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Abstract— Denial of Service attacks are becoming an in-
creasing threat to our information infrastructure. By exploit-
ing vulnerability in existing protocols and infrastructures,
malicious attackers consume resources in networks and servers
to block or degrade the service to legitimate users. TCP is
the dominant network transport protocol. It relies on the
participating hosts’ cooperation to make data transmission
successful. This kind of trust has been exploited in some
DoS attacks, such as SYN-flooding attack. In this paper, we
investigate how a TCP client can extend the duration of its
connection with a server only by setting the pace of sending
back acknowledgement packets. Our study shows that the
duration of a TCP connection could be extended tens of times
without incurring timeout retransmission. This mechanism
can potentially be used by attackers to launch DoS attacks
by generating simultaneous prolonged TCP connections with
the victim servers. Unlike SYN-flooding attacks, the low rate
property of slow TCP connections makes the detection of this
kind of attack difficult, which calls for a further study on this
issue.

I. I NTRODUCTION

Denial of service attacks aim at consuming targets’
resources, such as network bandwidth, server CPU time,
TCP connections, etc., to prevent or degrade services to
legitimate users. One way to occupy resource is to generate
requests at very high rate [4][7][16]. For example, SYN-
flooding attack relies on large volume of requesting packets
to overwhelming the target. The request rate necessary
to overwhelm a victim server increases with the server’s
capacity. It was shown in [3] that500 SYN packets per sec-
ond would overwhelm an unprotected server, while14, 000
packets per second would be needed to disable a protected
server. An attack with large volume of traffic is significant
and easy to be detected by routers and traffic monitors.
Once an attack is detected, many effective mechanisms
[15][14][12] could be used to trace the source of attacking.
Moreover, a feature called SYN-Cookies is implemented in
Linux and FreeBSD to mitigate SYN-Flood effect [17].

Another way to occupy resource is to generate long-
duration connections with servers. While a client can re-
quest large files available on a web server to establish long
connections, the high data volume in transferring large files
is again easy to be detected. In this paper, we study how
a client can stretch its connection by slowing down TCP
data transmission rate. By doing that, the client can occupy
a large number of TCP connections available at the server
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with low traffic rate, which makes the detection difficult.
This is in contrary to most research on TCP which has
been focused on how to increase its throughput and decrease
the download latency [11]. The purpose of our work is to
point out the vulnerabilities in current TCP protocols and
hopefully draw more attention on the study of TCP in the
context of security.

TCP is the dominant network transport protocol, and es-
sentially a close-loop control protocol. Its operation largely
depends on the collaboration and trust between the server
and the client. The server relies on the client’s feedback,
in the form of acknowledgement, to adjust its sending rate.
This provides the possibility for the client to control the
server’s sending rate by simply manipulating the pace of
sending back acknowledgement packets.

We first demonstrate the feasibility of extending TCP
connection duration by increasing its round trip time. This is
achieved by introducing artificial delays through a network
emulator between the client and the server. Then, we present
a detailed study on how a client can deliberately delay
acknowledgement packets to throttle down its connection’s
sending rate and extend the duration of the connection.
We investigate to what extent a TCP connection can be
stretched so that it still appears to the server a “normal”
connection. We focus on the case where the client greedily
stretches its connection, and in the same time tries to
avoid TCP timeout at the server. While TCP timeout helps
to prolong connections, frequent timeouts could alert the
server’s intrusion detection system. Therefore the server’s
TCP timeout value serves as an upper bound of the delay
the client can put on acknowledgement packets. Fortunately
(unfortunately), in order to deal with heterogeneity and
randomness in networks, TCP reserves a large margin in
its retransmission timeout value. We will present client-end
algorithm to estimate and largely stretch the retransmission
timeout value at the server end under different network
situations. Our NS-2 simulations show that the durations
of TCP connections can be stretched tens of times without
triggering timeout retransmission. We also show through
experiments that legitimate users would suffer if multiple
slow TCP connections are initiated toward the server.

