,Xi are independent fori = 1 . . . k. ThenuXx
= {the download rate from user with playback progressX
of its receivers|X > x}, given only the peer with larger
playback progress can be the supplier. Assume peer divides
its upload bandwidth equally on all its receive neighbors,
with P (X < x) = x/L, the download rate from user with
playback progressx for its receiver can be approximated
by E(u′x) = u/(k ∗ P (X < x)) = uL/kx. For peer

x, then E(uXx|X > x) =
E(u′

x+1)+E(u′

x+2)+...+E(u′

L)

L−x =
uL

k(x+1)
+ uL

k(x+2)
+...+ uL

kL

L−x = uL/k(lnL−ln(x)+O(1))
L−x . Therefore we

haveE(dmaxx) =
∑

k uXkx = k ∗ P (y > x)E(uyx|y > x) =
u(lnL− lnx) +O(u)

The above proposition shows that the expected possible
download rate drops logarithmically as the playback progress
increases. For peers with larger playback progress, due to
the random neighbor selection, they will find in their random
neighbor set fewer suppliers from which they can download
video from. In addition, a supplier with larger progress will
be able to serve more download requests. Due to the equal
bandwidth sharing, it will upload to each of its receivers
at lower rate. These two factors conspire and lead to low
download rates for peers with large playback progress. This
shows that random peering and equal bandwidth sharing lead
to low P2P bandwidth sharing efficiency.

B. Buffering Progress Based Peering

The bandwidth sharing efficiency in P2P systems is mainly
determined by two factors: how peers are connected and how
a peer allocates its upload bandwidth to all its neighbors.
The former one decides how best the latter one can make
with limited peering degree. In the previous section, we
have demonstrated that random peering and equal bandwidth
sharing is not efficient for asynchronous P2P VoD systems.
Peers with larger playback progress have less opportunity to
download from the P2P network. Intuitively, to increase the
download rate of peers with large progress, the upload from
peers close to the end of the streaming session should not
be invested to peers just joined the session. More generally,
we propose the Buffering Progress Based(BPB) peering to
let peers connect to peers with close buffering progress.
Peers form one structured mesh overlay with BPB peering
strategy, instead of forming multiple sessions in patching[5]
by grouping peers according to arrival time within certain
threshold. In the mesh topology constructed under BPB, peers
with similar playback progresses are strongly connected. Parts
of the peers are suppliers with larger buffering progress. Parts
of them are receivers with buffering progress lagging behind.
And parts of them have very close progress and overlapping
download interests, they may act as either supplier or receiver.
On top of the BPB mesh, peers adaptively allocate their
upload bandwidth to their neighbors to maximally reduce the
complementary streaming requests to servers.

We formulate the following Linear Programming model
to study the impact of peering and bandwidth allocation on
server bandwidth. For peeri, let nb(i) be its neighbor set,
and uji be the download rate from peerj. The aggregate
download rate from all its neighbors is

∑

j∈nb(i) uji, and then
the complementary streaming rate needed from the server is
max(0, r−

∑

j∈nb(i) uji). The goal is to find the optimal peer
bandwidth allocation to minimize the aggregate server cost.

min
{uji}

∑

i∈V

(r −
∑

j∈nb(i)

uji) (1)

∑

j∈nb(i)

uij ≤ ui, i ∈ V (2)

uij ≤ Iijui, i, j ∈ V (3)
∑

j∈nb(i)

uji ≤ r, i ∈ V (4)

In the above formulation,Iij denotes the buffering progress
relationship between peeri and j, Iij = 1 when pi > pj ,
otherwise equal to 0. Eq. (2) states the bandwidth constraint
for each peer respectively. And Eq. (3) shows the content
constraint among peers. Eq. (4) states the download speed
constraint without pre-fetching.

The above optimal bandwidth allocation formulation is for
general peering topology. We now use it to compare the
server bandwidth saving of random peering and BPB peering.
Towards this goal, we generate an instance of a peer-assisted
video-on-demand system using a discrete simulation. During
the simulated session with durationT = 100, peers arrive at
the system according to a Poisson process with rateλ = 2.
Peers stay in the system in a linear viewing manner till they
finish the entire video viewing. The video rate isr and we

assume all peers’ download bandwidth is greater thanr. There
are two types of peers with upload bandwidth1.5r and0.5r
respectively. The normalized average peer upload bandwidth
is ρ = ū/r = 1.2.

