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Abstract

Concurrent downloads open multiple parallel connections
to improve users’ download latency. They break at user
level the fairness which congestion control schemes try to
maintain at connection level. They also change the network
traffic statistics and challenge the performance of conges-
tion control schemes. In this paper, we study concurrent
downloads’ challenges to congestion control system’s fair-
ness and transient behavior.

1 Introduction

In the past decade, communication networks have expe-
rienced dramatic growth in all dimensions: size, speed,
heterogeneity, applications and users, etc. In a stochas-
tically shared network, such as the Internet, congestion is
inevitable and is the key factor determining the quality of
service perceived by end users. In order to avoid congestion
collapse, users must be responsive to congestion within the
network. Different end-to-end congestion control schemes,
such as TCP, have been implemented to assure the stabil-
ity of networks. In those schemes, users adapt their trans-
mission rates based on congestion indications along their
routes. Recent studies have shown that pure end-to-end
congestion control is not sufficient to achieve high network
utilization and good performance for end users. Active
Queue Management (AQM) algorithms, e.g. PI Controller
[11], AVQ [12], RED [9], REM [1], have been proposed to
communicate the congestion information to end systems.
The congestion information can be used by their rate adap-
tion schemes to cooperatively drive the network to a good
operating point.

From control system point of view, it is crucial for the de-
signers of congestion controllers to understand well dynam-
ics of control plants. Due to the complexity of networks,
network congestion is different from any traditional con-
trol plant. Congestion at one node is normally caused by
traffic of multiple heterogeneous users. Fast evolutions in
both network architectures and users’ traffic patterns make
congestion within networks change rapidly. In this paper,
we investigate some challenges to congestion control posed
by an emerging trend in network applications, concurrent
downloading. This discussion is not meant to argue against
applying control theory to network congestion control. In-
stead, the purpose is really to share our concerns about
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developments of new network applications which should be
taken into considerations in the design of effective conges-
tion control schemes.

We first briefly describe several network applications using
concurrent downloading in Section 2. We then present some
of our results in [13] regarding the fairness issue brought
up by concurrent downloads. In Section 4, we investigate
how concurrent downloads challenge the performance of
end-host congestion control schemes and AQM algorithms.
Simulation results are presented in Section 5. We discuss
concurrent downloads’ potential threats to the Internet and
some possible counter measures in Section 6. Section 7 con-
cludes this paper.

2 Concurrent Downloading

Concurrent downloading means using multiple connections
to download objects concurrently. There are three forms
of concurrent downloading commonly employed by network
applications. The first one is concurrent downloading of
HTML in-line objects. To do so, the browser first down-
loads the requested HTML page from the server and then
opens several simultaneous HT'TP connections to download
all remaining objects (e.g., images) embedded within the
web page. Such parallel HTTP downloads improve the over-
all latency of accessing the web page and its constituent im-
ages. Because normal HTML in-line objects are small, its
contribution to network congestion is not dramatic. With
new HTTP 1.1 protocol, all in-line objects are downloaded
sequentially by one persistent TCP connection. We are not
concerned much by this form of concurrent downloading.

The second form of concurrent downloading is parallel
downloading of segments of one object from one site. HTTP
protocol allows a byte range to be specified with each re-
quest. Some applications (e.g., FlashGet [16]) have been
developed to parallelize the download of each web object
by opening multiple connections per object and download-
ing a different portion of the object on each connection.
By doing so, they claim to greatly speedup HTTP down-
loads. The degree of download concurrency is application
dependent. Currently FlashGet allows 10 connections for
one object.

The third form is commonly used by emerging Peer-to-Peer
applications. Basically a user of Peer-to-Peer network sends
out a query for a wanted object. A list of peers who have
the object will be sent back to him. The user then cuts
the object into segments and sets up one connection with
each peer on the list to download one segment. The Cut-



Download process is done dynamically. During the down-
loading, if the user find more peers to download from, it will
cut the object finer and launch more connections to down-
load. The degree of download concurrency is dependent on
the availability of the requested object on the network. For
some popular objects, it is easy to find more than 10 peers
to download from.