Slow TCP connections are “well-suited” inlow rateDoS
attack. To guarantee performance, web servers set up a
limit on the number of concurrent connections. An attacker,
as a TCP client, launches a large number of low rate
TCP connections, either from one machine or a cluster
of comprised machines, to use up connections available at
the server. Unlike traditional high rate DoS attack, the low
traffic rate property of this type of attacks makes them more



difficult for routers and traffic monitors to detect. Although
we present several possible solutions, we believe the trust
built in TCP protocol is the source of this kind of attack.
We believe a further study on how to construct a more
secure network infrastructure and protocols is needed to
finally solve this problem. This kind of study would help
understand the vulnerability of the system and the possible
attacking approaches, then preventive mechanism could be
equipped before the vulnerability is exploited or detection
methods could be deployed to detect the attack.

The rest of this paper is organized as follows. Section II
demonstrates the feasibility of extending TCP duration
by introducing additional delay in round trip time. In
Section III, we focus on studying how to extend the
TCP connection by controlling acknowledgement packets
without incurring timeout retransmission. Section IV shows
that a legitimate user could suffer from those slow TCP
connections. In Section V we study the feasibility of slow
TCP in denial of service attack and its possible solutions.
Section VI concludes this paper.

II. EXTENDED ROUND TRIP TIME AND ITS EFFECT ON

DURATION OF CONNECTION

TCP protocol provides reliable data transmission to ap-
plication layer. The resources involved in data transmission
include those in transport layer and application layer. In this
section, we first describe the interaction between transport
layer and application layer during data transmission. We
emphasize the resources in application layer should be pro-
tected as well as those in transport layer. Because round trip
time consists of different components, a delay component
introduced between client and server to increase round trip
time could extend the serving time at application layer as
well as the duration of TCP connection at transport layer.
Our experiment shows the resource at the server could be
occupied longer if data transmission is extended.

A. Data Transmission: Resource Consumption at Transport
and Application Layer

A TCP connection normally has three stages: connec-
tion setup, data transmission and connection tear-down. A
typical scenario when a client requests data/service from a
server consists of: (1) the client sends SYN request to the
server, and a three-way handshake makes the connection
established; (2) After the connection is established, the
server passes data from application layer to transport layer,
and then the data reaches the client; (3) After the server
sends all the data to the client, it tears down the connection
by sending FIN packet to the client. And a couple of packet
exchanges finish the connection.

Each stage of TCP connection involves resource con-
sumption. So does data transmission. After three-way hand-
shake, the server starts to transmit data from application
layer to transport layer. From this time till the connection is
torn down, the operating system at the server has to allocate
resource for application layer. This resource has a limitation.

For example, the default value for maximum clients served
simultaneously in Apache server is150 [13], i.e, if more
than150 requests come for web content at the same time,
some of them have to wait until those in serving finish.

If the data transmission is extended, the related resource
at the server, in both transport and application layers,
would be occupied longer. Before we proceed on, we
need to answer this question first: is the server tolerant of
extended data transmission to consume its resource longer?
The following experiment shows that a delay component
between the client and the server could result in longer
TCP connection and serving time in web server.

B. Extended Round Trip Time in TCP Connection

In TCP protocol, the receiver is required to send acknowl-
edgement packets to the sender, to ensure a reliable data
transmission. Round trip time records time interval from
when the data packet is sent to when an acknowledgement
packet is received. Suppose Host A sends a packet to Host
B, and receives an acknowledgement packet from Host B,
the round trip time consists of three parts: the propagation
time rttA→B from Host A to Host B, the processing
time rttB in Host B, the propagation timerttB→A from
Host B to Host A. Therefore, the round trip timertt can
be expressed as:rtt = rttA→B + rttB + rttB→A. No
mechanism in TCP protocol is used to tell how round trip
time is divided by these three components. Therefore, for
Host A, increasing processing timerttB at Host B has the
same effect as increasing propagation time between two
hosts: both ways increase round trip time.

C. Experimental Study: Round Trip Time and TCP Con-
nection Duration

The following experiment is to clear the doubt on whether
real TCP implementation and the applications built on it
would allow long round trip time, and help understand the
effect of extended round trip time on the duration of TCP
connection and serving time of the application.