With random peering, upon arrival, a peer randomly picks
k peers already in the system as its neighbors. With BPB
peering, peers are firstly ordered in the increasing order of
their arrival times. A peer who arrived at the system with rank
i will randomly pickk neighbors from peers with arrival ranks
in the range of[i − δ ∗ N, i] given totalN online peers. By
changingδ, we manipulate the playback progress closeness of
neighbors in the constructed BPB graph. We then compare
the server cost under BPR and random peering strategies
under five snapshots of the system. For each snapshot, we
solve the optimal bandwidth allocation problem defined in
(1). Figure 2 shows the minimum server cost can be achieved

5 10 15 20
0

10

20

30

40

50

60

70

Average Peering Degree

S
er

ve
r

C
os

t

BPB δ=0.1
BPB δ=0.3
Random

Fig. 2. Server Cost withρ = 1.2

with different peering strategies. The results indicate that with
limited peering degree, BPR-peering can significantly reduce
the server cost compared with random peering. The results
obtained here is only the lower bounds on the server bandwidth
cost. In Section V, we will compare the server bandwidth
saving of random peering and BPB peering through detailed
packet-level simulations.

C. Adaptive Taxation Based Pre-fetching

To maintain their playback continuity in face of peer churn
and network dynamics in P2P video systems, peers normally
buffer certain amount of data ahead of the playback progress.
Furthermore, in P2P VoD systems, peers with high download
rate canpre-fetchcontent beyond their playback points and
potentially becomeseeds, namely, nodes with the whole con-
tent, long before their playback ends. From the system point
of view, more seeds in the system, more efficient the content
sharing among peers. As will be shown through simulations
in Section V : with large enough peer bandwidth resource
and high scheduling efficiency, the seeds that evolved from
regular peers with pre-fetching may completely take the place
of the servers and results in zero server cost. From individual
peers point of view, with pre-fetched content in the buffer,
they can enjoy smooth non-linear viewing operations, such as
fast-forwarding and jumping. Moreover, peers can finish the
download process of the whole content before they finish the
playback, and they have options to leave the system to proceed
other Internet applications without interference.

Providing incentive in asynchronous VoD system is chal-
lenging. The asymmetric data flows between peers with dif-

ferent playback progresses make direct reciprocity incentive
mechanisms, such as tit-for-tat of BitTorrent, infeasible. In
our design, we use pre-fetching as an incentive to motivate
peers to contribute more to obtain higher download rate from
the system. To coordinate the asynchronous demands of peers
and maintain system-wide Quality of Experience (QoE), we
propose aAdaptive Taxationscheme to regulate the pre-
fetching on heterogeneous peers. Original taxation scheme[16]
is applied to provide incentive in live streaming system. The
bandwidth can be regarded as peer’swealth. Resource-rich
peers contribute more bandwidth to the system, and subsidize
for the resource-poor peers. The tax regulated redistribution of
peer wealth helps improve the social welfare and then reduce
server cost. The tax ratio is fixed in the original scheme. To
achieve budget balanced, thedemogrant(i.e., one peer who
does not contribute anything, still receives the demograntrate)
rate is adaptive. However, the situations differ in adaptive
taxation scheme. Instead of differentiated playback quality,
peers in peer-assisted system differ from download rate and
have base playback rate guaranteed. Therefore in our adaptive
taxation method, the demogrant rate is fixed to be equal to
the playback rate and tax ratio should be adaptive. Suppose
we pose a taxation ratiot on peers. Then one peer with
contribution levelci and lifetime Ti, could get the average
download rateri to accumulate expected buffer level

τ̄i = (ri − r)Ti =
ci
t
. (5)

To make the aggregate tax revenue
∑
ri and budget ex-

penditure
∑
ci/Ti balanced, the taxation ratiot needs to be

adaptive to the system wide resource availability. To decide
the ratio, we have

t =
∑

ci/
∑

τi (6)

. In a resource rich system, peers accumulate different amount
of buffering levels proportional to their contributions and the
system tax ratet. In a resource deficit system with small peer
average bandwidth̄u < r, peers bandwidth are not enough to
sustain their normal playback demands and needs help from
the server. In this case, it could be difficult for any peer to
accumulate large buffering level andt→∞, then peers try to
fetch chunks in the continuous playback range. How to adapt
t with the system resource is crucial in the adaptive taxation
scheme. Due to peer dynamics and resource imbalance, it
could be infeasible to tackle the issue in a centralized manner.
A distribution protocol with the adaptive taxation is introduced
in the following sections.

IV. IPASS: SYSTEM DESIGN

In this section we present the detailed design of iPASS
system. We focus on the implementation of BPB peering and
ATB pre-fetching.

