
ViVUD: Virtual Server Cluster based View-Upload Decoupling
for Multi-Channel P2P Video Streaming Systems

Chao Liang and Yong Liu
Department of Electrical and Computer Engineering

Polytechnic Institute of New York University
Brooklyn, New York, 11201, USA

Email: {cliang@photon.poly.edu, yongliu@poly.edu}

Abstract—Despite the success to deliver increasingly large
number of channels to millions of users, the current multi-
channel P2P video streaming systems still suffer several funda-
mental performance problems, such as large start-up delaysand
poor performance for unpopular channels. To alleviate the impact
of channel churn and resource imbalance, the View-Upload
Decoupling (VUD) [1] P2P streaming design decouples peer
downloading and uploading, and enables cross-channel resource
sharing. However, VUD incurs upload bandwidth overhead and
distribution swarm management cost. It is also challengingto
adapt VUD distribution swarms in extreme peer churn scenarios,
such as flash-crowd. In this paper, we propose ViVUD, a Virtual
Server Cluster based VUD design. In ViVUD, a virtual server
cluster consisting of bandwidth-rich peers is provisioned to
improve the streaming quality of each channel. A virtual server
cluster provides stable video feeds to boost peers newly joining
a channel to reduce their start-up delays. To enable cross-
channel bandwidth sharing, following the VUD design, virtual
server clusters for unpopular channels are formed by bandwidth-
rich peers watching popular channels. Through analysis and
simulations, we show that, compared with the original VUD
design, ViVUD incurs less upload bandwidth overhead, has
lighter management requirement, achieves lower channel start-
up delays, and adapts faster to flash crowds.

I. I NTRODUCTION

In these years, several large-scale commercial P2P video
streaming systems have been deployed, including Coolstream-
ing [2], PPLive [3]. Recent measurement studies have verified
that hundreds of thousands of users can be simultaneously
participating in these systems [3]. Nearly all P2P video sys-
tems offer multiple channels. And future user-generate-video
streaming systems will likely have thousands if not millions
of live channels.

A common practice in P2P video streaming today is to orga-
nize peers viewing the same channel into a swarm, with peers
in the same swarm redistributing video chunks exclusively to
each other. We refer to such a design asisolated-channelor
more simply asISO P2P streaming systems. However, recent
measurement studies [3] have identified several fundamental
performance problems for isolated-channel systems:large
start-up delayand poor small-channel performance. Current
start-up delays are typically on the order of 10-60 seconds,
which is clearly undesirable as users are accustomed to delays
under 3 seconds in current cable and satellite television sys-
tems. Furthermore, current P2P streaming systems generally
provide inconsistent and poor performance to channels witha
small number of peers.

Recently, a new approach to multi-channel P2P streaming
is proposed, referred asView-Upload Decoupling (VUD)[1].
VUD strictly decouples what a peer uploads from what it
views, bringing stability to multi-channel systems and en-
abling cross-channel resource sharing. In VUD, each peer
is assigned to one or more channels, with the assignments
made independently of what the peer is viewing. For each
assigned channel, the peer helps distribute the channel. This
has the effect of creating a semi-permanentdistribution swarm
for each channel, which is formed by peers responsible for
uploading that channel. Although VUD can effectively address
the performance issues due to channel churn and resource
imbalance in ISO systems, it still suffers from the following
issues:

• Upload bandwidth overhead. VUD introduces upload
bandwidth overhead since each peer now needs to upload
to its assigned channel distribution swarm as well as to
peers outside the distribution swarm but are the viewers
of the channel.

• Distribution swarm management cost. All viewers of a
channel download the video from the channel’s VUD
distribution swarm. A VUD swarm needs to be constantly
monitored and maintained to serve the time-varying view-
ing demand.

• Sluggish adaption to flash crowds. VUD distribution
swarms are built to be semi-permanent. It is challenging
to adapt VUD swarms when there is a sudden increase
in viewing demand for a channel, such as flash crowds.

