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Abstract—Denial of Service attacks are becoming an in- with low traffic rate, which makes the detection difficult.
creasing threat to our information infrastructure. By exploit-  This is in contrary to most research on TCP which has
ing vulnerability in existing protocols and infrastructures, e focused on how to increase its throughput and decrease
malicious attackers consume resources in networks and servers .
to block or degrade the service to legitimate users. TCP is the, download latency [11] The purpose of our work is to
the dominant network transport protocol. It relies on the  Point out the vulnerabilities in current TCP protocols and
participating hosts’ cooperation to make data transmission hopefully draw more attention on the study of TCP in the
successful. This kind of trust has been exploited in some context of security.

DoS attacks, such as SYN-flooding attack. In this paper, we TCP is the dominant network transport protocol, and es-
investigate how a TCP client can extend the duration of its - !
connection with a server only by setting the pace of sending sentially a close-loop contrpl protocol. Its operation largely
back acknowledgement packets. Our study shows that the depends on the collaboration and trust between the server
duration of a TCP connection could be extended tens of times and the client. The server relies on the client's feedback,
without incurring timeout retransmission. This mechanism jn the form of acknowledgement, to adjust its sending rate.
can potentially be used by attackers to launch DoS attacks s provides the possibility for the client to control the

by generating simultaneous prolonged TCP connections with \ di te by simpl ioulating th f
the victim servers. Unlike SYN-flooding attacks, the low rate SETVErs Sending rate by simply manipulaling theé pace o

property of slow TCP connections makes the detection of this Sending back acknowledgement packets.
kind of attack difficult, which calls for a further study on this We first demonstrate the feasibility of extending TCP

issue. connection duration by increasing its round trip time. This is
achieved by introducing artificial delays through a network
emulator between the client and the server. Then, we present

Denial of service attacks aim at consuming targets® detailed study on how a client can deliberately delay
resources, such as network bandwidth, server CPU tima&cknowledgement packets to throttle down its connection’s
TCP connections, etc., to prevent or degrade services $§nding rate and extend the duration of the connection.
legitimate users. One way to occupy resource is to generaf¢ée investigate to what extent a TCP connection can be
requests at very high rate [4][7][16]. For example, SYNStretched so that it still appears to the server a “normal”
flooding attack relies on large volume of requesting packe&®nnection. We focus on the case where the client greedily
to overwhelming the target. The request rate necessa?VetCheS its connection, and in the same time tries to
to overwhelm a victim server increases with the servergvoid TCP timeout at the server. While TCP timeout helps
capacity. It was shown in [3] th&00 SYN packets per sec- t0 prolong connections, frequent timeouts could alert the
ond would overwhelm an unprotected server, while000 ~ server’s intrusion detection system. Therefore the server's
packets per second would be needed to disable a protectédP timeout value serves as an upper bound of the delay
server. An attack with large volume of traffic is significantthe client can put on acknowledgement packets. Fortunately
and easy to be detected by routers and traffic monitor§infortunately), in order to deal with heterogeneity and
Once an attack is detected, many effective mechanisrfighdomness in networks, TCP reserves a large margin in
[15][14][12] could be used to trace the source of attackingts retransmission timeout value. We will present client-end
Moreover, a feature called SYN-Cookies is implemented ig/gorithm to estimate and largely stretch the retransmission
Linux and FreeBSD to mitigate SYN-Flood effect [17]. timeout value at the server end under different network

Another way to occupy resource is to genera’[e |On§ituaﬂ0n5. Our NS-2 simulations show that the durations
duration connections with servers. While a client can redf TCP connections can be stretched tens of times without
quest large files available on a web server to establish lofgggering timeout retransmission. We also show through
connections, the high data volume in transferring large file@xperiments that legitimate users would suffer if multiple
is again easy to be detected. In this paper, we study hatlow TCP connections are initiated toward the server.