A. Architecture

Similar to most deployed large scale P2P streaming systems,
iPASS employs atracker to keep track of peer arrivals and
departures. The tracker maintains a list of active peers in the
system. When a new peer joins in, it first contacts the tracker
for an initial peer list. Then new peer makes connections to
peers on the returned list and starts to exchange signaling

information and video data with them. Through signaling,
peers exchange with their neighbors information about their
buffering progresses, contribution levels and neighbor lists.
iPASS adopts the pull based data exchange mechanism. A peer
pulls video chunks from its neighbors by sending download
requests. To avoid contention due to uncoordinated requests
to the same peer, we introducepull tokensfor peers. Each
peer periodically sends out pull tokens to its neighbors to
give them permissions to pull chunks from him. The total
number of tokens that one peer sends out is determined by
the number of chunks that it can serve in each round. The
number of tokens that a peer sends to a neighbor is determined
by the contribution level of the neighbor, and is calculatedby a
distributed implementation of the ATB pre-fetching algorithm
described in the previous section. Due to asynchronous pre-
fetching, a peer may become out-of-sync with its neighbors.
If so, to maintain the BPB peering, it needs to change its
neighbors. A peer will find new neighbors by querying the
tracker or searching through its neighbors’ neighbor lists.
For example, idle seeds and peers lacking enough number of
suppliers may turn to find complementary neighbors.

B. BPB Peering Implementation

The key to BPB peering is to find peers with close buffering
progresses. To facilitate BPB peering, the tracker sorts the list
of active peers according to their arrival times. When a new
peer joins in, the tracker records its arrival time and append
it to the end of peer list. Then the tracker will return the new
peer with an initial peer list consisting of a number of random
peers at the end of the list. Those peers will be the suppliers
for the new peer.

When there is no pre-fetching, buffering on peers advances
roughly at the same pace, namely the playback rate. Peers who
arrive close in time will remain close in buffering progress.
During the session, when a peer needs to connect to new
neighbors, either due to neighbor departures or unsatisfactory
peering connections, it can contact the tracker for additional
peers. The tracker can quickly search through the sorted list
to find peers with close buffering progress for the requesting
peer. In addition, due to BPB peering, a peer’s neighbors’
neighbors should also have close buffering progresses withthe
peer. Without going to the tracker, a peer can find new “close”
neighbors in the neighbor lists returned by its neighbors.

With pre-fetching, buffering on peers advance at different
rates. A peer joins the system later can possibly download
video faster than his neighbors who arrived earlier and gain
larger buffering progress. Once this happens, the downloadrate
of the peer will be slowed down due to the lack of enough
suppliers. The peer should then triggerdynamic BPB peering
to find more suppliers satisfying the BPB peering criterion.
Fig. 3 shows a simplified example of dynamic BPB peering.
Towards the goal of downloading the whole video, node
na runs on the “express track” with larger download speed,
while its neighbors runs on the “local track” with smaller
download speed. As time evolves, it catches up with the
buffering progress of its neighbors. To maintain its download
rate, it connects withn1 with larger buffering progress and
disconnects from peern5 with the smallest buffering progress.

To facilitate this dynamic BPB peering, a centralized so-

buffering progress

express

local
n1n2n3n4n5

na

n1n2n3n4n5

nanb nc

Fig. 3. Dynamic BPB peering

lution is to have the tracker keep track of peers’ buffering
progresses and help peers to find new neighbors with close
buffering progresses. Peers need to periodically report their
current buffering progresses to the tracker. And the tracker
also needs to constantly resort the peer list. This will incur
large signaling and processing overhead on the tracker and
peers. On the other hand, peers constantly exchange their
buffering progresses with their neighbors. Due to dynamic
BPB buffering, there is a good chance that a peer, even doing
fast pre-fetching, can find peers ahead of him by searching
through the neighbor lists returned by its neighbors. Then
instead of requesting from the tracker, peers can request
complementary peer lists from neighbors and pick appropriate
peers with close buffering progress to connect.

C. Signaling between Neighbors

In iPASS, peers need to frequently collect information from
their neighbors and exchange data availability usingbuffer-
map. A buffer-map of a peer consists of a sequence of binary
bits, each of which indicates the availability of one specific
chunk on that peer. In live P2P streaming systems, due to the
synchronous peer playback, at any time instant, the chunks
that peers need to download fall into a small moving window
covering several minutes worth of video. The buffer-map
length can be kept short even though the chunk size is chosen
to be small (tens of KiloBytes).1 In P2P file sharing, peers
randomly download different portions of files. Buffer-maps
have to indicate the data availability for the whole file. To
limit the signaling overhead, large chunk sizes (hundreds of
KBs) are chosen to reduce the size of bitmap. Similar to file
sharing, peers in VoD systems are asynchronous. Similar to
live streaming, VoD systems need to maintain the continuous
playback on peers. It is challenging to design VoD buffer-
map to simultaneously achieve high utilization and low system
overhead.