In this paper, we propose a new cross-channel streaming
design, ViVUD, which improves VUD by the introduction
of virtual server clusters. In ViVUD, instead of complete

Source s

Virtual Server
Cluster

r r
n3

u

n2
un1

u

r

Push Data

Neighborhood

New Joining Node

Bootstrapping Flow

ISO-Mesh

Fig. 1. An illustration of the ViVUD streaming framework.

view-upload decoupling on all peers, most peers upload and
download the video they are viewing in the ISO fashion. The
VUD design is only applied to a small fraction of bandwidth-
rich peers, which are assigned to form semi-permanent virtual
server clusters, one for each channel. Instead of streaming
video to all viewers of a channel, the virtual server cluster
is provisioned to improve the quality of the ISO streaming
between the viewers. Specifically, a virtual server cluster
provides stable video feeds to peers newly joining a channel
to reduce their start-up delays. To improve streaming quality
on existing peers, a virtual server cluster acts as a video proxy
and “amplifies” the bandwidth of the video source server by
actively pushing packets into the ISO mesh. To address the
upload deficiency in unpopular channels, virtual server clusters
for unpopular channels are formed by bandwidth-rich peers
viewing popular channels. Figure 1 illustrates the ViVUD
streaming framework for a single channel.

We propose a set of algorithms to implement ViVUD
streaming framework in Section III. The dimensioning of
virtual server clusters are studied in Section IV. With queuing
network model, we compare the universal streaming probabil-
ity of ViVUD with that of VUD and ISO design in Section V.
Finally, through simulations in Section VI, we demonstrate
that, compared with the original VUD design, ViVUD incurs
less upload bandwidth overhead, has lighter management re-
quirement, achieves lower channel start-up delays, and adapts
faster to flash crowds.

II. RELATED WORK

Most of the previous research on P2P system design focuses
on single isolated channel, without much consideration for
multi-channel optimization. There are only few related work
in the multi-channel setting. Server bandwidth provisioning
algorithms are proposed to adjust the supply of server band-
width among channels in streaming [4] and file sharing appli-
cations [5]. Inter-overlay cooperation mechanisms [6] arepro-
posed to share resources among channels. Decentralized strate-
gies are investigated to resolve the conflicts among coexisting
streaming overlays [7]. The above works mostly consider the
balance of bandwidth resources. They do not directly address
the channel churn and channel resource imbalance problems
in multi-channel streaming systems. Recently, the view-upload
decoupling streaming design [1][8] addresses those problems
by strictly decoupling peer viewing and uploading. Our work
differs in that, we can also resolve the performance problems
as VUD does, but the enhanced approach can be readily
implemented with far less overhead, and can adapt faster to
flash crowd.

III. SYSTEM DESIGN

A. ViVUD Architecture Overview

As illustrated in Figure 1, in ViVUD, there are three major
streaming components for a channel: the channel source server,
VUD Virtual Server Cluster (VSC) formed by bandwidth-
rich peers, and ISO streaming mesh formed by viewers of
the channel. Peers in VSC form a mesh and collaboratively

download video from the channel source server. Due to the
rich bandwidth availability on VSC peers, VSC becomes a
video proxy that “amplifies” the bandwidth of the original
source server. VSC improves the quality of video streaming
to channel viewers in two ways. To reduce the start-up delay,
when a peer joins a channel, it directly downloads the firstx
seconds of video in the download window quickly from the
channel’s VSC. This can greatly reduces the start-up delay
for peers newly joining the system, or switching from other
channels. To improve the streaming quality of existing peers,
VSC pushes copies of content to the main ISO mesh of viewers
to accelerate the video distribution.

B. VSC Formation and Management

In the original VUD design, the channel’s distribution
swarm streams the video to all the viewers. While in ViVUD,
a VSC is only responsible for bootstrapping new peers and
assisting streaming in ISO mesh. Therefore, VSCs have lighter
streaming workload than VUD swarms. The number of peers
needed in a VSC is smaller than that in a VUD swarm. Conse-
quently, the upload bandwidth overhead and management cost
of ViVUD can be made much lower than VUD.

In practice, popular channels with a large number of
viewers have stable and high upload bandwidth availability,
and are more resilient to bandwidth fluctuations caused by
peer churn [3][9]. Peers in popular channels rarely suffer
from bandwidth deficiency. On the other hand, bandwidth
availability in unpopular small channels are very dynamic.As
a result, the streaming quality in unpopular channels is not
consistent [3][10]. To address the resource imbalance problem
between popular and unpopular channels, VSCs only em-
ploy bandwidth-rich peers watching popular channels. Cross-
channel resource sharing is enabled by assigning peers from
popular channels to VSCs of unpopular channels. Peers watch-
ing unpopular channels are helped by stable data feeds from
VSCs, and achieve resilience against bandwidth deficiency.
To further reduce upload bandwidth overhead, the VSC of a
popular channel can be formed by stable bandwidth-rich peers
watching the same channel. It is also possible to adopt the
substream-based swarm design [1] for VSC.