The experiment setting in Figure 1 consists of one server
and two clients. All computers run Linux operating system.
The server is installed with Apache software [13] to provide
web service. A software called NIST NET [8] is installed
in client1. NIST NET is to introduce delay fromserver
to client1. In figure 1, each packet fromserver to client1
would first feed into NIST NET and then NIST NET passes
packet toclient1 after the specific delay, while the packets
from client1 to server would directly propagate toserver.
The delay introduced by NIST NET increases round trip
time betweenserver andclient1.

In our experiment, we configure the delay introduced by
NIST NET from0 to 12sec, with1sec as one step. For each
delay, three files at the server whose sizes are1KB, 100kB,
200KB respectively are retrieved. Each case is repeated
20 times to have the average of the result. We record the
duration of TCP connection atclient1 and get the serving

2



Web Server
Client1


Packet Flow From Client to Server


Packet Flow From Server to Client


Client2


Fig. 1. Experiment: RTT and TCP Duration
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Fig. 2. Extended Round Trip Time and its Effect on the Duration of TCP
Connection (File Size200KB)

time at the server from the web log file. Figure 2 shows the
experiment result for the case with file size of200KB1.

In Figure 2, the duration of TCP connection increases as
round trip time increases. So does the serving time at the
server. Note a gap exists between the duration at the client
end and the serving time at the server end. This is mostly
due to the first several SYN packets and the last several
FIN packets, since the serving time would only record the
time the web server takes over and processes the data.

III. D ATA TRANSMISSIONEXTENDED BY

MANIPULATING ACKNOWLEDGEMENT PACKET

We present the objective and assumption of our study,
and use TCP implementation in BSD UNIX [19] as an
example to show how the client manipulates acknowledge-
ment packets to extend TCP connection without incurring
retransmission timeout at the server. Finally, we have a
discussion on the variants of TCP implementation.

A. Objective and Assumption

Our study on extension of TCP connection is mainly
from attacker’s point of view. The objective is to extend
the duration of TCP connection, and at the same, to make
the TCP connection look normal to the server. Therefore,
we bear several points in our mind during the study: (1)
We want each TCP connection to experience its previously
described three stages. (2) The round trip time should be
adjusted gracefully. Though a couple of timeout retrans-
missions could increase round trip time, an attack initiated
by this mechanism could alert intrusion detection system.

1We refer the readers to [2] for the other two cases.

Therefore, the client would adjust the pace of acknowledge-
ment packets within the range of retransmission timeout at
the server. In a word, the objective of this section is to
study how long a TCP connection could be extended by the
client controlling acknowledgement packet transmissions,
given no timeout retransmission occurs at the server.

To simplify our study, we assume:
• The client acknowledges each packet from the server.

No loss happenes to the acknowledgement packets.
• The propagation delay from the client to the server is

the same as that from the server to the client.
•The TCP behavior is described in terms of “rounds”.

A round starts when the server begins the transmission
of a window of packets and ends when the it receives an
acknowledgement for one or more of these packets.

B. TCP Operations

In our study, the client will introduce an artificial delay to
increase round trip time without incurring timeout retrans-
mission in the server, so we give a brief description of the
calculation of round trip time and retransmission timeout,
the operation of RTT timer and RTO timer.

1) Round Trip Time, Retransmission Timeout:To ensure
smooth operation of data transmission, TCP relies on the
following three parameters: smoothed round trip timesrtt,
smoothed mean deviationrttvar of srtt and retransmission
timeoutRTO. The calculation ofsrtt andRTO could be
summarized by the following equations:

srtt ← srtt +
1
4
× (rtt− srtt)

rttvar ← rttvar +
1
8
(|rtt− srtt| − rttvar)

RTO = srtt + 4× rttvar

(1)

wherertt is the measured round trip time.
The initial values ofsrtt, rttvar and RTO are 0s, 3s,

6s. srtt, rttvar and thusRTO are updated whenever the
ACK packet for a timed data packet arrives.