a client can stretch its connection by slowing down TCP Slow TCP connections are “well-suited” low rate DoS
data transmission rate. By doing that, the client can occugftack. To guarantee performance, web servers set up a

a large number of TCP connections available at the serv&it on the number of concurrent connections. An attacker,
as a TCP client, launches a large number of low rate
S. Cai and W. Gong are with Department of Electrical and Computef CPconnections, either from one machine or a cluster
Engineering, University of Massachusetts, Amherst, MA 01(83i, of comprised machines, to use up connections available at
gong@ecs.umass.edu) ; Narsi the server. Unlike traditional high rate DoS attack, the low
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Massachusetts, Amherst, MA, 0100pongliu@cs.umass.edu) traffic rate property of this type of attacks makes them more
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difficult for routers and traffic monitors to detect. AlthoughFor example, the default value for maximum clients served

we present several possible solutions, we believe the trusitmultaneously in Apache server 1$0 [13], i.e, if more

built in TCP protocol is the source of this kind of attack.than 150 requests come for web content at the same time,

We believe a further study on how to construct a moreome of them have to wait until those in serving finish.

secure network infrastructure and protocols is needed tolf the data transmission is extended, the related resource

finally solve this problem. This kind of study would helpat the server, in both transport and application layers,

understand the vulnerability of the system and the possibleould be occupied longer. Before we proceed on, we

attacking approaches, then preventive mechanism could heed to answer this question first: is the server tolerant of

equipped before the vulnerability is exploited or detectiomxtended data transmission to consume its resource longer?

methods could be deployed to detect the attack. The following experiment shows that a delay component
The rest of this paper is organized as follows. Section lbetween the client and the server could result in longer

demonstrates the feasibility of extending TCP duratiomCP connection and serving time in web server.

by introducing additional delay in round trip time. In

Section Ill, we focus on studying how to extend theB. Extended Round Trip Time in TCP Connection

T.CP co.nnect!on k.)y controlling agknpwledgement packets In TCP protocol, the receiver is required to send acknowl-

without incurring timeout retransmission. Section IV shows

" dgement packets to the sender, to ensure a reliable data
that a legitimate user could suffer from those slow TC'fransmission. Round trip time records time interval from

connections. In Section V we study the feasibility of slowWhen the data packet is sent to when an acknowledgement
TCP in denial of service attack and its possible solutionsp.acket is received. Suppose Host A sends a packet to Host
Section VI concludes this paper. B, and receives an acknowledgement packet from Host B,
Il. EXTENDED ROUND TRIP TIME AND ITS EFFECT on  the round trip time consists of three parts: the propagation
DURATION OF CONNECTION time rtt4_.p from Host A to Host B, the processing

time rttg in Host B, the propagation timetig_. 4 from

TCP protocol provides reliable data transmission to a40st B to Host A. Therefore. the round trip timet can
plication layer. The resources involved in data transmissiog : '

: . o be expressed asitt = rita_ tt ttp—a. NO
include those in transport layer and application layer. In thi P rttap + Tiip 4 rito.a

. . . . . echanism in TCP protocol is used to tell how round tri
section, we first describe the interaction between transpqr P P

laver and application laver during data transmission s\?l e is divided by these three components. Therefore, for
y pplicatl Y urng ISSIon. ost A, increasing processing timetp at Host B has the

e o e aros o i et a3 creasng popagaon tme between 1

. . . P Yer. HBsts: both ways increase round trip time.

time consists of different components, a delay component

introduced between client gnd server to inc_reage round trH?. Experimental Study: Round Trip Time and TCP Con-

time could extend the serving time at application layer : :

. . ection Duration

well as the duration of TCP connection at transport layer.

Our experiment shows the resource at the server could beThe following experiment is to clear the doubt on whether

occupied longer if data transmission is extended. real TCP implementation and the applications built on it
would allow long round trip time, and help understand the

A. Data Transmission: Resource Consumption at Transpogifect of extended round trip time on the duration of TCP

and Application Layer connection and serving time of the application.

A TCP connection normally has three stages: connec- The experiment setting in Figure 1 consists of one server
tion setup, data transmission and connection tear-down. aad two clients. All computers run Linux operating system.
typical scenario when a client requests data/service fromTdie server is installed with Apache software [13] to provide
server consists of: (1) the client sends SYN request to theeb service. A software called NIST NET [8] is installed
server, and a three-way handshake makes the connectionclientl. NIST NET is to introduce delay fromerver
established; (2) After the connection is established, thi® clientl. In figure 1, each packet frogerver to clientl
server passes data from application layer to transport lay&vpuld first feed into NIST NET and then NIST NET passes
and then the data reaches the client; (3) After the servpacket toclientl after the specific delay, while the packets
sends all the data to the client, it tears down the connectidrom clientl to server would directly propagate tserver.
by sending FIN packet to the client. And a couple of packethe delay introduced by NIST NET increases round trip
exchanges finish the connection. time betweerserver andclientl.

