
Two-Dimensional Motion Estimation
(Part I: Fundamentals & Basic Techniques)( q )

Yao Wang
Polytechnic University Brooklyn NY11201Polytechnic University, Brooklyn, NY11201

http://eeweb.poly.edu/~yao



Outline

• 3D motion model• 3D motion model
• 2-D motion model
• 2-D motion vs. optical flow
• Optical flow equation and ambiguity in motion estimation
• General methodologies in motion estimation

– Motion representation
– Motion estimation criterion
– Optimization methods
– Gradient descent methods

• Pixel-based motion estimation
• Block-based motion estimation

– EBMA algorithm
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EBMA algorithm



2-D Motion Model

• Camera projection• Camera projection
• 3D motion 
• Projection of 3-D motionProjection of 3 D motion
• 2D motion due to rigid object motion

– Projective mapping

• Approximation of projective mapping
– Affine model
– Bilinear model– Bilinear model
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Pinhole Camera
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plane

image 3-D position. The object appears smaller 
when it is farther away.



Pinhole Camera Model:
Perspective ProjectionPerspective Projection
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Approximate Model:
Orthographic ProjectionOrthographic Projection
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Rigid Object Motion
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• Add equations for rotation matrix• Add equations for rotation matrix
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Flexible Object Motion

• Two ways to describe• Two ways to describe
– Decompose into multiple, but connected rigid sub-objects
– Global motion plus local motion in sub-objects
– Ex. Human body consists of many parts each undergo a 

rigid motion
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3-D Motion -> 2-D Motion
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2-D Motion Corresponding to 
Rigid Object MotionRigid Object Motion

• General case: • General case:
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Sample Motion Field



Occlusion Effect
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Typical Camera Motions

B

Track right
Dolly
backward

Boom up

Pan right

Tilt up

Track left
Dolly forward

Boom down

Pan left

Tilt down
Roll

Tilt down
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2-D Motion Corresponding to 
Camera MotionCamera Motion

(b)(a)

Camera zoom Camera rotation around Z-axis (roll)
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Camera rotation around Z axis (roll)



2-D Motion Corresponding to 
Rigid Object MotionRigid Object Motion

• General case: • General case:
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Projective Mapping

Non-chirping models Chirping models

(Original) (Affine) (Bilinear) (Projective) (Relative-
projective)

(Pseudo-
perspective)

(Biquadratic)

Two features of projective mapping:
• Chirping: increasing perceived spatial frequency for far away objects
• Converging (Keystone): parallel lines converge in distance
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Affine and Bilinear Model

• Affine (6 parameters):• Affine (6 parameters):
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Bilinear (8 parameters):• Bilinear (8 parameters):
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Motion Field Corresponding to
Different 2 D Motion ModelsDifferent 2-D Motion Models

Translation
Affine

( ) (b)(a) (b)

Bilinear Projective
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2-D Motion vs. Optical Flowp

• 2-D Motion: Projection of 3-D motion depending on 3D object motion and• 2-D Motion: Projection of 3-D motion, depending on 3D object motion and            
projection operator
• Optical flow: “Perceived” 2-D motion based on changes in image pattern, 
also depends on illumination and object surface texture 

On the left, a sphere is rotating 
under a constant ambient 
illumination, but the observed image 
does not change.

On the right, a point light source is 
rotating around a stationary 
sphere, causing the highlight point 

th h t t t
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Optical Flow Equationp q

• When illumination condition is unknown the best one• When illumination condition is unknown, the best one 
can do it to estimate optical flow.