To address this issue, we define theinterested areaof a peer
as the range of chunks that the peer is currently downloading.
In the normal playback mode, peeri needs to retrieve chunks
in their current playback range[pi, pi+wrd]. Once all chunks
in the playback range have been retrieved, it enters into the
pre-fetching mode and starts to download chunks falling into
its pre-fetching window. Therefore, the interested area ofa
peer is either its current playback range, if it is in the normal
playback mode, or the pre-fetching window, if it is in the pre-
fetching mode. Peers generate buffer-maps only for chunks in
the interested area. Furthermore, peers could only send the
buffer map to neighbors who have overlapping interested area
in order to reduce overhead. In addition, peeri send to its

1Small chunks reduce content bottleneck and improve peer bandwidth
utilization.

neighbors information on its buffering pointbi, buffering level
τi, contribution levelci.

D. Chunk Scheduling between Neighbors

Chunk scheduling determines the data flows among neigh-
bors. iPASS employs pull-based approach. Peer needs to han-
dle the token distribution and pull requests among receivers,
denoted by the setψ, consisting of peers with interested areas
either overlapped or totally covered by chunks already buffered
by this peer. After obtaining buffer-maps from its neighbors,
a peer sends pull requests to download missing video chunks
from its neighbors who have them. Due to distributed schedul-
ing, peeri may receive multiple pull requests from peers in
its receiver setψ(i). Some of the requests will be delayed or
even disposed if peeri cannot fulfill all of them in time. To
avoid contention, we introduce tokens to regulate pull requests
send to a peer. Specifically, peeri periodically sends tokens
to peers in setψ(i) to give them permission to pull data from
him. The number of tokens that peeri sends is determined
by how many chunks it can serve within each round. In the
strategy without pre-fetching, the tokens of peeri is randomly
distributed to peers inψ(i). In the pre-fetching mode, the
token distribution should be conducted to maintain normal
playback on all peers and enable differentiated pre-fetching
based on peers’ contribution. The Adaptive Taxation Based
pre-fetching algorithm described in Section III-C is an ideal
centralized solution, cannot be implemented in a large system.
We developed a distributed token distribution algorithm to
realize ATB pre-fetching.

Algorithm 1 : ATB Token Distribution on Peeri

input: {τk, ck, ∀k ∈ ψ(i)}1

output: P (k): fraction of tokens to peerk2

t←
∑

k∈ψ(i) τk/
∑

k∈ψ(i) ck3

for k ∈ ψ(i) do4

if τk ≤ wrd then ek ← max(wrd, ck/t)− τk + 15

else ek ← max(ck/t− τk, 1)6

sum← sum+ ek7

end8

for k ∈ ψ(i) do P (k)← ek/sum9

The ATB token distribution algorithm is presented in Al-
gorithm 1. Instead of assessing a universal tax ratio based on
global information, peers deduce it locally based on informa-
tion from their neighbors. The tax ratiot calculated by peer
i is the ratio between the aggregate buffering levels and the
aggregate contribution levels of peeri’s neighbors. The target
buffering level τ̄k of a neighbork is its contribution levelck
divided by t. Then peeri determines theexpected tokensek
to peerk as τ̄k − τk. ATB scheduling gives neighbors in the
normal playback mode priority in access tokens. If a neighbor
k’s buffer progressτk falls behind the playback buffering
thresholdwrd, peeri will give at leastwrd−τk tokens to peer
k so that it can download chunks in the playback range. After
calculatingek for all its neighbors, the peer can determine the
fraction of tokens for each neighbor in this round and then
assign tokens according to the distribution. Fig. 4 illustrates
an example of ATB token distribution.wrd is set to1. Peern
has five neighbors and onlyn1, n2 andn3 are its receivers.

c4 : 4

n1 n2 n3

n4 n5

n

τ4 : 2
c5 : 8
τ5 : 4

c1 : 20
τ1 : 6

c2 : 6
τ2 : 4

c3 : 2
τ3 : 4

e1 : 2 e2 : 1 e3 : 1

P (1) : 0.5 P (3) : 0.25
P (2) : 0.25

bu
f
f
er

in
g

p
r
o
g
r
es

s

t =
∑

i ci

∑

i τi

= 2

ψ = {n1, n2, n3}

Fig. 4. Illustration of token distribution

First the tax ratio are calculated to bet = 2. Then based on
the buffering level and contribution level, the expected number
of tokensek are calculated for each peer. Finally the fractions
of tokens sent ton1, n2 andn3 are decided as0.5, 0.25 and
0.25 respectively.