Each stage of TCP connection involves resource con- In our experiment, we configure the delay introduced by
sumption. So does data transmission. After three-way hanBiST NET from0 to 12sec, withlsec as one step. For each
shake, the server starts to transmit data from applicatiaelay, three files at the server whose sizes1&i®, 100kB,
layer to transport layer. From this time till the connection i200KB respectively are retrieved. Each case is repeated
torn down, the operating system at the server has to allocé@ times to have the average of the result. We record the
resource for application layer. This resource has a limitatiomluration of TCP connection afientl and get the serving



Therefore, the client would adjust the pace of acknowledge-
ment packets within the range of retransmission timeout at

. the server. In a word, the objective of this section is to
s o om0 Glen study how long a TCP connection could be extended by the
client controlling acknowledgement packet transmissions,

Fig. 1. Experiment: RTT and TCP Duration given no timeout retransmission occurs at the server.

To simplify our study, we assume:

File Size 200KE e The client acknowledges each packet from the server.

: ‘ ‘ ‘ No loss happenes to the acknowledgement packets.
B e The propagation delay from the client to the server is

R the same as that from the server to the client.

N

// eThe TCP behavior is described in terms of “rounds”.
! 7 A round starts when the server begins the transmission
of a window of packets and ends when the it receives an

m
8

Duration of TCP Connection (sec)

i /// | acknowledgement for one or more of these packets.
’ // B. TCP Operations
E R In our study, the client will introduce an artificial delay to
_F ‘ ‘ ‘ ‘ ‘ ‘ increase round trip time without incurring timeout retrans-
’ ’ " Round Trip Time. . » mission in the server, so we give a brief description of the

calculation of round trip time and retransmission timeout,

Fig. 2. Extended Round Trip Time and its Effect on the Duration of TCRhg operation of RTT timer and RTO timer.

Connection (File Siz&00KE) 1) Round Trip Time, Retransmission TimeoUlit ensure
smooth operation of data transmission, TCP relies on the
following three parameters: smoothed round trip tignet,

time at the server from the web log file. Figure 2 shows themoothed mean deviatiortvar of srtt and retransmission

experiment result for the case with file size 200KB"*. timeout RT'O. The calculation ofsrtt and RT'O could be
In Figure 2, the duration of TCP connection increases agimmarized by the following equations:

round trip time increases. So does the serving time at the

. . . 1
server. Note a gap exists between the duration at the client srtt «— srtt + 1% (rtt — srit)
end and the serving time at the server end. This is mostly 1 1
due to the first several SYN packets and the last several rttvar «— rttvar + g(\rtt — srtt| — rttvar) @)

EIN packets, since the serving time would only record the RTO — srtt + 4 x ritvar
time the web server takes over and processes the data.
wherertt is the measured round trip time.

lll. DATA TRANSMISSIONEXTENDED BY The initial values ofsrtt, rttvar and RTO are 0s, 3s,

MANIPULATING ACKNOWLEDGEMENT PACKET 6s. srtt, rttvar and thusRTO are updated whenever the
We present the objective and assumption of our studpCK packet for a timed data packet arrives.

and use TCP implementation in BSD UNIX [19] as an 2) Operation of RTT and RTO Timetn BSD version
example to show how the client manipulates acknowledg¢19], RTT and RTO timers work as follows
ment packets to extend TCP connection without incurring ¢ When TCP transmits a data packet, if the RTT timer
retransmission timeout at the server. Finally, we have and RTO timer are not used, this data packet will be timed,
discussion on the variants of TCP implementation. otherwise, the data packet would not be timed. In Figure 3,
at time t;, one data packet is sent from the server. Since

A. Objective and Assun_1pt|0n o ~ there is no data packet being timed at timme RTT timer
Our study on extension of TCP connection is mainlyzng RTO timer both start to time this packet.

from attacker’s point of view. The objective is to extend o since only one RTT timer and one RTO timer are

the duration of TCP connection, and at the same, to makgajlable for a TCP connection, only one packet could be
the TCP connection look normal to the server. Thereforgymed each time. In Figure 3, in addition to the first packet
we bear several points in our mind during the study: (13ent at timet;, the other data packets sent betweernd

We want each TCP connection to experience its previousb’l/ are not measured for round trip time because RTT timer
described three stages. (2) The round trip time should Bgs peen used to time the data packet sent.at

adjusted gracefully. Though a couple of timeout retrans- o |f there are data packets sent but not acknowledged,

missions could increase round trip time, an attack initiatefbTo timer will be set to time one data packet. In Figure 3,
by this mechanism could alert intrusion detection system.