• Constant intensity assumption -> Optical flow equationy p p q

),,(),,(
:"assumptionintensity constant "Under 

 tyxdtdydx tyx 

),,(),,(

:expansion sTaylor' using But,












 d
y

d
y

d
x

tyxdtdydx tyxtyx


0or0or0

:equation flow optical  thehave  we two,above  theCompare




















 vvddd T

t
 v

©Yao Wang, 2003 2-D Motion Estimation, Part 1 21

 0or   0or       0















 tt

v
y

v
x

d
t

d
y

d
x yxtyx  v



Ambiguities in Motion Estimationg

• Optical flow equation only y• Optical flow equation only 
constrains the flow vector 
in the gradient direction 

• The flow vector in the
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General Considerations
for Motion Estimationfor Motion Estimation

• Two categories of approaches:• Two categories of approaches:
– Feature based (more often used in object tracking, 3D 

reconstruction from 2D)
– Intensity based (based on constant intensity assumption) 

(more often used for motion compensated prediction, 
required in video coding, frame interpolation) -> Our focus

• Three important questions
– How to represent the motion field?
– What criteria to use to estimate motion parameters?What criteria to use to estimate motion parameters?
– How to search motion parameters?
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Motion Representationp

Global:
Entire motion field is 
represented by a few 
global parameters 

Pixel-based:
One MV at each pixel, 
with some smoothness 
constraint between 
adjacent MVs.

(a) (b)

adjacent MVs. 

( ) ( )

Region-based:
Entire frame is divided 
into regions, each 
region corresponding 

Block-based:
Entire frame is divided 
into blocks, and motion 
in each block is

to an object or sub-
object with consistent 
motion, represented by 
a few parameters.

in each block is 
characterized by a few 
parameters. 

©Yao Wang, 2003 2-D Motion Estimation, Part 1 24

(c) (d)

Other representation: mesh-based (control grid) (to be discussed later)



Notations

Time t

Time t � Δt
Backward motion estimation

Anchor frame:

Target frame:

Motion parameters:

)(1 x
)(2 x
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x
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x

Time t � Δt
Motion parameters:

Motion vector at a 
pixel in the anchor 
frame: )(xd

a

xd(x; t, t � Δt)

Target frame

Anchor frame

Target frame

Forward motion estimation

Motion field:

Mapping function:

xaxd ),;(

 xaxdxaxw ),;();(Target frame  xaxdxaxw ),;();(
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Motion Estimation Criterion

• To minimize the displaced frame difference (DFD)To minimize the displaced frame difference (DFD)

MSE :2   MAD;:1

min)());(()( 12DFD



 


Pp

E
x
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• To satisfy the optical flow equation

T i dditi l th t i t i l i ti

  min)()();()()( 121OF  
x

pTE xxaxdxa 

• To impose additional smoothness constraint using regularization 
technique (Important in pixel- and block-based representation)

);();()( 2  aydaxdasE

• Bayesian (MAP) criterion: to maximize the a posteriori probability 
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Relation Among Different Criteriag

• OF criterion is good only if motion is small• OF criterion is good only if motion is small. 
• OF criterion can often yield closed-form solution as 

the objective function is quadratic in MVs.j q
• When the motion is not small, can iterate the solution 

based on the OF criterion to satisfy the DFD criterion.
• Bayesian criterion can be reduced to the DFD 

criterion plus motion smoothness constraint
• More in the textbookMore in the textbook
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Optimization Methodsp

• Exhaustive searchExhaustive search 
– Typically used for the DFD criterion with p=1 (MAD)
– Guarantees reaching the global optimal
– Computation required may be unacceptable when number of p q y p

parameters to search simultaneously is large!
– Fast search algorithms reach sub-optimal solution in shorter time 

• Gradient-based search
– Typically used for the DFD or OF criterion with p=2 (MSE)

• the gradient can often be calculated analytically
• When used with the OF criterion, closed-form solution may be obtained

– Reaches the local optimal point closest to the initial solution– Reaches the local optimal point closest to the initial solution
• Multi-resolution search

– Search from coarse to fine resolution, faster than exhaustive search
– Avoid being trapped into a local minimum
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Avoid being trapped into a local minimum



Gradient Descent Method

• Iteratively update the current estimate in the direction opposite the gradient 
di tidirection.