Recent Internet traffic studies show HTTP and Peer-to-Peer
traffic dominate network traffic. Concurrent downloads, es-
pecially the second and the third form, have the potential
to dramatically change network traffic patterns.

3 Fairness Issue

Network resources are shared among heterogeneous users.
There is no explicit information about how much bandwidth
is available for each individual user. As an end-to-end con-
gestion control mechanism, TCP aims at probing and grab-
bing available network bandwidth and remains responsive
to network congestion at the same time. It increases its
sending rate additively when there is no congestion and de-
creases its rate multiplicatively upon receiving congestion
indication from the network. It is proved in [4] that the
Additive Increase and Multiplicative Decrease (AIMD) al-
gorithm can drive the network to a fair state. In a homo-
geneous network, each competing TCP connection will get
an equal share of bandwidth.

By employing multiple connections for one download, con-
current downloads break at application level the fairness
that TCP tries to maintain at connection level. In a homo-
geneous setting, a user’s bandwidth share is proportional to
the number of connections he employed. For a more gen-
eral network setting, when all connections launched by a
user follow the same route, the fairness among users is for-
mulated in [13] as a constrained optimization problem. Let
L be the set of links in the network. The capacity of link [
is ¢, | € L. Let U be the set of users, with size |U| = m.
Suppose user j launches n; AIMD concurrent connections
with additive increase step size «;, multiplicative decrease
factor 3; and round trip time 7;. Define users’ routing ma-
trix B = (By,;,l € L,j € U), such that B;; = 1, if user j
traverses link [, and B; ; = 0, otherwise. Also assume users
receive network negative feedbacks, e.g., losses, marks, at
a rate proportional to its sending rate. Then in the steady
state users’ rates y = {y;,j € U} are distributed according
to the solution of the following constrained optimization
problem

u n; Yj
max Fiy(y) = 2 log —H—— (1)
y Jze; Tj njo; + By,

subject to the constraints
> By <a, VIEL (2)
jeu

From equation (1), user’s degree of download concurrency
n; plays an important in determining his throughput in the
network. The more connections a user employs, the high
throughput he achieves.
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Figure 1: Control Loop of Network Congestion Control

4 Impact on the Performance of Congestion
Control

Besides fairness in steady state, concurrent downloads also
affect the transient behavior and performance of existing
congestion control mechanisms. In this section, we system-
atically analyze concurrent downloads’ impact on conges-
tion control schemes

4.1 Model of Congestion Control System

Recently, it has become a very active research area to model
network congestion control as closed loop control system
and use methodologies in system and control area to de-
velop better congestion control algorithms [10, 11, 1, 12].
For a single bottle-neck network, control block diagram of
its congestion control system can be depicted as in Figure 1.
The queue management scheme can be viewed as the con-
troller of the closed loop control system. It measures the
backlog g at the congested buffer and calculates the packet
dropping or marking probability p. Packets are dropped or
marked with probability p to indicate congestion to end-
hosts. When congestion indications reach end-hosts after
certain network delay, TCP will regulate its sending rate
by adjust its congestion window w, which eventually will
affect the backlog ¢ at the congested node.

To study the performance of congestion control loop, we
need to model the dynamics of TCP, congested queues and
AQM schemes. Internet traffic studies observed elephants-
mice classification of connections, namely a small number
of long lived connections, or elephant connections, account
for the majority of the total traffic volume while a large
number of short lived connections, or so called mice con-
nections, only contribute a small portion of traffic [5, 3, 6].
By assuming this, we can focus on elephant connections and
treat those mice connections as noise to the control system.
In [14], a non-linear model of a network of AQM routers
supporting TCP flows has been established. When the loss
probability within the network is small, a TCP connection
works in congestion avoidance stage. Let W (t) be its ex-
pected congestion window size, R(t) be its the round trip
time, which consists of queueing delay and propagation de-
lay, p(t) be the packet drop probability. Then the non-linear
differential equation describing the evolution of W (t) is:
For a single bottle-neck network, the model for the con-
gested queue is simply

dgq(t) _ W(t)

= WN t)-C (4)
where N(t) is the number of connections at time ¢ and C
is the capacity of the bottle-neck link. When the system
is stable, it works around its operating point {Wo, po, Ro},



where Wy is stationary TCP window size and po, Ro is
stationary loss probability and round trip time. We have

RoC

Wo = K, (5)
2N?