After a peer receives pull tokens from all its neighbors, it
will decide from which neighbor to pull which chunk. Various
chunk requesting algorithms in live streaming, such as rarest-
first or oldest-first, can be applied. However, their effects
could be skewed with asymmetric data flow direction due
to asynchronous buffering progress of peers. In a simplified
manner, one can request missing chunks randomly from the
neighbors which hold the chunk and also send the token.
Tokens from a neighbor will be disposed if the peer does not
send pull request to that neighbor in this round. This is to
avoid disturbances to the efficiency of scheduling in future
rounds.

V. PERFORMANCEEVALUATION

We use simulations to evaluate the performance of the
proposed peering and pre-fetching strategies.bpbpnp and
ranp np refer to the BPB-peering and random peering strate-
gies without pre-fetching respectively.bpbp inc refers to our
iPASS strategy, the combination of the BPB-peering with ATB
pre-fetching. A random peering strategy with pre-fetching,
denoted byranp wp, is also developed to make the comparison
comprehensive.

A. Simulation Setup

We developed a packet-level event-driven simulator in C++
to study the performance. Our simulator adopts the infrastruc-
ture of the simulator engine of [17] simulating the end-to-end
latency in terms of real-world latency measurement results.
Two 4-CPU servers are applied to accelerate the simulations.

We follow the common consumption that peer download
bandwidth is large enough and bottlenecks happen only at
the edges of the network. There are three DSL types of
nodes with bandwidth1Mbps, 384kbps and128kbps. The
video streaming rate is400kbps and each chunk has5 KB
size. We vary the distributions of these nodes to adjust the
normalized peer average bandwidth, as shown in Table I. In
the simulation, we use a single video with30mins length. One
single simulation round lasts for90mins to get a better view of
the system behavior. We believe that the video length and the
simulation duration are already long enough to demonstrate
the features of different strategies. The peer arrivals follow
the Poisson process with arriving rateλ = 1/4 per second.
The number of online peers maintains constantly around500
after the startup phase and there are around1, 500 peers
joining the system during the whole session. The default

TABLE I

NORMALIZED PEER AVERAGE BW AND THE CORRESPONDINGFRACTION

OF PEER TYPES

ρ Fraction of Peers ρ Fraction of Peers
(1M,384k,128k) (1M,384k,128k)

0.90 0.15, 0.39, 0.46 1.40 0.34, 0.52, 0.14

1.00 0.20, 0.40, 0.40 1.50 0.43, 0.38, 0.19

1.12 0.23, 0.46, 0.31 1.60 0.49, 0.36, 0.15

1.20 0.25, 0.53, 0.22 1.70 0.54, 0.32, 0.14

1.30 0.30, 0.50, 0.20 1.80 0.60, 0.30, 0.10

number of neighbors of each peer is15. The size of the
playback buffering threshold and pre-fetching window are
both 4 seconds. Peers broadcast buffer-map messages every
0.5 second and the token number information is piggybacked
within the message. The server bandwidth cost consists of two
parts, due to the complementary pull from peer for missing
chunks and request scheduled from peers who receive the
tokens from server respectively. The number of tokens sent
out periodically from server corresponds to1Mbps. To make
the comparison fair, we generate the peer arrivals and upload
bandwidth configuration beforehand and use the same setting
to compare different strategies.

B. Numerical Results

We first show the performance of various strategies on
server bandwidth saving in thelinear viewingmode. Peers will
not leave the system before they finish the whole video play-
back. The results on differentiated pre-fetching are presented
next. Then we study the performance with batch peer joins and
early peer departures. At last, we compare the performance of
iPASS with other P2P VoD systems.