2) Operation of RTT and RTO Timer:In BSD version
[19], RTT and RTO timers work as follows2:
• When TCP transmits a data packet, if the RTT timer

and RTO timer are not used, this data packet will be timed,
otherwise, the data packet would not be timed. In Figure 3,
at time t1, one data packet is sent from the server. Since
there is no data packet being timed at timet1, RTT timer
and RTO timer both start to time this packet.
• Since only one RTT timer and one RTO timer are

available for a TCP connection, only one packet could be
timed each time. In Figure 3, in addition to the first packet
sent at timet1, the other data packets sent betweent1 and
t
′
1 are not measured for round trip time because RTT timer

has been used to time the data packet sent att1.
• If there are data packets sent but not acknowledged,

RTO timer will be set to time one data packet. In Figure 3,

2Since the case of timeout retransmission is not studied in this paper,
we refer readers to [19] for details.
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Fig. 3. Operation of RTT and RTO timer

RTO timer is first used to time data packet at timet1. After
the acknowledgement packet is received att

′
1, RTO timer

will reset to time those data packets not yet acknowledged.
• When TCP detects duplicate ACKs and a fast retrans-

mission is initiated, RTT and RTO timers are reset to time
this retransmitted data packet, even they are being used to
time other data packets. In figure 3, betweent2 and t

′
2,

there is a data packet loss. At timet3, the server receives
duplicate ACKs, and retransmits the lost packet. The RTT
and RTO timers are reset to time this retransmitted packet.

C. Round Trip Time Extended through Acknowledgement
Packet Controlling

From server point of view, the round trip time is the
interval between when the server sends the data packet
and when the server gets the ACK packet. It consists of
three parts: the propagation time from the server to the
client, the processing time at the client, and the propagation
time from the client to the server. The calculation of round
trip time depends on acknowledgement packets from the
client. No mechanism in TCP protocol could identify each
component of round trip time. The client could control the
pace of acknowledgement packet, in particular, hold the
acknowledgement packet to increase the round trip time.

Our study is focused on how the client could introduce
artificial delay to increase round trip time gracefully and
extend the TCP connection without incurring timeout re-
transmission. This is possible due to the following factors:
(1) The client could measure the propagation delay from the
time stamp of data packets; (2) The client knows whether
data packet gets lost or not earlier than the server; (3) The
client knows TCP algorithms in updatingsrtt, rttvar and
RTO and can predict those values at server end.

1) TCP with Extended Round Trip Time and No Packet
Loss: To extend the duration of TCP connection without
incurring timeout retransmission, the client needs to know
how much artificial delay should be introduced for each
acknowledgement packet. Before making the decision, the
client needs to know the value ofRTO at the server.
The client will have to keep an estimate of all the related
parameters used in the server.

TCP protocol transmits data packets in the unit of round.
The related parametersrtt, srtt, rttvar and RTO are

updated round by round. To have an estimate of those
parameters locally, the client needs to estimate those pa-
rameters each round. We usec rtt[i], c srtt[i], c rttvar[i]
and c RTO[i] to represent the client’s estimate on corre-
sponding parameters that the server has at roundi. When
the client receives packets of theith round, it introduces
some artificial delaydelay[i] for their acknowledgements
to extend their round trip time toc rtt[i]. It then updates
c srtt[i + 1], c rttvar[i + 1] and c RTO[i + 1] for the
next round. To avoid timeout retransmission, the client
sets the target round trip timec rtt[i] to be smaller than
c RTO[i], to make room for the variability of propagation
delay between the server and the client. A small margin of
τ is introduced such that

c rtt[i] = c RTO[i]− τ (2)

In the case when there is no packet loss, only the first
data packet in each round is timed. The client would need
the sequence number of the first data packet of each round,
so that it could introduce new artificial delay, and update
the corresponding parameters for next round. If we do not
consider the limit of slow start threshold and advertised
window size, the timed packets are those data packets with
sequence number2n − 1, while n = 0, 1, 2.... For the
case with given slow start threshold and advertised window
size, the sequence numbers of timed data packets can also
be calculated accordingly. Another way of inferring the
timed packets which doesn’t depend on packet sequence
number will be presented in Section III-C.2. Once the
client identifies packets timed by the server, the procedure
of updating the estimate of thosec parameters could be
described as follows:
• When the first data packet arrives at the client, the