Po = W (6)

At steady state, average TCP window size is inversely pro-
portional to the number of connections N and packet loss
probability is proportional to N2.

By carrying out linearization [10] around the system’s oper-
ating point, we can obtain the linear model of the congestion
control system. The transfer function of TCP is

RoC?
PtCP(S) = 2N (7)

2N
5+ &2

The transfer function of the bottle-neck queue is

N

Ro
Pyueue(s) = H_—OL (8)
Ro

The overall transfer function of the control plant is
Cie*SRo
P(s) = Piep(s) Pyucue(s) Paetay (s) = X
(s+ 726)(s + 75)

(9)

4.2 Transient Behavior

Concurrent downloads increase the number of concurrent
connections networks. If every user employs m connections
for his download, the number of connections in a network
will increase by a factor of m. From (9), gain of the con-
gestion control loop is inversely proportional the number of
connections in system. One counter intuitive consequence
is that the more connections in the system the more sta-
ble the system (See remark 3(5) in [10]). This is because
at steady state congestion window size of each connection
is inversely proportional to N. Impact of N on TCP win-
dow size’s sensitivity toward packet loss probability p is two
fold. First, the loss event arrival rate at each connection
is proportional to its current window size; Secondly, TCP
window back off after receiving a loss is proportional to its
window size. On the other hand, the sensitivity of queue
length toward expected TCP window size is only propor-
tional to N. The overall sensitivity of the control plant
P(s) is inversely proportional to N. Figure 2 shows that a
congestion control loop’s stability margin increases while its
0db crossover frequency decreases when the number of con-
nections N increases. With more TCP connections in the
system, the congestion control loop tends to be more stable
and yet more sluggish. Experiments in Section 5 will show
concurrent downloads change control loop’s responsiveness
and stability significantly.

If there are too many concurrent connections, according to
(6), network will operate in high loss rate state. It has been
pointed out in [15] that TCP is not scalable with the num-
ber of concurrent TCP connections. As a window based
congestion control scheme, TCP has no mechanism to send
out less than one packet per round trip time other than
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Figure 2: System Stability and Responsiveness against
the Number of Concurrent Connections

time-out. In time-out stage, TCP behaviors are quite differ-
ent from in congestion avoidance stage. Nonlinear dynamic
model in (3) can no longer accurately capture TCP window
dynamics. It is difficult for AQM schemes designed out of
the linearized model to control the queue. In addition, fre-
quent time-outs will also greatly reduce TCP’s throughput.
Packets lost in the network have to be retransmitted. Thus
the good put of each connection decreases.

4.3 Network Load Level Variation

Concurrent downloads not only increase the average num-
ber of current connections in a network but also make net-
work load level, in terms of number of active connections,
change more dramatically and more frequently. For sophis-
ticated AQM schemes, such as PI Controller [11] and RED
[9], parameter tuning is crucial for their performance. A
very important factor to consider when tuning their param-
eters is the network load level. Some new AQM schemes
have been proposed to adaptively adjust their parameters
in response to load level change [17, 8, 12]. To achieve
good performance, it is important for AQM schemes to have
enough time to converge to their desired steady states.

Assuming elephants-mice classification of network connec-
tions, closed loop congestion control model in Section 4.1
only focuses on elephant connections. By definition, the
number of elephant connections changes slowly and mildly.
In that case, it is possible for AQM controllers to adapt to
network load level change. This assumption is challenged
by concurrent downloads, which chop each of those elephant
connections into multiple parallel shorter connections. For
example, Flashget enables one to open 10 concurrent con-
nections for one object. This will change the size distribu-
tion of network connections and challenge elephants-mice
classification of network connections.