1) Effectiveness on server cost saving:The server band-
width saving is the most important performance metric to
evaluate the different P2P strategies.
•Server cost evolution illustration.We begin by showing the

0 1000 2000 3000 4000 5000
0

1

2

3
x 10

5

Time (s)

B
an

dw
id

th
 (

kb
ps

)

Aggregate demand
Aggregate peer bw

Startup
Phase

(a) Demand vs. resource

0 1000 2000 3000 4000 5000
0

1

2

3

4

5
x 10

4

Time(s)

S
er

ve
r

B
W

 c
os

t (
kb

ps
)

ranp_np
ranp_wp
bpbp_np
bpbp_inc

(b) Instant server cost

Fig. 5. Server cost under different peering strategy

evolution of server cost during one simulation session. Fig.
5(a) shows the instant aggregate user demand and the peer

bandwidth when the normalized average peer bandwidth(ρ)
equals to 1.3. There are no peers in the system at the
beginning. The first peer finished playback and leave the
system at1, 800 second. The time period[0, 1, 800] is the
system startup phase. Fig. 5(b) presents the instant server cost
under the different strategies. We can observe that the server
cost of random peering strategies increase almost linearlyat
the startup phase as the number of peers increases, then the
curves oscillate closely with the instant peer average band-
width. However, for BPB-peering strategies, it is interesting
to observe that the server cost increases in a short period and
maintains almost constant at the startup phase. Peers join the
system early have limited data to share with each other. The
server has to stream data to them directly. When more peers
get into the system, peers start to download data from each
other. When the startup phase is over, the server cost drops
nearly to zero inbpbp inc strategy. Later simulation results
show that a certain amount of peers evolve into seeds can
take the place of the server. Without pre-fetching,bpbp np
is also sensitive to the average peer bandwidth resource. It
successfully control the server cost at low level. We can
find whenρ = 1.3, in the comparison of original streaming
solution without P2P support, the random-peering without pre-
fetching strategy (ranp np) can save at least around75%
server bandwidth. The saving can be improved to85% with
pre-fetching. With BPB-peering, thebpbp np can enhance the
saving further to around95%. Moreover,bpbp inc can sustain
the system without server cost after the startup phase.
•Performance with various peer distribution. Next we

examine the server cost savings with different normalized
peer average bandwidth. Fig. 6(a) shows the average server
cost after the first50 mins. As the system resource increases,
the cost of all strategies drops.bpbp np and bpbp inc both
achieve most bandwidth saving. Especiallybpbp inc can sus-
tain itself without server whenρ > 1.2. The BPB-peering can
effectively improve the scheduling efficiency, which results in
more server bandwidth saving.Pre-fetching enables peers to
download future content with extra bandwidth, thus reduces
the possibility of data pull from the server in the future. The
ranp wp strategy with pre-fetching can also work without
server whenρ = 1.8. When the normalized average bandwidth
is 0.9, bpbp np slightly outperformsbpbp inc. We believe this
is because that pre-fetching potentially impairs some peers’
normal playback when the whole system is in a bandwidth
resource deficit status. This disadvantage can be conqueredin
iPASS by giving more preference to neighbors who haven’t
fill up the playback window during the scheduling.

Although bpbp np and bpbp inc perform closely in terms
of server bandwidth saving, pre-fetching ofbpbp inc produces
seeds in the system. Fig. 6(c) illustrates the number of seeds
during the simulation with normalized bandwidth equal to1.5.
It is very impressive that forbpbp inc the seed number can
even reach nearly40% of all peers. On the other side, the
ineffectiveness of random peering leads to fewer number of
seeds inranp wp. The existences of seeds make the system
resource allocation more flexible and thus more robust to peer
dynamics. Furthermore, seeds can completely take the place
of the server.

Peers only exchange the interested area information, which

1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7
x 10

4

Normalized average peer upload bandwidth

A
ve

ra
ge

 s
er

ve
r

ba
nd

w
id

th
 c

os
t (

kb
ps

)

ranp_np
ranp_wp
bpbp_np
bpbp_inc

(a) Average server cost in stable period

1 1.2 1.4 1.6 1.8
2.5

3

3.5

4

4.5

5

Normalized average peer upload bandwidth

P
er

ce
nt

ag
e

of
 c

on
tr

ol
 p

ac
ke

t o
ve

rh
ea

d(
%

)

ranp_np
ranp_wp
bpbp_np
bpbp_inc

(b) Control traffic overhead

0 1000 2000 3000 4000 5000
0

50

100

150

200

Time(s)

of

 e
vo

lv
ed

 s
ee

ds

bpbp_inc
ranp_wp

(c) Number of evolved seed

Fig. 6. Performance with various normalized peer bandwidthdistribution

0 50 100 150 200

70

75

80

85

90

95

100

Contribution level(MByte)

D
ow

nl
oa

d
tim

e(
%

 o
f V

id
eo

 L
en

gt
h)

data
 linear Fitting

deficit region

(a) Download time vs. contribution amount

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Seeding Time(% of Video Len)

C
D

F

peer w. 128kbps
peer w. 384kbps
peer w. 1Mbps

(b) CDF of seed lifetime

Fig. 7. Performance with differentiated pre-fetching

is efficient to keep the overhead low. Fig.6(b) shows the
control traffic throughput compared with data traffic. The
overhead contributes less than5% percentage for all cases. As
the resource increases, the exchange between peers become
more effective with large enough bandwidth, which leads to
less control overhead in return. The same phenomena can be
observed between random peeing and BPB-peering strategies,
because the latter is more effective than the former.