2Since the case of timeout retransmission is not studied in this paper,
1we refer the readers to [2] for the other two cases. we refer readers to [19] for details.



LI ENT updated round by round. To have an estimate of those

parameters locally, the client needs to estimate those pa-
7 rameters each round. We usett[i], c_srtt[i], c_rttvar]i]
SERVER ! and c_RTOli] to represent the client's estimate on corre-

t%l 777777777777 ;1 L b & sponding parameters that the server has at rauMithen
Ind 1 I 1 . . . .
the client receives packets of thith round, it introduces
RS S "

some artificial delaydelayli] for their acknowledgements
to extend their round trip time to_rtt[i]. It then updates

— RTT i RTO TI MER R X .
Measur ement RESET c_srit[i + 1], crttvar(i + 1] and c_.RTO[i + 1] for the
next round. To avoid timeout retransmission, the client
Fig. 3. Operation of RTT and RTO timer sets the target round trip timertt[i] to be smaller than

¢_RTO[i], to make room for the variability of propagation
delay between the server and the client. A small margin of

RTO timer is first used to time data packet at timeAfter 7 IS introduced such that
the acknowledgement packet is receivedf'latRTO timer
will reset to time those data packets not yet acknowledged. crttli] = c.RTO[i] — 7 (2)
e When TCP detects duplicate ACKs and a fast retrans-
mission is initiated, RTT and RTO timers are reset to time |n the case when there is no packet loss, only the first

this retransmitted data packet, even they are being useddgta packet in each round is timed. The client would need
time other data packets. In figure 3, betwelgnandt,, the sequence number of the first data packet of each round,
there is a data packet loss. At timg, the server receives so that it could introduce new artificial delay, and update
duplicate ACKs, and retransmits the lost packet. The RThe corresponding parameters for next round. If we do not
and RTO timers are reset to time this retransmitted packejonsider the limit of slow start threshold and advertised
C. Round Trip Time Extended through AcknowledgemeWui”dOW size, the timed packgts are those data packets with
Packet Controlling sequence r_numbe:i" — 1, while n = 0,1,2.... _For the
case with given slow start threshold and advertised window

From server point of view, the round trip time is thesize, the sequence numbers of timed data packets can also

interval between when the server sends the data pachgt .o\ jateq accordingly. Another way of inferring the

and when the server gets the ACK packet. It consists (ﬁfmed packets which doesn't depend on packet sequence

three parts: the propagation time from the server to the per il be presented in Section 1lI-C.2. Once the

client, the processing time at the client, and the propagati lient identifies packets timed by the server, the procedure
time from the client to the server. The calculation of roun f updating the estimate of those parametérs could be

trip time depends on acknowledgement packets from trbeescribed as follows:
client. No mechanism in TCP protocol could identify each e When the first data packet arives at the client. the
component of round trip time. The client could control the P '

pace of acknowledgement packet, in particular, hold th%llent needs to decide how much artificial delay it will

acknowledgement packet to increase the round trip time_mtroduce before sending the acknowledgement packet. The

Our study is focused on how the client could introduc«?IIent knows the initial value of RTO at the serverfs,

artificial delay to increase round trip time gracefully and"& c-RTO(0) = 6. Therefore, the client would introduce

extend the TCP connection without incurring timeout regrtificial delay timedealy[0] for data packet of this round:

transmission. This is possible due to the following factors:
(1) The client could measure the propagation delay from the dealy|0] = 6.0 — 2% rttg — 7 ©)
time stamp of data packets; (2) The client knows whether ’ ’

data packet gets lost or not earlier than the server; (3) Tr\1/velwerer is the margin to make the round trip time of each
client knows TCP algorithms in updatingtt, rttvar and 9 b