To illustrate, assume when each user employs only one con-
nection for his download, the Complementary Cumulative



Distribution Function (C.C.D.F) of connection sizes is

A

Fx(z) £ P(Connection Size is bigger than x)

And now suppose concurrent downloads chop all connec-
tions with size bigger than K into D concurrent connec-
tions, then the reshaped C.C.D.F of connection sizes can
be derived as:

Fx (y)+(D-1)x Fx (K) < K
Py o P (R DX Py (D) P

= - X X K

Fy(y) = 525 w2 pSy<K (10)
DX Fx (Dxy) K< y

1+(D-1)Fx (K)

To see concurrent downloads’ impact on durations of net-
work connections, we compare connection size distribution
of concurrent downloading with that of sequential down-
loading in Figure 3. We take an empirical file size distri-
bution from a running cricket-info web server. The upper
figure plots the connection size distribution for both sequen-
tial downloading and concurrent downloading with param-
eter K = 100K B and D = 10. We can see distribution of
connection size changes a lot when concurrent downloading
is employed. The bottom figure shows the distribution of
traffic volume across connections. With sequential down-
loading, about top 10% biggest connections accounts for
more than half of the total traffic. With concurrent down-
loading, one half of the total traffic is generated by top 20%
biggest connections. Concurrent downloads make traffic
more evenly spread out among connections. The elephants-
mice classification of web connections is less likely to be
true.

R

(a) Connection Size Distribution

(b) Volume Distribution among
Connections

Figure 3: Concurrent Downloads’ Impact on Network
Connection Size

Concurrent downloads increase the number of network con-
nections and in the same time reduce the durations of in-
dividual connections. They make the network load level
change more frequently. In addition, all parallel connec-
tions of one download are closely spaced in time. Network
traffic will become extremely bursty if concurrent down-
loads are widely employed. AQM schemes have less time
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Figure 4: Queueing Behavior

to adapt to bigger jumps in load level. This will put higher
requirements on AQM’s responsiveness and adaptiveness.
Experiments in Section 5 will show concurrent downloads’
impact on network load level variation and AQM’s perfor-
mance.

5 Simulations

We conducted ns [7] simulations to demonstrate how con-
current downloads change congestion control loop’s tran-
sient behaviors and load level variation.

5.1 Experiment on Transient Behavior

The first experiment is to demonstrate concurrent down-
loads’ impact on network’s transient behavior. 10 users
of a content server share a bottleneck link of bandwidth
2.4Mb/s. Each user employs either one or ten connections
for their downloading. Define GG1 to be the number of users
employing a single connection and G2 to be the number of
concurrent downloading users. In this experiment, we vary
G1 from 0 to 10 while keeping G1 + G2 at 10. In order to
test congestion control loop’s responsiveness, we increase
user population by 50% at time 50 seconds.

Figure 4 compares the bottle-neck queue evolution under
different user profiles. The scale of each subfigure is chosen
to be proportional to the mean value of its queue length.
The queue oscillation ratio gets smaller when more users
employ concurrent downloading. This agrees with our sta-
bility analysis in Section 4.2. In the same time, the control
loop gets more sluggish. It takes longer for the network
to settle down to its operation point after load increase at
time 50 seconds. Figure 5 shows the loss rate at the bottle-
neck link. Concurrent downloads increase packet loss rate



o
&

Packet Drop Prob.

0.05

Figure 5: Impact on Packet Loss Probability

Concurrent
Downloading

Content
Server

Sequential
Downloading

1-p
Figure 6: Content Server with Poisson Arrival

within the network. In the extreme case, when all users
do concurrent downloading, the loss rate exceeds 8 percent,
which is rare in a well engineered network. We observed
much more TCP time-outs than when everybody uses a
single connection for downloading. The link goodput and
thus user download latency degrade.

5.2 Experiment on Load Level Variation

In order to show how concurrent downloading changes the
load level within the network, we did another experiment
with ns. The simulation model is depicted in Figure 6.
Users arrive to a content server according to a Poisson pro-
cess. Each user requests an object with size 4MB, the size
of a normal MPEG-3 audio data file. The arrival rate is
0.25/sec which makes the utilization of the 10Mbps link to
be 0.8. In order to compare users’ download latency, we as-
sume they all share the same round trip time of 60ms. Upon
arrival, each user chooses to use 10 concurrent connections
for his downloading with probability p and otherwise sticks
with sequential downloading.