We resort to a tracker-based solution to manage VSCs.
The tracker maintains a pool of bandwidth-rich peers from
popular channels. VSC of each channel has a targeted size
(We will discuss the VSC dimensioning issue in the next
section). For the initial construction, the tracker assigns peers
from the pool to each VSC to reach its target size. The tracker
constantly monitors the operations of VSCs. Whenever a VSC
experiences bandwidth deficiency, either due to some peers
leave the VSC, or there is a sudden increase in the number
of viewers for the channel, the tracker augments the VSC by
allocating more peers to it.

C. Data Sharing Strategies

VSC plays two roles in the video streaming of a channel.
First, it serves as the video proxy and source amplifier for the
ISO mesh. (If allowed by its upload capacity constraint, the

source servers can directly stream additional data to the ISO
mesh.) A small number of VSC peers are reserved to push
stable video feeds to the ISO mesh. Second, VSC bootstraps
the newly joining peers to enhance their start-up performance.
When a peer joins a channel, it contacts the tracker for a list
of VSC peers for the channel. The new peer identifies a VSC
peer as its helper and establishes a connection with it. The
helper bootstraps the new peer by pushing the firstx seconds
of the video content in its download window. If the helper can
upload to the new peer at a rate higher than the streaming rate,
the bootstrapping video can be uploaded iny < x seconds.
The connection with the helper is terminated after the helper
finishes the bootstrapping task. While bootstrapped, the new
peer joins the channel’s ISO mesh, and downloads the video
after the firstx seconds from its neighbors there.

VSC adaptively adjusts the bandwidth allocation between
video pushing to ISO mesh and bootstrapping new peers. If
the actual new peer arrival rate is lower than the expected rate,
idle peers without bootstrapping tasks can also push video
content to the ISO mesh to accelerate the data distribution.
On the other hand, when the new peer arrival rate is higher
than the expected rate, VSC becomes under-provisioned for
new peer bootstrapping. There are two ways to respond. The
VSC can lower the bootstrapping workload for each new peer
by reducingx, the length of bootstrapping video, so that each
new peer will spend less time in the bootstrapping stage. It
opens up some space for VSC to bootstrap more new peers.
Or when newly joining peers cannot be accommodated by the
VSC, they would be directly assigned to the ISO mesh without
going through the bootstrapping stage. In that way, they could
still achieve the start-up delay performance of the ISO design.

IV. D IMENSIONING THE V IRTUAL SERVER CLUSTER

In this section we investigate how to dimension VSCs for
efficient cross-channel sharing. Suppose in a multi-channel
P2P video system, there areJ channels. For channelj, the
source server upload bandwidth isvj and the streaming rate
is rj . The distribution of peer viewing time is arbitrary. Let
ui be the upload rate of peeri. The bandwidth on a VSC peer
is consumed in three different tasks: (I) within VSC, peers
collaboratively retrieve a copy of the video from the source
through P2P upload-download; (II) a VSC peer uploads video
to a new peer to bootstrap its start-up performance; (III) a
VSC peer pushes video to the ISO mesh to accelerate the
content distribution. The per-peer bandwidth consumptionfor
the first task is roughly equal to the video streaming rate (or
the substream rate for substream-based VSC). Only a few VSC
peers are sufficient for the third task. So, we would mainly
focus on dimensioning VSC for the bootstrapping task.

1) VSC Bootstrapping Capacity.Suppose for channelj, the
VSC uploads to newly joining peers the firstx seconds of
content at rateβrj in y seconds, i.e.,x = yβ. Let Xj denote
the random variable of the number of new peers joining the
channel withiny seconds. We define the capacityδ of a VSC
as the number of new peers that the VSC can simultaneously
bootstrap. To achieve a bootstrapping probabilityC, the capac-

ity of VSC for channelj should satisfy

P (Xj < δj) ≥ C. (1)

The aggregate bootstrapping upload bandwidth required is
δjβrj .

2) VSC Provisioning for Cross-channel Sharing.Unpopular
channels borrow bandwidth-rich peers from popular channels
to form their VSCs. To reduce view-upload decoupling band-
width overhead, we can adopt substream-based design for
VSCs for unpopular channels, i.e., a VSC peer only downloads
and uploads one substream. Furthermore, the VSC of a popular
channel would be formed by bandwidth-rich peers viewing the
same channel. Next, we discuss how to conduct cross-channel
sharing between popular channels and unpopular channels.