Not a good initialg

A good initial

Appropriate
stepsize

Stepsize 

• The solution depends on the initial condition. Reaches the local minimum closest 
to the initial condition

too big
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• Choice of step side:
– Fixed stepsize: Stepsize must be small to avoid oscillation, requires many iterations
– Steepest gradient descent (adjust stepsize optimally)



Newton’s Method

• Newton’s methodNewton s method

– Converges faster than 1st order method (I.e. requires fewer number of iterations to 
reach convergence)

– Requires more calculation in each iteration
– More prone to noise (gradient calculation is subject to noise, more so with 2nd order 

than with 1st order)
– May not converge if \alpha >=1. Should choose \alpha appropriate to reach a good 
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compromise between guaranteeing convergence and the convergence rate.



Newton-Raphson Methodp

• Newton-Ralphson method• Newton-Ralphson method 
– Approximate 2nd order gradient with product of 1st order gradients
– Applicable when the objective function is a sum of squared errors
– Only needs to calculate 1st order gradients, yet converge at a rate similar to y g y g

Newton’s method.
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Pixel-Based Motion Estimation

• Horn Schunck method• Horn-Schunck method
– OF + smoothness criterion

• Multipoint neighborhood methodp g
– Assuming every pixel in a small block surrounding a pixel 

has the same MV

• Pel-recurrsive method• Pel-recurrsive method
– MV for a current pel is updated from those of its previous 

pels, so that the MV does not need to be coded
D l d f l ti f id d– Developed for early generation of video coder
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Multipoint Neighborhood Method

• Estimate the MV at each pixel independently by minimizing the• Estimate the MV at each pixel independently, by minimizing the 
DFD error over a neighborhood surrounding this pixel

• Every pixel in the neighborhood is assumed to have the same 
MVMV 

• Minimizing function:

i)()()()( 2E dd

• Optimization method:
– Exhaustive search (feasible as one only needs to search one MV at

min)()()()(
)(

12nDFD  
 nB

nwE
xx

xdxxd 

Exhaustive search (feasible as one only needs to search one MV at 
a time)

• Need to select appropriate search range and search step-size
– Gradient-based method
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Example: Gradient Descent 
MethodMethod
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Simplification Using OF Criterion
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The solution is good only if the actual MV is small. When this is not the 
case one should iterate the above solution with the following update:case, one should iterate the above solution, with the following update:
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Block-Based Motion Estimation:
OverviewOverview

• Assume all pixels in a block undergo a coherent motion and• Assume all pixels in a block undergo a  coherent motion, and 
search for the motion parameters for each block independently

• Block matching algorithm (BMA): assume translational motion, 1 
MV per block (2 parameter)MV per block (2 parameter)
– Exhaustive BMA (EBMA)
– Fast algorithms

Deformable block matching algorithm (DBMA): allow more• Deformable block matching algorithm (DBMA): allow more 
complex motion (affine, bilinear), to be discussed later.
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Block Matching Algorithm

• Overview:Overview:
– Assume all pixels in a block undergo a translation, denoted by a 

single MV
– Estimate the MV for each block independently, by minimizing the 

DFD error over this block
• Minimizing function:

• Optimization method:

min)()()( 12mDFD  
 mB

p
mE

x
xdxd 

– Exhaustive search (feasible as one only needs to search one MV at 
a time), using MAD criterion (p=1)

– Fast search algorithms
Integer vs fractional pel accuracy search

©Yao Wang, 2003 2-D Motion Estimation, Part 1 37

– Integer vs. fractional pel accuracy search



Exhaustive Block Matching 
Algorithm (EBMA)Algorithm (EBMA)

Target frame

Rx

Target frame

Ry

dm

Anchor frame

B�

Search region

B�m
Best match

Bm
Current block
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Complexity of Integer-Pel EBMA

• AssumptionAssumption
– Image size: MxM
– Block size: NxN
– Search range: (-R,R) in each dimensiong ( , )
– Search stepsize: 1 pixel (assuming integer MV)