In this experiment, we change p from 0 to 1. For each p,
we simulate the system for 8 hours and monitor the num-
ber of active connections traversing the bottleneck link. For
each user, we record his start and finish time to calculate
his download latency. Figure 7 plots the load level sample
paths for three different concurrent downloading probabili-
ties. Detailed statistics are presented in Table 1. Concur-
rent downloading not only increase average load level of the
system, but also make the load level change more frequently
and more drastically.

Figure 8 plots users’ download latency. When p gets big-
ger, it takes both concurrent downloading users and single
connection users longer to finish their downloads. The av-
erage download latency of all users is larger when p is big-

Number of Flows

Figure 7: Evolution of Load Level: [10000, 10400]

Table 1: Number of Active Connections

p=0 | p=0.48 | p=1.0

Average 5.93 17.5 88.63
Std. Deviation || 4.69 16.2 86.77
Jumps 14326 | 44551 | 79038

ger. Concurrent downloads degrade both TCP connections’
throughput and the bottleneck link’s utilization.

6 Discussions and Open Problems

In previous sections, we have studied the concurrent down-
loads’ fairness issue and their impact on performance of net-
work congestion control mechanisms. From users’ point of
view, concurrent downloading enables them to more aggres-
sively grab bandwidth from the network. They have incen-
tives to employ this technique to download faster. But we
have shown that too many concurrent downloads degrade
the performance of the whole network. Eventually it will in-
crease every user’s download latency. Unfortunately, most
users do not care about the performance of the whole net-
work and are unaware of this situation. Even if they know
too many concurrent downloads will hurt their own perfor-
mance, they won’t stop doing it because they don’t want
to be taken advantage of by other users who are doing con-
current downloading. This phenomena is called “Tragedy
of Common” in game theory. Same situation is faced by
competing content servers. They compete with each other
for network bandwidth and users. Servers supporting con-
current downloading can attract users by claiming faster
data transferring. Both end users and servers have strong

—e— Sequential
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Figure 8: Users’ Download Latency



incentive to use concurrent downloading. It could get more
popular in network applications.

As concurrent downloads spread out, problems we dis-
cussed here will become serious. Some counter measures
are needed to limit their damage to the network. One nat-
ural thinking is to do some control at the application level.
Technically, web servers can disable concurrent download-
ing by denying connections requesting for a segment of an
object. Some web servers, which have already experienced
some performance problems due to too many concurrent
downloads, only accept single connection sequential down-
loads. As we have seen before, concurrent downloading
helps to improve the resource utilization and end users’
download latency when the load level within the network
is not high. We may not want to totally disable it. It is
possible for servers to dynamically adjust the number of
concurrent connections that one user can possibly employ
for his downloading according to servers’ workload and con-
gestion level within the network. The problem for control
at server side is that servers won’t have much motivation to
do it unless the number of concurrent connections goes be-
yond their own processing capacities. This method doesn’t
apply to Peer-to-Peer network, where each user only open
one connection with one peer.

Another direction to address this problem is to change con-
gestion control at the transport layer. Current TCP works
on the units of connections. New congestion management
architecture has been proposed to do congestion control for
flow aggregates [2]. Connections within an aggregate share
congestion information and regulate their sending rate co-
operatively. If we put all connections initiated by one user
in the same aggregate, the impact of those concurrent con-
nections on other users can be well regulated. But it re-
quires fundamental change of network’s congestion control
architecture. Moreover, how to aggregate traffic and allo-
cate bandwidth among aggregates are problems need to be
solved before it can be deployed.

One last measure we can resort to is pricing. The Internet
is very limited in regulating its users’ behavior. Concurrent
downloading is just one simple demonstration of how eas-
ily individuals can cheat on the network. Current pricing
mechanisms, e.g. flat rate charge, charge for data volume,
don’t punish concurrent downloading users more than sin-
gle connection users. To avoid serious network congestion,
users should be charged according to their contribution to
the congestion of the network.

7 Conclusions

In this paper, we studied several congestion control issues
brought up by concurrent downloads, an emerging trend
in network applications. Fairness between users with dif-
ferent downloading concurrency has been formulated as an
optimization problem. We studied concurrent downloads’
impact on network transient behavior. Our analysis is sup-
ported by experiments. We pointed out concurrent down-
loads’ potential threats to proper use of the Internet and
provided some discussions about possible counter measures.
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