Let rs
j be the rate of thesth substream in channelj andN s

j

be the set of VSC peers handling substreams for channelj.
For an unpopular channelj ∈ JU , to satisfy the bootstrapping
requirement in Equation (1), we obtain

∑

i∈N s
j

(ui − rs
j) ≥ δjβrs

j . (2)

In addition to the bootstrapping bandwidth, VSC of an un-
popular channel also addresses the bandwidth deficiency of
ISO mesh. For this purpose, an additional amountPj of
bandwidth is needed for pushing video to secure the streaming
performance in ISO mesh. If channelj is divided into Sj

substreams with homogeneous rate, and the VSC only accepts
one type of peer with upload capacityup, the bandwidth
overhead ratio is thus1/Sj and the number of VSC peers
needed by channelj is δjβrj+Pj

up−rj/Sj .
Definition 1: The net cross-channel resource flowσj of

channelj is defined as the net amount of outgoing/incoming
bandwidth to/from other channels without overhead.
Suppose the relative popularity of channelj is ρj . The cross-
channel resource flow vectorσ is determined as follows. For
popular channels, we have

σj = −
ρj

∑

i∈J\JU ρi

∑

i∈JU

δiβri + Pi

up − ri/Si
up, ∀j ∈ J \ JU . (3)

The allocation heuristic behind the rule is thatthe channel
with more popularity should share more resources to help the
unpopular ones. For unpopular channels, the net cross-channel
resource flow isσj = δjβrj + Pj .

V. M ODELING AND ANALYSIS

To compare the performance of ViVUD with VUD and
ISO design, we apply the closed queuing network models and
formulate the multi-channel P2P streaming system in the same
way as [8]. Under the same closed queuing network model,
we focus on the case of a fixed number of peers, modeling
the systems with always-on devices or low peer churn rate.

1) Queueing network model. Let λ = (λ1, · · · , λJ) be the
unique probability distribution of arrival rate that satisfiesλ =
λP, whereP is the channel switching matrix. Let1/µj denote
the expected amount of time a peer continuously views channel
j and defineρj = λj/µj . Note thatλj is the relative arrival

rate into channelj, andρj is the relative channel popularity.
Small channels have relatively low values ofρj . We normalize
theρj ’s so thatρ1+· · ·+ρJ = 1. Let Mj be a random variable
denoting the number of peers viewing channelj. Each ofn
peers is viewing some channel. Because the total number of
peers viewing channels is fixed atn, we haveM1+· · ·+MJ =
n. Thus, the random variablesM1, . . . , MJ are dependent.
By viewing the system as an infinite-server Jackson queuing
network [11], with each channel being a node in the network,
and each peer as a customer which sojourns at nodej for
a random amount of time with mean1/µj, we immediately
arrive at the following result:

Lemma 1:For anym1, . . . , mJ with m1 + · · · + mJ = n,
we have

P (M1 = m1, . . . , MJ = mJ) = n!
ρm1

1

m1!
· · ·

ρmJ

J

mJ !
(4)

Note that (M1, . . . , MJ) has a multinomial distribution. It
follows directly from the lemma thatE[Mj] = nρj and that
Mj has the binomial distribution

P (Mj = mj) =
n!

mj !(n − mj)!
ρ

mj

j (1 − ρj)
(n−mj). (5)

With the distribution of the number of viewers in each
channel, we now determine the distribution of the number
Xj of newly joining peers to be bootstrapped. Letyj be
the bootstrapping period for channelj. Givenyj is short, we
ignore the rare case that a newly joining peer leaves channelj
before the bootstrapping is over, and assume all new peers are
bootstrapped foryj seconds. Each channel could be modeled
by a tandem of two queues, as illustrated in Fig. 2. The
first queue has the deterministic service time ofyj , while
the average service time for the second queue is1/µj − yj.
The numberXj of peers in bootstrapping stage corresponds
to the number of viewers in the first queue. The relative
popularity of the first queue for channelj can be calculated
as ρ1

j = yjµjρj . Hence, we can derive the distribution of
Xj based on Lemma 1. And we can further determine the
dimensioning of VSCs, and the net cross-channel resource
flow σ.

t2j = 1/µj − yj

tj t1j

i

k

l

λj

λj

i

k

l

λj

tj = 1/µj t1j = yj

t2j

Fig. 2. Transformation of channel queue.