. packet smaller tha®T'O, rtt, is the propagation time from
RT'O and can predict those values at server end. ﬁerver to the client, which can be estimated by the client by

1) TCP with Extended Round Trip Time and No I:)aCketakin the difference between a packet’s arrival time at the
Loss: To extend the duration of TCP connection without 9 P

client end and its time stamp put by the server. Thef0],

incurring timeout retransmission, the client needs to knovt\f1e round trio time seen by the server. can be estimated as:
how much artificial delay should be introduced for each P y ' '

acknowledgement packet. Before making the decision, the

client needs to know the value dRTO at the server. crtt[0] = 6.0 — 7. (4)
The client will have to keep an estimate of all the related
parameters used in the server. e Once the server gets the acknowledgement for the first

TCP protocol transmits data packets in the unit of roundhacket, it would initialize the values ofrtt, rttvar and
The related parameterstt, srtt, rttvar and RTO are updateRT'O. The client could update its estimate on these



TABLE |

RTOVS ROUND NUMBER this assumption, the server would receive duplicate ACKs

for each lost packet. Duplicate ACKs would trigger fast

7 | Round 1] Round 2| Round 3| Round 4| Round 5 retransmission and fast recovery algorithm [19]. From the
8-; 3'1888 %352 jg-;gég ;;-8;‘33 duplicated ACKs, the server could infer which data packet
05 T 165000 255625 214063 T 691172 is lost, and retransmit |t._ At the same t!me, the server will
0.7 | 15.9000 | 24.3875 | 39.2188 | 65.1516 reset the RTT and RTO timers to time this retransmitted data
0.9 | 153000 | 23.2125 | 37.0313 | 61.1859 | 103.4285 packet. The client will have to detect this retransmission

and synchronize its calculation with the server's option.
The algorithm presented in Section 11I-C.1, which uses the
parameters: sequence number to infer those timed packets, no longer
c_srtt[1] = crtt[0] quks in_this scenario. _The cl_ient must ha\_/e a new algorithm
1 to infer timed packets, including both the first packet of each
crttvar[l] ==c_rtt[0] (5) new round and the retransmitted packets.
2 The key observation here is that there is only one RTT
¢-RTO[] =c.srit[l] + 4  crttvar(l]. timer at the server end. When there is no packet loss,

Then, when the client receives the second round of packdt¥ server will time another packet only after it receives

from the server, it could apply the artificial delay as acknowledgement for the previous timed packet. On the
other hand, if one packet is lost, server will immediately

dealy(l] = c.RTO[1] — 2 rtto — . (6)  switch to time the retransmitted packet. Then the client's

This makes the round trip time of packets in the seconterative algorithm to infer timed packets can be described

follows:
round equal tac_rtt[1] = c.RTO[1] — . as : , : .
« This procedure can be carried out by the client iter- . e When the client doesn’t receive any duplicated ACKs,

atively: During roundi, the client calculates the artificial given that timed data packet in the current round has a time

: : . . stampt and the client’s target round trip time dsrtt, it can
delay asdealy[i] = c.RTO[i] —2*rtto — 7. By introducing . :
this delay, the client extends the round trip time of packet'g'.]cer that the acknowledgement of the current timed packet

in roundi to c_rtt[i] — c_.RTO[i]— . Then the client could will arrive at the server at time + c_rtt. Therefore, the

always predict the server's parameters of round1 after next timed packet s the f|rst_ pack_et sent out aﬁerc,rtt._
: , Then the client can update its estimates once he receives a
it gets packets of round