2) Impact of Differentiated Pre-fetching:Next we study
the system performance with differentiated pre-fetching.Fig.
7(a) plots the correlation between peer’s download rate and
contribution level asρ = 1.4. The crosses closely scatter
along the linear fitting line, which indicates larger contribution
peers can finish download faster. Peers in the deficit region are
believed to be among the earliest batch of peers which can
hardly find other suppliers to maintain the deserved download
rate although they contribute a lot. As more and more peer
become seeds, the download times of all peers decrease
correspondingly. But the peers with larger contribution still
finish sooner.

The contributions of peers are limited by their upload
bandwidth. Fig. 7(b) plots the cumulative distribution of the
seeding timeof different types of peers, which is defined as
the duration from the time a peer finishes video downloading
till its departure. The peers with zero seeding time are not
counted. We can observe that larger bandwidth peers get longer
seeding time. Peers with1Mbps bandwidth have average
seeding time of18.6% of the video length, while the average
seeding time for peers with384kbps and128kbps are9.9%
and 6.3% respectively. Differentiated pre-fetching enlarges
the seed capability further by encouraging peers with larger
bandwidth to become seeds earlier.

3) Batch Join & Early Departure Scenarios:Simulations
in previous sections assume peers are in linear viewing mode
and only leave the system after they finish their playback.
We now study the system’s performance under different peer
churn models. We start with the flash-crowd scenario where a
batch of peers joins the system at the same time. Asρ = 1.5,
100 peers, almost20% of the maximum number of online
peers, suddenly join the system simultaneously around3, 600
second. Fig. 8(a) shows the server cost evolution. Pre-fetching
prevents the bandwidth cost ofranp wp from jumping up
significantly. However, there are big jumps in both non-pre-
fetching schemesranp np and bpbp np. At the same time,
bpbp inc is highly robust against batch peer arrivals. There is
only a small pulse in the server cost after the batch arrival.
The server cost quickly goes back to zero afterward.

Different from the linear viewing scenario, peers may also
leave the system without finishing playback. We also study the
impact on the system performance due to peer early depar-
tures. In this simulation, the peer lifetime follows a Weibull
distribution. With Weibull distribution parameters(1400, 4),
peers leave the session gradually starting from the 271th sec-
ond. And there are only5.7% peers who will watch the whole
video without early departure. Fig.8(b) shows the average
server cost under various peer bandwidth distributions. The
server cost of all strategies decreases almost half compared
with Fig.6(a). This is because the number of simultaneously
online peers decreases due to the early peer departures. Butthe
relative performance order among different strategies remains
similar. Thebpbp inc still achieves the best performance, and
no server cost is needed whenρ > 1.4.

As an incentive in iPASS, peers are allowed to leave the
system after they finish downloading the whole video. In that
case, it cannot continue to stay as a seed to serve others. To

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6
x 10

4

Time(s)

S
er

ve
r

ba
nd

w
id

th
 c

os
t (

kb
ps

)

ranp_np
ranp_wp
bpbp_np
bpbp_inc
bpbp_inc2

(a) Batch join scenario

1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Normalized average peer upload bandwidth

A
ve

ra
ge

 s
er

ve
r

ba
nd

w
id

th
 c

os
t (

kb
ps

)

ranp_np
ranp_wp
bpbp_np
bpbp_inc

(b) Early departure scenario

Fig. 8. Impact of batchjoin and early departure

verify the impact, we assume all peers are selfish and they will
leave the system as soon as they finish the downloading. The
system performance under this assumption is plotted in Fig.
8(a) using the curve denoted asbpbp inc2. The performance is
close tobpbp inc. The peak value of the pulse due to batch join
at around3, 600 second is also less thanbpbp np and the pulse
soon disappears as time evolves. The adaptive taxation scheme
subsidizes large peers’ bandwidth for small peers. Therefore
the system still benefits a lot from the large peers’ contribution
before they finish the whole download.