Let Mj be the set of peers viewing channelj. The proba-
bility of system-wide universal streaming of ViVUD is

PS = P (vj +
∑

i∈Mj

ui + σj ≥ Mjrj , j = 1, . . . , J)

where Mj is a random set andMj = |Mj |. We can
calculate this probability using Monte Carlo methods and
importance sampling [12]. We repeatedly generate samples
{M1, . . . ,MJ}, evaluate the event in the above probability

(as 0 or 1) and take averages. Suppose there are two classes
of peers:nl peers with low upload rateul; andnh peers with
high upload ratesuh. For a given channelj in ViVUD, the
probability of universal streaming is given by

PUj = P (vj +
∑

i∈Mj

ui + σj ≥ Mjrj)

= P (vj + uhMh
j + ulM l

j + σj ≥ (Mh
j + M l

j)rj)

=

nh

∑

Mh
j

=0

nl

∑

Ml
j
=0

I(vj + uhmh
j + ulml

j + σj ≥

(mh
j + ml

j)rj)P (Mh
j = mh

j)P (M l
j = ml

j),

whereP (Mh
j = mh

j) =
(

nh

mh
j

)

ρ
mh

j

j (1−ρj)
nh−mh

j andP (M l
j =

ml
j) =

(

nl

ml
j

)

ρ
ml

j

j (1 − ρj)
nl−ml

j .
2) Numerical results. In the simulation setting, there are

1, 800 peers and20 channels. Each channel has the same rate
r and the channel popularity follows a Zipf distribution. There
are two classes of peers with upload bandwidthul = 0.2r
and uh = 3r. These two classes of peers have the equal
distribution. For the dimensioning of ViVUD, we setC = 0.8
and β = 1. VSC peers download the full video stream.
In VUD, the streaming in each channel is divided into10
substreams. A channel with the average number of viewers
less than30 is treated as an unpopular channel. We assume
the bootstrapping time for an unpopular channelj is set to
be yj = θ/µj, θ < 1. Fig. 3(a) shows ViVUD can achieve

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Zipf Parameter

P
S

ISO
VUD
ViVUD θ=0.05
ViVUD θ=0.20

(a) PS

0 5 10 15 20
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Channel ID

P
U

j

ISO
VUD
ViVUD θ=0.05
ViVUD θ=0.20

(b) PUj

Fig. 3. The universal streaming probability ofPS andPUj .

higher probability of system-wide universal streaming under
different channel popularity distributions. Fig. 3(b) plots the
probability of universal streaming for each channel when the
Zipf parameter is1.5. We can observe that the unpopular
channels in ViVUD are more resilient to bandwidth fluctuation
than VUD and ISO, the cross-channel sharing does not have
much negative impact on the popular channels, thanks to the
relatively small resource demands from unpopular channels.
Furthermore, ViVUD incurs much less overhead, which is less
than 1% even whenθ = 0.2, while the overhead of VUD is
10% with 10 substreams in each channel.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive packet-level simula-
tions to evaluate the performance of the proposed strategies.

A. Simulation Setting

To compare the performance of different multi-channel
streaming design, we implement an event-driven P2P stream-
ing simulator which can simulate packet-level transmissions
and end-to-end latency among peers. In our simulation, it
is assumed that the bottleneck only happens at the edge
of networks, and all the participating peers have enough
download bandwidth. The video streaming rate is400kbps.
The source server upload bandwidth is set to be1Mbps as
default for each channel. Three types of peers are assigned
with upload bandwidth1.6Mbps, 384kbps and128kbps. The
corresponding fractions of them are (0.15, 0.51, 0.34), and the
resource index of the system is almost1.2.

To complement the analysis based on closed-queuing net-
work, we simulate an open multi-channel system. There are
15 channels and the popularity of the channels follows Zipf
distribution. Peers arrive at the system according to a Poisson
process. Peer viewing time in a channel follows a Weibull dis-
tribution. After a peer finishes viewing a channel, it leavesthe
system with certain probability, or switches to another channel
with a probability proportional to the channel popularity.The
average number of active peers in the system is2, 000.

B. Simulation Results

1) Multi-channel Performance:VSCs are formed by the
class of peers with1.6Mbps upload bandwidth. Each VSC
is provisioned with twice of the required bootstrapping band-
width. The bootstrapping time for new peers is2 seconds. The
start-up delay is counted as the time that a new peer needs to
fill up at least70% of the first5 seconds of buffer since it joins
the channel. Figure 4(a) plots the CCDF of the video delivery
ratio performance. ViVUD greatly improves streaming quality
for unpopular channels. Almost80% unpopular channels have
delivery ratio above90%, while the delivery ratio is around
70% in ISO design. Furthermore, Figure 4(b) shows that
ViVUD can achieve lower start-up delay with nearly90%
peers having start-up delay less than5 seconds.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

Delivery Ratio

C
C

D
F

ViVUD popular
ViVUD unpopular
ISO popular
ISO unpopular

(a) Delivery Ratio

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Start−up Delay (Second)

C
D

F

ViVUD popular
ViVUD unpopular
ISO popular
ISO unpopular

(b) Start-up Delay

Fig. 4. Multi-channel performance.