client needs to decide how much artificial delay it will
introduce before sending the acknowledgement packet. The
client knows the initial value of RTO at the server is6s,
i.e, c RTO(0) = 6. Therefore, the client would introduce
artificial delay timedealy[0] for data packet of this round:

dealy[0] = 6.0− 2 ∗ rtt0 − τ, (3)

whereτ is the margin to make the round trip time of each
packet smaller thanRTO, rtt0 is the propagation time from
server to the client, which can be estimated by the client by
taking the difference between a packet’s arrival time at the
client end and its time stamp put by the server. Thenrtt[0],
the round trip time seen by the server, can be estimated as:

c rtt[0] = 6.0− τ. (4)

• Once the server gets the acknowledgement for the first
packet, it would initialize the values ofsrtt, rttvar and
updateRTO. The client could update its estimate on these
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TABLE I

RTO VS ROUND NUMBER

τ Round 1 Round 2 Round 3 Round 4 Round 5
0.1 17.7000 27.9125 45.7813 77.0484
0.3 17.1000 26.7375 43.5938 73.0828
0.5 16.5000 25.5625 41.4063 69.1172
0.7 15.9000 24.3875 39.2188 65.1516
0.9 15.3000 23.2125 37.0313 61.1859 103.4285

parameters:

c srtt[1] = c rtt[0]

c rttvar[1] =
1
2
c rtt[0]

c RTO[1] =c srtt[1] + 4 ∗ c rttvar[1].

(5)

Then, when the client receives the second round of packets
from the server, it could apply the artificial delay as

dealy[1] = c RTO[1]− 2 ∗ rtt0 − τ. (6)

This makes the round trip time of packets in the second
round equal toc rtt[1] = c RTO[1]− τ .
• This procedure can be carried out by the client iter-

atively: During roundi, the client calculates the artificial
delay asdealy[i] = c RTO[i]−2∗rtt0−τ . By introducing
this delay, the client extends the round trip time of packets
in roundi to c rtt[i] = c RTO[i]−τ . Then the client could
always predict the server’s parameters of roundi + 1 after
it gets packets of roundi:

c srtt[i + 1] =
7
8
∗ c srtt[i] +

1
8
∗ c rtt[i]

c rttvar[i + 1] =
3
4
∗ c rttvar[i] +

1
4
∗ |c rtt[i]− c srtt[i]|

c RTO[i + 1] = min(MAX RTO, c srtt[i] + 4 ∗ c rttvar[i])
(7)

c RTO[i + 1] will be used in the next round to determine
the artificial delay asdealy[i + 1].

Table I shows the trend ofc RTO[i] in the first5 rounds
of data transmission. In5 rounds, c RTO could reach
64sec, which isMAX RTO in BSD TCP implementation
[19]. Thus for large-size data transmission, the duration of
the connection could be extended byMAX RTO/rtt0
times. For small-size data transmission, which finishes in
a couple of rounds, Table I shows the total duration of the
connection could be greatly extended as well.

2) TCP with Extended Round Trip Time and Moderate
Data Packet Loss:In reality, packets are lost from time to
time in the network. It is common for a TCP connection
to experience some packet loss during its life-time. In
this section, we present a client algorithm to stretch TCP
connection when there is moderate packet loss. That is
to say we only study the case where at most one packet
will be dropped each round. This assumption can easily
be justified in a well-engineered network and has been
commonly adopted in TCP performance studies. Under

this assumption, the server would receive duplicate ACKs
for each lost packet. Duplicate ACKs would trigger fast
retransmission and fast recovery algorithm [19]. From the
duplicated ACKs, the server could infer which data packet
is lost, and retransmit it. At the same time, the server will
reset the RTT and RTO timers to time this retransmitted data
packet. The client will have to detect this retransmission
and synchronize its calculation with the server’s option.
The algorithm presented in Section III-C.1, which uses the
sequence number to infer those timed packets, no longer
works in this scenario. The client must have a new algorithm
to infer timed packets, including both the first packet of each
new round and the retransmitted packets.