4) Comparisons with other VoD Systems:Without detailed
system implementation and parameter settings, we cannot
conduct head-to-head comparisons between iPASS and other
P2P VoD systems. We qualitatively compare iPASS with
some known mesh-based P2P VoD systems using performance
numbers reported by the authors. Simulations of BiTos[10]
assume all users arrive at almost the same time. They are
not comparable with common asynchronous peer simulation
setting. In PONDER[9] system, the server cost saving can
reach95% whenρ = 2.9. In [8], even the best approach with
network coding cannot let chunk delivery ratio exceed70%.
The saving in BASS[15] can only reach34% with their own
setting. The results are all simulated in linear viewing scenario.
While in iPASS, the system can sustain itself without server
whenρ > 1.2. Moreover, with early departure, the system can
also sustain itself whenρ > 1.4 with only 5.7% linear viewing
peers.

VI. CONCLUSION

In this paper, we present the design of iPASS, a novel mesh-
based P2P VoD system. iPASS achieves high peer bandwidth
utilization at low system maintenance cost by adopting a
dynamic buffering-progress-based peering strategy. To provide

incentives for peer uploading, iPASS employs a differentiated
pre-fetching design that enables peers with higher contribution
pre-fetch content at higher speed. We further demonstratedthat
pre-fetching on peers can be coordinated by an adaptive tax-
ation algorithm to simultaneously maintain system-wide QoE
and provide service differentiations among peers with different
contributions. Through detailed packet-level simulations, we
show that iPASS can efficiently offload server and achieve
the desired balance between the system-wide QoE and service
differentiations among heterogeneous peers.

As the next step, we will proceed to prototype iPASS and
test its performance in real network environments. We are also
interested in enhancing the BPB peering strategy to handle
users’ video seeking operations, such as fast-forwarding and
skipping. The differentiated pre-fetching mechanism can be
combined with scalable video coding to provide additional
incentives for capable peers to contribute more. The adaptive
taxation scheme will be redesigned to incorporate video qual-
ity differentiations.

REFERENCES

[1] Youtube, “Youtube Homepage,” http://www.youtube.com.
[2] “BitTorrent Homepage,” http://www.bittorrent.com/.
[3] PPLive, “PPLive Homepage,” http://www.pplive.com.
[4] A. SHARMA, A. BESTAVROS, and I. MATTA, “dPAM: A distributed

prefetching protocol for scalable asynchronous multicastin p2p sys-
tems,” in Proceedings of IEEE International Conference on Network
Protocols (ICNP), 2005.

[5] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-peer
Patching Scheme for VoD Service,” inWorld Wide Web Conference,
2003.

[6] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang,
“Challenges, Design and Analysis of a Large-scale P2P-VoD System,”
in Proceedings of ACM SIGCOMM, 2008.

[7] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley,
and M. Varvello, “PushtoPeer VideoonDemand system: designand
evaluation,” in IEEE Journal on Selected Areas in Communications,
2008.

[8] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena,and D. Gu-
nawardena, “Is High Quality VoD Feasible using P2P Swarming?” in
Proceedings of International World Wide Web Conference, 2007.

[9] Y. Guo, S. Mathur, K. Ramaswamy, S. Yu, and B. Patel, “PONDER:
Performance Aware P2P Video-on-Demand Service,” inProceedings of
GLOBECOM, 2007.

[10] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for Supporting Streaming Applications,” inIEEE Global
Internet Symposium, 2006.

[11] Y.-W. Sung, M. Bishop, and S. Rao, “Enabling Contribution Awareness
in an Overlay Broadcasting System,” inProceedings of ACM SIG-
COMM, 2006.

[12] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “Substream
Trading: Towards an Open P2P Live Streaming System,” inProceedings
of IEEE International Conference on Network Protocols (ICNP), 2008.

[13] C. Huang, J. Li, and K. W. Ross, “Can Internet Video-on-Demand be
Profitable?” inProceedings of ACM SIGCOMM, 2007.

[14] Y. Cui, B. Li, and K. Nahrstedt, “oStream: AsynchronousStreaming
Multicast in Application-Layer Overlay Networks,” inIEEE Journal on
Selected Areas in Communications, 2004.

[15] C. Dana, D. Li, D. Harrison, and C.-N. Chuah, “BASS: BitTorrent
Assisted Streaming System for Video-on-Demand,” inInternational
workshop on multimedia signal processing (MMSP), 2005.

[16] Y. hua Chu, J. Chuang, and H. Zhang, “A case for taxation in peer-
to-peer streaming broadcast,” inProceedings of the ACM SIGCOMM
workshop on Practice and theory of incentives in networked systems,
2004.

[17] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the power
of pull-based streaming protocol: can we do better?”IEEE Journal on
Selected Areas in Communications, 2007.