2) Robustness against flash crowds:We compare the single
channel performance of ViVUD and ISO under flash crowd
scenario. In this simulation, the peer arrival follows the
Poisson distribution with meanλ = 1. The peer lifetime is
distributed with Weibull distribution parameters (600,2). In
ViVUD, each VSC is provisioned with6 peers for bootstrap-
ping, and5 peers reserved for pushing to ISO mesh. Between
time 400 and 405, there is a batch arrival of peers at a rate

of 60 peers per second. Figure 5(a) shows the evolution of
number of online peers and delivery ratio of both schemes.
We can observe that ViVUD can provide higher delivery ratio
than ISO. Figure 5(b) presents the start-up delay of peers with
different joining time. We can observe that peers cannot get
satisfactory start-up delay performance during the short flash
crowd period. Other than that period, ViVUD can always
bootstrap new peers well and allow them to achieve lower
start-up delay than ISO.

200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Second)

A
ve

ra
ge

 D
el

iv
er

y
R

at
io

200 400 600 800 1000
0.2

0.4

0.6

0.8

1

1.2

N
um

be
r

of
 O

nl
in

e
P

ee
rs

 (
K

)

ViVUD
ISO

of Online Peers

(a) Delivery Ratio

200 400 600 800 1000
0

10

20

30

40

50

Peer Joining Time (Second)

S
ta

rt
−

up
 D

el
ay

 (
S

ec
on

d)

ViVUD
ISO

(b) Start-up Delay

Fig. 5. Single channel performance under flash crowd.

VII. C ONCLUSION

In this paper, we proposed a virtual server cluster based
VUD design (ViVUD) to address the performance problems
in the original VUD and ISO design. ViVUD employs vir-
tual server clusters to bootstrap newly joining peers, and
enables cross-channel sharing by assigning bandwidth-rich
peers from popular channels to VSCs of unpopular channels.
Through modeling, analysis and simulation, we demonstrated
that, compared with the original VUD design, ViVUD has
lighter management requirement, achieves lower channel start-
up delays, and adapts faster to flash crowds.

REFERENCES

[1] D. Wu, C. Liang, Y. Liu, and K. Ross, “View-Upload Decoupling: A
Redesign of Multi-Channel P2P Video Systems,” inProceedings of IEEE
INFOCOM, 2009.

[2] B. Li, S. Xie, Y. Qu, G. Keung, C. Lin, J. Liu, and X. Zhang, “In-
side the new coolstreaming: Principles, measurements and performance
implications,” in Proceedings of IEEE INFOCOM, 2008.

[3] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study
of a large-scale P2P IPTV system,”IEEE Transactions on Multimedia,
vol. 9, no. 8, 2007.

[4] C. Wu, B. Li, and S. Zhao, “Multi-channel live p2p streaming: Refo-
cusing on servers,” inProceedings of IEEE INFOCOM, 2008.

[5] R. S. Peterson and E. G. Sirer, “Antfarm: Efficient Content Distribution
with Managed Swarms,” inSymposium on Networked System Design
and Implementation (NSDI), 2009.

[6] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “Anysee: Peer-to-peer
live streaming,” inProceedings of IEEE INFOCOM, 2006.

[7] C. Wu, B. Li, and S. Zhao, “Strategies of conflict in coexisting streaming
overlays,” inProceedings of IEEE INFOCOM, 2007.

[8] D. Wu, Y. Liu, and K. Ross, “Modeling and Analysis of Multi-Channel
P2P Live Video Systems,” inProceedings of IEEE INFOCOM, 2009.

[9] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory forP2P
streaming systems,” inProceedings of IEEE INFOCOM, 2007.

[10] Z. Liu, C. Wu, B. Li, and S. Zhao, “Why are peers less stable in
unpopular p2p streaming channels?”IFIP Networking, 2009.

[11] F. P. Kelly, Reversibility and Stochastic Networks. Chichester: Wiley,
1979.

[12] C. P. Robert and G. Casella,Monte Carlo Statistical Methods (second
edition). New York: Springer-Verlag, 2004.