• Operation counts (1 operation=1 “-”, 1 “+”, 1 “*”):
– Each candidate position: N^2
– Each block going through all candidates: (2R+1)^2 N^2
– Entire frame: (M/N)^2 (2R+1)^2 N^2=M^2 (2R+1)^2 

• Independent of block size!
• Example: M=512, N=16, R=16, 30 fps

– Total operation count = 2.85x10^8/frame =8.55x10^9/second
• Regular structure suitable for VLSI implementation
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• Challenging for software-only implementation



Sample Matlab Script for 
Integer pel EBMAInteger-pel EBMA

%f1: anchor frame; f2: target frame, fp: predicted image;
%mvx mvy: store the MV image%mvx,mvy: store the MV image
%widthxheight: image size; N: block size, R: search range

for i=1:N:height-N,
for j=1:N:width-N  %for every block in the anchor frame       

MAD_min=256*N*N;mvx=0;mvy=0;
for k=-R:1:R,

for l=-R:1:R  %for every search candidate
MAD=sum(sum(abs(f1(i:i+N-1,j:j+N-1)-f2(i+k:i+k+N-1,j+l:j+l+N-1))));

% calculate MAD for this candidate% calculate MAD for this candidate
if MAD<MAX_min

MAD_min=MAD,dy=k,dx=l;
end;

end;end;
fp(i:i+N-1,j:j+N-1)= f2(i+dy:i+dy+N-1,j+dx:j+dx+N-1); 

%put the best matching block in the predicted image
iblk=(floor)(i-1)/N+1; jblk=(floor)(j-1)/N+1; %block index
mvx(iblk,jblk)=dx; mvy(iblk,jblk)=dy; %record the estimated MV

end;end;
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end;end;

Note: A real working program needs to check whether a pixel in the candidate matching block falls outside the image 
boundary and such pixel should not count in MAD. This program is meant to illustrate the main operations involved. Not the 
actual working matlab script.



Fractional Accuracy EBMA

• Real MV may not always be multiples of pixels To allow sub-Real MV may not always be multiples of pixels. To allow sub-
pixel MV, the search stepsize must be less than 1 pixel

• Half-pel EBMA: stepsize=1/2 pixel in both dimension
• Difficulty:Difficulty:

– Target frame only have integer pels
• Solution:

– Interpolate the target frame by factor of two before searchingp g y g
– Bilinear interpolation is typically used

• Complexity: 
– 4 times of integer-pel, plus additional operations for interpolation. 

• Fast algorithms:
– Search in integer precisions first, then refine in a small search 

region in half-pel accuracy.
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Half-Pel Accuracy EBMA

Bm:
current

dm

block

B� :Bm:
matching
block
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Bilinear Interpolation

(x+1,y)(x,y) (2x,2y) (2x+1,2y)

(2x,2y+1) (2x+1,2y+1)

(x+1,y+1)(x,y+!)

O[2x,2y]=I[x,y]
O[2x+1,2y]=(I[x,y]+I[x+1,y])/2
O[2x,2y+1]=(I[x,y]+I[x+1,y])/2
O[2 1 2 1] (I[ ] I[ 1 ] I[ 1] I[ 1 1])/4
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O[2x+1,2y+1]=(I[x,y]+I[x+1,y]+I[x,y+1]+I[x+1,y+1])/4



ee

nc
ho

r f
ra

m
e

ar
ge

t f
ra

m
e

anta

86
dB

)
fra

m
e 

(2
9.