The key observation here is that there is only one RTT
timer at the server end. When there is no packet loss,
the server will time another packet only after it receives
acknowledgement for the previous timed packet. On the
other hand, if one packet is lost, server will immediately
switch to time the retransmitted packet. Then the client’s
iterative algorithm to infer timed packets can be described
as follows:
• When the client doesn’t receive any duplicated ACKs,

given that timed data packet in the current round has a time
stampt and the client’s target round trip time isc rtt, it can
infer that the acknowledgement of the current timed packet
will arrive at the server at timet + c rtt. Therefore, the
next timed packet is the first packet sent out aftert+ c rtt.
Then the client can update its estimates once he receives a
packet with time stamp larger thant + c rtt.
• If the client receives more than three packets with

sequence number larger thank while it waits for the packet
with sequence numberk, it infers packetk is lost and
sends duplicate ACKs back to the server to trigger the
retransmission. The client also knows the server will reset
its RTT and RTO timers to time the retransmitted packet.
When the client receives the retransmitted packet, it again
delays the acknowledgement and updates all its estimates
according to the calculation in Section III-C.1.

Figure 4(a) shows how the client infers the timed data
packets with no packet loss. At timet2, the client gets the
first data packet of certain round sent by the server at time
t1. The arrival time of its acknowledgement at the server end
can be calculated ast3. Therefore, data packets with time
stamp betweent1 and t3 would be considered in the same
round as the current timed packet. The client introduces the
same delay to acknowledgements for these data packets. At
time t5, the client gets the first data packet with a time
stampt4 larger thant3. The client knows another round of
packets from the server arrives and the received packet is
timed by the server. It then updates all its estimates.

Figure 4(b) shows how the client infers the timed packet,
and shifts the effective period of the estimated parameters
when some data packet gets lost. Roundi starts with a
packet sent out at timet1. The first packet of this round
arrives at client end at timet2 and its acknowledgement
received by the server at timet3. Then the server begins
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Fig. 4. Round Adjustment at the Client End

to send another round of packets at timet4 and the timers
are used to time the first packet of this new around. The
client detects the start of roundi+1 at timet6 and updates
its estimates as in the previous example. However some
packet sent in roundi is lost, duplicate ACKs are received
by the server. The lost packet is retransmitted at timet5
and RTT and RTO timers are reset to time this packet.
When the client receives the retransmitted packet at time
t7, it updates its estimates again to synchronize with the
server’s operation. The new parameters are effective until
the acknowledgement of the retransmitted packet arrives at
the server at timet9.

3) Simulation: We implement the mechanism above to
control acknowledgement packet in TCP/Sink in NS sim-
ulator [9]. In TCP/Sink, we use the mechanism mentioned
above to keep in TCP/Sink an estimate of the parameters
in the server, and to introduce artificial delay time for each
packet. A detailed algorithm in tracking the timed packets,
calculating artificial delay time and updating the estimate
of the parameters is presented in Technical Report [2].

A two-node simulation is setup to study how much the
duration of TCP connection could be extended by our
mechanism. One node uses TCP/Reno, and serves as a
server, while the other node uses TCP/Sink, and serves
as a client. A link connecting these two nodes has5Mb
bandwidth and400ms delay. The advertised window size
is the default value in NS. A ftp flow is setup between the
server and the client. The amount of data from the server
to the client is changed from1 to 5000. The experiments
are carried out for the two cases: one has no data packet
loss; the other has data packet loss from the server to the
client, with packet loss rate as0.002.

The experiments are used to compare normal TCP con-
nection with slow TCP connection. Figure 5 shows the
simulation result.x-axis represents the number of data
packet the ftp flow wants to send from the server to the
client. y-axis represents the duration of TCP connection in
Log scale. The durations of both normal TCP connection
and slow TCP connection are shown in the figure. Figure 5
shows the case when the link allows data packet loss3. The

3We refer readers to our technical report [2] for the case when there is
no loss in the link.
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Fig. 5. Duration of Normal TCP vs Slow TCP (Packet Loss Rate 0.002)

figure shows there is a gap between two curves. This gap
increases at the beginning and converges to certain value,
i.e, the ratio of the duration of slow TCP connection over
that of normal TCP connection increases and converges to
a constant when the number of data packets transmitted
increases. As Table I shows, in a couple of rounds, the
extended round trip time could become very close to
MAX RTO, and thus the ratio of the duration between
slow TCP connection and normal TCP connection would
be approximated byMAX RTO/rtt0 ∼= 64/0.8 = 80.
This trend has been reflected in Figure 5.