packet with time stamp larger thdnt c_rtt.
cosrtt]i +1] = — # csrtt]i] + 1 « crti] e If the client receives more than Fhree packets with
8 8 sequence number larger thamwhile it waits for the packet
crttvarfi + 1] = 3 « crttvarli] + 1. |e_rtt[i] — c_srtt]d]] with sequence numbek, it infers packetk is lost and
sends duplicate ACKs back to the server to trigger the
c-RTOli + 1] = min(M AX_RTO, c.srtt[i] + 4 * crttvar(i]) retransmission. The client also knows the server will reset
its RTT and RTO timers to time the retransmitted packet.
c-RTO[i + 1] will be used in the next round to determineWhen the client receives the retransmitted packet, it again
the artificial delay aslealy[i + 1]. delays the acknowledgement and updates all its estimates
Table | shows the trend of RT'O[:] in the first5 rounds according to the calculation in Section IlI-C.1.
of data transmission. Iy rounds, c.RT'O could reach Figure 4(a) shows how the client infers the timed data
64sec, which isM AX _RTO in BSD TCP implementation packets with no packet loss. At time, the client gets the
[19]. Thus for large-size data transmission, the duration dirst data packet of certain round sent by the server at time
the connection could be extended BY AX _RTO/rtty  t;. The arrival time of its acknowledgement at the server end
times. For small-size data transmission, which finishes ican be calculated as. Therefore, data packets with time
a couple of rounds, Table | shows the total duration of thetamp betweem; and¢; would be considered in the same
connection could be greatly extended as well. round as the current timed packet. The client introduces the
same delay to acknowledgements for these data packets. At
2) TCP with Extended Round Trip Time and Moderatéime t5, the client gets the first data packet with a time
Data Packet Lossin reality, packets are lost from time to stampt, larger thants. The client knows another round of
time in the network. It is common for a TCP connectiorpackets from the server arrives and the received packet is
to experience some packet loss during its life-time. Inimed by the server. It then updates all its estimates.
this section, we present a client algorithm to stretch TCP Figure 4(b) shows how the client infers the timed packet,
connection when there is moderate packet loss. That @d shifts the effective period of the estimated parameters
to say we only study the case where at most one packehen some data packet gets lost. Roundtarts with a
will be dropped each round. This assumption can easilyacket sent out at timeél. The first packet of this round
be justified in a well-engineered network and has beearrives at client end at timé2 and its acknowledgement
commonly adopted in TCP performance studies. Undeeceived by the server at tim@. Then the server begins

N
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(a) Round Adjustment: No Packet Loss (b) Round Adjustment: With Sparse Packet Loss
Fig. 4. Round Adjustment at the Client End

to send another round of packets at titdeand the timers e e
P

are used to time the first packet of this new around. The
client detects the start of rounid- 1 at time¢6 and updates
its estimates as in the previous example. However some
packet sent in round is lost, duplicate ACKs are received
by the server. The lost packet is retransmitted at tife
and RTT and RTO timers are reset to time this packet.
When the client receives the retransmitted packet at time
t7, it updates its estimates again to synchronize with the
server's operation. The new parameters are effective until
the acknowledgement of the retransmitted packet arrives at )
the server at time9. B W

3) Simulation: We implement the mechanism above to
control acknowledgement packet in TCP/Sink in NS simFEig.- 5. Duration of Normal TCP vs Slow TCP (Packet Loss Rate 0.002)
ulator [9]. In TCP/Sink, we use the mechanism mentioned
above to keep in TCP/Sink an estimate of the parameters
in the server, and to introduce artificial delay time for eaC|ﬁgure shows there is a gap between two curves. This gap
packet. A detailed algorithm in tracking the timed packetsncreases at the beginning and converges to certain value,
calculating artificial delay time and updating the estimatge, the ratio of the duration of slow TCP connection over
of the parameters is presented in Technical Report [2]. that of normal TCP connection increases and converges to

A two-node simulation is setup to study how much they constant when the number of data packets transmitted
duration of TCP connection could be extended by oufcreases. As Table | shows, in a couple of rounds, the
mechanism. One node uses TCP/Reno, and serves agx@ended round trip time could become very close to
server, while the other node uses TCP/Sink, and servagAX_RTO, and thus the ratio of the duration between
as a client. A link connecting these two nodes B8b  sljow TCP connection and normal TCP connection would
bandwidth andi00ms delay. The advertised window sizepe approximated by\/ AX_RTO [rtty = 64/0.8 = 80.
is the default value in NS. A ftp flow is setup between therhis trend has been reflected in Figure 5.
server and the client. The amount of data from the server In summary, our simulation result shows the duration
to the client is changed fror to 5000. The experiments of slow TCP connection is tens of times that of normal
are carried out for the two cases: one has no data packetp connection. In our technical report [2], we also list
loss; the other has data packet loss from the server to tBgme other techniques which could be combined with our

client, with packet loss rate ds002. mechanism to extend the duration of TCP connections.
The experiments are used to compare normal TCP con-

nection with slow TCP connection. Figure 5 shows thd. Discussion on Diverse TCP Implementation