8

on
 fi

el
d

te
d 

an
ch

or
 

M
ot

i

P
re

di
ct

Example: Half-pel EBMA



Pros and Cons with EBMA

• Blocking effect (discontinuity across block boundary) in the• Blocking effect (discontinuity across block boundary) in the 
predicted image
– Because the block-wise translation model is not accurate

Fix: Deformable BMA (next lecture)– Fix: Deformable BMA (next lecture)
• Motion field somewhat chaotic

– because MVs are estimated independently from block to block
Fi 1 M h b d ti ti ti ( t l t )– Fix 1: Mesh-based motion estimation (next lecture)  

– Fix 2: Imposing smoothness constraint explicitly
• Wrong MV in the flat region

– because motion is indeterminate when spatial gradient is near zero
• Nonetheless, widely used for motion compensated prediction in 

video coding
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– Because its simplicity and optimality in minimizing prediction error



Fast Algorithms for BMA

• Key idea to reduce the computation in EBMA:• Key idea to reduce the computation in EBMA: 
– Reduce # of search candidates: 

• Only search for those that are likely to produce small errors. 
• Predict possible remaining candidates based on previous search resultPredict possible remaining candidates, based on previous search result

– Simplify the error measure (DFD) to reduce the computation 
involved for each candidate

• Classical fast algorithmsClassical fast algorithms
– Three-step
– 2D-log
– Conjugate directionConjugate direction

• Many new fast algorithms have been developed since then
– Some suitable for software implementation, others for VLSI 

implementation (memory access, etc)
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implementation (memory access, etc)



VcDemo Example

VcDemo: Image and Video Compression Learning Tool
Developed at Delft University of Technology

http://www-ict.its.tudelft.nl/~inald/vcdemo/

Use the ME tool to show the motion estimation results with different parameter choices
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Summary (I)y ( )

• 3D Motion3D Motion 
– Rigid vs. non-rigid motion

• Camera model: 3D -> 2D projection
– Perspective projection vs. orthographic projection

• What causes 2D motion?• What causes 2D motion?
– Object motion projected to 2D
– Camera motion

• Models corresponding to typical camera motion and object motion
Piece wise projective mapping is a good model for projected rigid object– Piece-wise projective mapping is a good model for projected rigid object 
motion

– Can be approximated by affine or bilinear functions
– Affine functions can also characterize some global camera motions

• Constraints for 2D motion• Constraints for 2D motion
– Optical flow equation
– Derived from constant intensity and small motion assumption
– Ambiguity in motion estimation
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Summary (II)

• How to represent motion:How to represent motion:
– Pixel-based, block-based, region-based, global, etc.

• Estimation criterion:
– DFD (constant intensity)DFD (constant intensity)
– OF (constant intensity+small motion)
– Bayesian (MAP, DFD+motion smoothness)

• Search method:
– Exhaustive search, gradient-descent, multi-resolution (next lecture)

• Pixel-based motion estimation
– Most accurate representation, but also most costly to estimate

• Block-based motion estimation
– Good trade-off between accuracy and speed
– EBMA and its fast but suboptimal variant is widely used in video 

di f ti t d t l di ti
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coding for motion-compensated temporal prediction.



Homework

• Reading assignment:Reading assignment:
– Chap 5: Sec. 5.1, 5.5
– Chap 6: Sec. 6.1-6.4, Sec. 6.4.5,6.4.6 not required, Apx. A, B.

• Written assignment
– Prob. 5.3, 5.4, 5.6
– Correction:

• Prob. 5.3: Show that the projected 2-D motion of a 3-D object 
undergoing rigid motion can be described by Eq.(5.5.13)

• 5.4: change aX+bY+cZ=1 to Z=aX+bY+c
– Prob. 6.4,6.5,6.6

• Computer assignment (Due 2 weeks from lecture date)
Prob 6 12 6 13– Prob. 6.12, 6.13

– Note: you can download sample video frames from the course webpage. 
When applying your motion estimation algorithm, you should choose two 
frames that have sufficient motion in between so that it is easy to observe 
effect of motion estimation inaccuracy. If necessary, choose two frames that
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effect of motion estimation inaccuracy. If necessary, choose two frames that 
are several frames apart. For example, foreman: frame 100 and frame 103.