In summary, our simulation result shows the duration
of slow TCP connection is tens of times that of normal
TCP connection. In our technical report [2], we also list
some other techniques which could be combined with our
mechanism to extend the duration of TCP connections.

D. Discussion on Diverse TCP Implementation

Since RFC does not specify the detailed implementation
of TCP, the implementation in different operating systems
varies. However, this does not change the fact that the client
could control the pacing of acknowledgement packets. For
example, “TimeStamp” option [5] is introduced to make
the measurement of RTT easier, and could be encrypted by
the server. Nevertheless, the client could still hold the data
packet for the delay before it begins to process the data
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packet and generates the acknowledgement packet.

IV. EXPERIMENTAL STUDY: THE IMPACT OF SLOW TCP
CONNECTIONS ONNORMAL USERS

In this section, we present a study on how a normal
user could be affected by slow TCP connections. The
web server has a limit on the number of clients it can
serve simultaneously. In Apache web server, this number is
reflected in the directiveMaxClients in the configuration
file [13]. The default value ofMaxClients is 150. When a
web file request arrives, if the number of clients served by
web server is less thanMaxClients, the request is served
right away; if the number of clients served by the web server
is MaxClients, the request is put into the waiting queue,
only after some clients being served finish could the request
in the queue be put into service.

We use the computer setting in figure 1.Client1 will ini-
tiate multiple threads to simultaneously retrieve the200KB
file from the web server. The delay introduced by NIST
NET is 12sec.Client2 would always have one normal TCP
connection with the server, also to retrieve the200KB file.

In our experiment, we present a simple scenario to show a
normal user could be affected by slow TCP connections. We
makeClient1 initiate twice the number ofMaxClients.
Therefore, the server would always haveMaxClients
requests being served, andMaxClients+1 requests in the
queue waiting for service. Therefore, the single request from
client2 will have to experience the average delay introduced
by the long service time of slow TCP connections.

Figure 6 shows the delay experienced by the normal user,
when there are multiple slow TCP connections requesting
web files at the same time. The delay is monitored at the
client end, since this is more likely to reflect the web surfer’s
experienced time. Figure 6 shows19 samples, and the real
delays experienced by the normal user are shown. This
result shows the normal user experiences about80-100sec
delay, which is closed to the delay introduced byClient1
in Figure 2.

In summary, with multiple slow TCP connections to
request web file from web server, the normal user would
experience similar delay like slow TCP connections. More-
over, these slow TCP connections involves small TCP
traffic. Therefore slow TCP connections could be used to
extend occupance of resource at application layer and result
in denial of service.

V. DOS ATTACK WITH SLOW TCP CONNECTIONS AND

ITS POSSIBLESOLUTIONS

In previous sections, we have shown TCP client can
easily slow down the sending rate of the server and thus
stretch its connection. In this section, we investigate the
possible denial of service attacks using multipleslow TCP
connections. In view of the vulnerability exploited by slow
TCP connections, we present a couple of possible counter
measures to such attacks and discuss the difficulties in
completely solving this problem.

A. Denial of Service Attack Using Slow TCP Connections

Slow TCP connections can be used by malicious users to
launch denial of service attacks to web servers. For a server,
the number of the connections for specific application is
limited. For example, in Apache Web server, there is a
parameter calledMaxClients which specifies how many
clients the server could serve simultaneously(the default
value is 150) [13]. If malicious users establish many slow
TCP connections with the server, and once the number of
connections reaches the maximum value, legitimate users
will be totally blocked out.

From an attacker’s point of view, slow TCP connection
has the following properties suitable to denial of service
attack: (1) A slow TCP connection behaves like a “nor-
mal” TCP connection: three-stage connection, no frequent
timeout retransmissions, low traffic rate. (2) Since each
slow TCP connection can last for a long time, a moderate
request rate is sufficient to overwhelm a server. This reduces
the cost of DoS attacks in comprising a large number of
machines.