simulation result.z-axis represents the number of data gjnce RFC does not specify the detailed implementation
packet the ftp flow wants to send from the server to thgf TCp, the implementation in different operating systems
client. y-axis represents the duration of TCP connection Iaries. However, this does not change the fact that the client
Log scale. The durations of both normal TCP connectiogoy g control the pacing of acknowledgement packets. For
and slow TCP connection are shown in the figure. Figure éxample, “TimeStamp” option [5] is introduced to make
shows the case when the link allows data packefloBSe  the measurement of RTT easier, and could be encrypted by
SWe refer readers to our technical report [2] for the case when there T'g'e server. Nevertheless, the _Cllent_COUId still hold the data
no loss in the link. packet for the delay before it begins to process the data
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In summary, with multiple slow TCP connections to

~+ Smoothed Duration ] request web file from web server, the normal user would
ool ] experience similar delay like slow TCP connections. More-

over, these slow TCP connections involves small TCP

traffic. Therefore slow TCP connections could be used to

extend occupance of resource at application layer and result
in denial of service.

\*%/W:%%f V. DOS ATTACK WITH SLow TCP CONNECTIONS AND

ITS POSSIBLESOLUTIONS

Delay Experienced by Normal User (sec)
o
5
8

2ol ] In previous sections, we have shown TCP client can
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ easily slow down the sending rate of the server and thus
2 4 6 8 10 12 14 16 18 . . . . . .

sample stretch its connection. In this section, we investigate the
_ _ _ _ possible denial of service attacks using multiplew TCP
Fig. 6. Delay Experienced by Normal User with Multiple Slow TCP . . " .
Connections M azClient — 300) connections. In view of the vulnerability exploited by slow
TCP connections, we present a couple of possible counter
measures to such attacks and discuss the difficulties in
completely solving this problem.

packet and generates the acknowledgement packet.
A. Denial of Service Attack Using Slow TCP Connections

Slow TCP connections can be used by malicious users to
launch denial of service attacks to web servers. For a server,

In this section, we present a study on how a normghe number of the connections for specific application is
user could be affected by slow TCP connections. Thimited. For example, in Apache Web server, there is a
web server has a limit on the number of clients it caparameter called/axClients which specifies how many
serve simultaneously. In Apache web server, this number éfients the server could serve simultaneously(the default
reflected in the directivéd/axzClients in the configuration value is 150) [13]. If malicious users establish many slow
file [13]. The default value o azClients is 150. When a TCP connections with the server, and once the number of
web file request arrives, if the number of clients served byonnections reaches the maximum value, legitimate users
web server is less thahl axzClients, the request is served will be totally blocked out.
right away; if the number of clients served by the web server From an attacker’s point of view, slow TCP connection
is MaxClients, the request is put into the waiting queuehas the following properties suitable to denial of service
only after some clients being served finish could the requeattack: (1) A slow TCP connection behaves like a “nor-
in the queue be put into service. mal” TCP connection: three-stage connection, no frequent

We use the computer setting in figurellient1 will ini-  timeout retransmissions, low traffic rate. (2) Since each
tiate multiple threads to simultaneously retrieve #06KB  slow TCP connection can last for a long time, a moderate
file from the web server. The delay introduced by NISTrequest rate is sufficient to overwhelm a server. This reduces
NET is 12sec.Client2 would always have one normal TCPthe cost of DoS attacks in comprising a large number of
connection with the server, also to retrieve ti¥KB file. machines.

In our experiment, we present a simple scenario to show aThe only abnormal symptom of slow TCP is its long
normal user could be affected by slow TCP connections. Weund trip time. However, the server has to be robust to
make Clientl initiate twice the number oM axClients. allow a large range of round trip time. Due to dramatic vari-
Therefore, the server would always hawdaxzClients  ation of traffic conditions and the heterogeneity in networks,
requests being served, andaxClients+ 1 requests in the round trip time varies a lot. The past and recent studies [10]
gueue waiting for service. Therefore, the single request frofd] show TCP Round-trip Time has great variability. Recent
client2 will have to experience the average delay introducestudy observes RTTs range froimsto more than200s
by the long service time of slow TCP connections. Without additional mechanism, the sever would not be able