The only abnormal symptom of slow TCP is its long
round trip time. However, the server has to be robust to
allow a large range of round trip time. Due to dramatic vari-
ation of traffic conditions and the heterogeneity in networks,
round trip time varies a lot. The past and recent studies [10]
[1] show TCP Round-trip Time has great variability. Recent
study observes RTTs range from1ms to more than200s.
Without additional mechanism, the sever would not be able
to tell whether the receiver manipulates acknowledgement
packet to control Round-trip time or not.

Recently, in order to deal with DDoS flooding attack,
there are some mechanisms which suggest controlling traffic
at the client end [6]. When the edge router detects there is
a DDoS attack, it will control the rate of flows. Therefore,
some artificial delay is introduced into the flow. This has
made it valid to delay traffic deliberately. In our study, we
emphasize that the duration of TCP connection could be
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extended tens of times by slow TCP connections, which
involves with low volume of traffic. To make the situation
more complicated, varied durations of slow TCP connec-
tions could be introduced, and make the detection of this
kind of attack more difficult.

B. Possible Solutions and Their Limitation

There are two major factors contributing to the appli-
cation of slow TCP in DoS attacks: one is its low data
transmission rate, the other is the trust inherent in TCP
protocol. In view of these, people could propose the possible
solutions as follows.
• Increase server’s capacity. It can be achieved by

employing the high end servers or server clusters. It has
proven to be an efficient way to deal with DoS attacks.
Despite the cost of increasing capacity, it doesn’t solve
the problem completely. Attackers can always compromise
more computers to launch larger scale distributed DoS
attack.
• Disconnect slow TCP connection. This method is to

disconnect those TCP connections whose data transmission
is slower than certain threshold. However, this method could
deny certain portion of legitimate users. Moreover, the
attackers could extend the duration to the threshold allows.
• Track the round trip time between the server and the

neighboring hosts of the client. This method has a hope that
the neighboring hosts of the attacker have normal behavior
as protocol specifies. Therefore, monitoring the round trip
time between the server and the neighboring hosts of the
client would help the server to detect the abnormal behavior
of the attacker.
• Recently [18] proposed an adaptive overload control for

busy internet servers (called Haboob). Haboob divides the
data service into several stages. Each stage maintains rele-
vant queues. The server would monitor its performance such
as the response time, and adjust the admission control policy
accordingly. Therefore, Haboob could adaptively change
the number of connections allowed dynamically. However,
Haboob has the following vulnerabilities: (1) Haboob uses
the response time as performance criterion. The response
time of the extended TCP connections provides the server
the wrong information. (2) The admission control used in
Haboob is achieved by dropping the requests from both
legitimate and illegitimate users. How to differ legitimate
users from illegitimate users remains an unsolved problem.

In summary, the above analysis points out the difficulties
in the possible solutions. This suggests a further study is
needed on how to solve the denial of service by client-
controlled slow TCP.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we present a mechanism for web clients to
control the sending rate of web servers just by manipulating
the pace of acknowledgement packets. We show that the
duration of TCP connection can be slowed down and its
duration can be stretched by tens of times. Those stretched

slow TCP connections can possibly be used in denial of ser-
vice attacks to web servers. Slow TCP connections behave
like normal TCP connections. This makes the detection of
such attacks difficult. Our study calls for more attention on
the study of TCP in the context of security.

We hope this work could help demonstrate once again
that the Internet security needs to be reviewed as a whole,
and starts from the basic assumptions and architecture
principles. For example, to counteract the scheme described
in this paper, one could try to shorten the TCP timeout limit.
However doing so would immediately reduce the reliability
of TCP connections in its ability to fight against congestion
bursts on the way. To balance the risks brought in via trust,
we need to consider scalable and easy-to-manage moni-
toring and defense system for trust-based attacks. Current
flat routing structure of the Internet makes this task very
difficult and it seems substantial research effort is needed to
resolve the entanglement of the trust, convenience, security
and reliability, and the overall architecture.
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