Figure 6 shows the delay experienced by the normal uséa tell whether the receiver manipulates acknowledgement
when there are multiple slow TCP connections requestingacket to control Round-trip time or not.
web files at the same time. The delay is monitored at the Recently, in order to deal with DDoS flooding attack,
client end, since this is more likely to reflect the web surfer'shere are some mechanisms which suggest controlling traffic
experienced time. Figure 6 show8 samples, and the real at the client end [6]. When the edge router detects there is
delays experienced by the normal user are shown. ThisDDoS attack, it will control the rate of flows. Therefore,
result shows the normal user experiences alBott00sec some artificial delay is introduced into the flow. This has
delay, which is closed to the delay introduced @G¥ient1  made it valid to delay traffic deliberately. In our study, we
in Figure 2. emphasize that the duration of TCP connection could be

IV. EXPERIMENTAL STUDY: THE IMPACT OF SLow TCP
CONNECTIONS ONNORMAL USERS



extended tens of times by slow TCP connections, whicklow TCP connections can possibly be used in denial of ser-
involves with low volume of traffic. To make the situationvice attacks to web servers. Slow TCP connections behave
more complicated, varied durations of slow TCP connedike normal TCP connections. This makes the detection of
tions could be introduced, and make the detection of thisuch attacks difficult. Our study calls for more attention on
kind of attack more difficult. the study of TCP in the context of security.

We hope this work could help demonstrate once again
that the Internet security needs to be reviewed as a whole,

There are two major factors contributing to the appliand starts from the basic assumptions and architecture
cation of slow TCP in DoS attacks: one is its low datarinciples. For example, to counteract the scheme described
transmission rate, the other is the trust inherent in TC this paper, one could try to shorten the TCP timeout limit.
protocol. In view of these, people could propose the possibldowever doing so would immediately reduce the reliability
solutions as follows. of TCP connections in its ability to fight against congestion

e Increase server’s capacity. It can be achieved byursts on the way. To balance the risks brought in via trust,
employing the high end servers or server clusters. It hase need to consider scalable and easy-to-manage moni-
proven to be an efficient way to deal with DoS attackstoring and defense system for trust-based attacks. Current
Despite the cost of increasing capacity, it doesn’t solvflat routing structure of the Internet makes this task very
the problem completely. Attackers can always compromisdifficult and it seems substantial research effort is needed to
more computers to launch larger scale distributed Dofgsolve the entanglement of the trust, convenience, security

B. Possible Solutions and Their Limitation

attack.
e Disconnect slow TCP connection. This method is to
disconnect those TCP connections whose data transmission
is slower than certain threshold. However, this method couldll
deny certain portion of legitimate users. Moreover, the
attackers could extend the duration to the threshold allowgz]
e Track the round trip time between the server and the
neighboring hosts of the client. This method has a hope that
the neighboring hosts of the attacker have normal behaviog]
as protocol specifies. Therefore, monitoring the round trip
time between the server and the neighboring hosts of thi!
client would help the server to detect the abnormal behavior
of the attacker. [5]
e Recently [18] proposed an adaptive overload control for
busy internet servers (called Haboob). Haboob divides the
data service into several stages. Each stage maintains rele-
vant queues. The server would monitor its performance suc {
as the response time, and adjust the admission control poliqg]
accordingly. Therefore, Haboob could adaptively changd®l
the number of connections allowed dynamically. Howeve 1
Haboob has the following vulnerabilities: (1) Haboob usegi 1]
the response time as performance criterion. The response
time of the extended TCP connections provides the serv, bl
the wrong information. (2) The admission control used in
Haboob is achieved by dropping the requests from both
" S . i [1
legitimate and illegitimate users. How to differ Iegltlmate[14
users from illegitimate users remains an unsolved problem.
In summary, the above analysis points out the difficulties
in the possible solutions. This suggests a further study 13
needed on how to solve the denial of service by client-
controlled slow TCP. (16]
VI. CONCLUSION AND DISCUSSIONS [17]
In this paper, we present a mechanism for web clients {68
control the sending rate of web servers just by manipulating
the pace of acknowledgement packets. We show that te)
duration of TCP connection can be slowed down and its
duration can be stretched by tens of times. Those stretched

] J. Mirkovic, P. Reiher, and G. Prier.

] D. Song and A. Perrig.

and reliability, and the overall architecture.
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