

Video Processing & Communications

Video Coding Standards - Part II

Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao

Based on: Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and Communications, Prentice Hall, 2002.

Outline

- Overview of Standards and Their Applications
- ITU-T Standards for Audio-Visual Communications
 - H.261
 - H.263
 - H.263+, H.263++
- ISO Standards for
 - MPEG-1
 - MPEG-2
 - MPEG-4
- H.264/AVC

Current Image and Video Compression Standards

Standard	Application	Bit Rate
JPEG	Continuous-tone still-image compression	Variable
H.261	Video telephony and teleconferencing over ISDN	p x 64 kb/s
MPEG-1	Video on digital storage media (CD-ROM)	1.5 Mb/s
MPEG-2	Digital Television	2-20 Mb/s
H.263	Video telephony over PSTN	33.6-? kb/s
MPEG-4	Object-based coding, synthetic content, interactivity	Variable
JPEG-2000	Improved still image compression	Variable
H.264 / MPEG-4 AVC	Improved video compression	10's kb/s to Mb/s

MPEG and JPEG: International Standards Organization (ISO) H.26x family: International Telecommunications Union (ITU)

History of Video Coding Standards

- Recent development:
 - HEVC, 2012

H.264/AVC Standards

- Developed by the joint video team (JVT) including video coding experts from the ITU-T and the ISO MPEG
- Finalized March 2003
- Improved video coding efficiency, up to 50% over H.263++/MPEG4
 - Half the bit rate for similar quality
 - Significantly better quality for the same bit rate
- Reference & figures for this section are from
 - Ostermann et al., Video coding with H.264/AVC: Tools, performance, and complexity, IEEE Circuits and Systems Magazine, First Quarter, 2004

New Video Coding Tools

- Intra-prediction
- Integer DCT with variable block sizes
- Adaptive deblocking filtering
- Multiple reference frame prediction

Spatial prediction

- H.261
 - Motion vector prediction using previously encoded MV
- MPEG-1
 - DC coefficients coded predictively
- H.263
 - MV prediction using the median of three neighbors
 - Optional: Intra DC prediction (10-15% improvement)
- MPEG-4
 - DC prediction: can predict DC coefficient from either the previous block or the block above
 - AC prediction: can predict one column/row of AC coefficients from either the previous block or the block above
- H.264
 - Pixel domain directional intra prediction

Standards 7

H.264 Intra prediction

- •Instead of the simple DC coefficient prediction to exploit the correlation between nearby pixels in the same frame, more sophisticated spatial prediction is used
- •Apply prediction to the entire 16*16 block (INTRA_16x16), or apply prediction separately to sixteen 4*4 blocks (INTRA_4x4)

Adaptive directional prediction

8 possible directions

Sample Intra Prediction Modes

Motion Compensation

- Quarter-pel accuracy
- Variable block size
- Multiple reference frames
 - Generalized B-picture
- Weighted prediction (fade in, fade out, etc)

Variable Blocksize Motion Compensation

- Use variable size block-based motion compensation
 - 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4
 - H.263/MPEG4 use only 16x16 and 8x8

From [Ostermann04]

Multiple Reference Frames for Motion Compensation

- Can use one or two from several possible reference frames
- When two reference frames are used, arbitrary weights can be used to combine them – Generalized B-picture

From [Ostermann04]

Generalized B-frames

In H.264, B frames can be used for prediction

Display order: 0

Transform

- 8x8 DCT
 - H.261
 - MPEG-1
 - H.263
 - MPEG-2
 - MPEG-4
 - DCT is non-integer; the result depends on the implementation details
- H.264:
 - Integer transforms, variable size (2x2, 4x4, 16x16)

Integer Transform

- Smaller block size (4x4 or 2x2) can better represent boundaries of moving objects, and match prediction errors generated by smaller block size motion compensation
- Integer transform can be implemented more efficiently and no mismatch problem between encoder and decoder

applied in H.264/AVC.

Primary transform

From [Ostermann04]

Variable Length Coding

H.261

- DCT coefficients are converted into runlength representations and then coded using VLC (Huffman coding for each pair of symbols)
 - Symbol: (Zero run-length, non-zero value range)
- Other information are also coded using VLC (Huffman coding)

H.263

- 3-D VLC for DCT coefficients (runlength, value, EOB)
- Syntax-based arithmetic coding (option)
 - 4% savings in bit rate for P-mode, 10% saving for I-mode, at 50% more computations

MPEG-4

3-D VLC similar to H.263

H.264 Entropy Coding

- Baseline technique: CAVLC (context adaptively switched sets of variable length codes)
- A more complex technique called CABAC: context-based adaptive binary arithmetic coding
- Both offer significant improvement over Huffman coding which uses pre-designed coding tables based on some assumed statistics

Loop Filter

- In-Loop filtering can be applied to suppress propagation of coding noise temporally
- H.261
 - Separable filter [1/4,1/2,1/4]
 - Loop filter can be turned on or off
- MPEG-1
 - No loop filter (half-pel motion compensation provides some)
- H.263
 - Optional deblocking filter included in H.263+
 - Overlapped block motion effectively smoothes block boundaries
 - Decoder can choose to implement out-of-loop deblocking filter
- H.264
 - Deblocking filter adapts to the strength of the blocking artifact
- H.265
 - More elaborate inloop filtering

Adaptive Deblocking

From [Ostermann04]

- Whether filtering will be turned on depends on the pixel differences involving pixels p0,..., q0,..., and the filter depends on block characteristics and coding mode.
- Deblocking results in bit rate savings of 6-9% at medium qualities, and more remarkable subjective improvements,

Profiles and Levels

From [Ostermann04]

Comparison with Previous Standards

- Coding efficiency: in terms of achievable rates for target video quality (PSNR)
 - Video streaming application
 - Video conferencing application
- Complexity:
 - Encoder
 - Decoder

Figure 21. Luminance PSNR versus average bit rate for different coding standards, measured for the test sequence *Tempete* for video streaming applications (from [36]).

Coding efficiency for video streaming

Table 1. Average bit rate savings for video streaming applications (from [10]).					
Codes	Average Bit Rate Savings Relative To:				
Coder	MPEG-4 ASP	H.263 HLP	MPEG-2		
H.264/AVC MP	37.44%	47.58%	63.57%		
MPEG-4 ASP	-	16.65%	42.95%		
H.263 HLP	-	-	30.61%		

From [Ostermann02]

Figure 22. Luminance PSNR versus average bit rate for different coding standards, measured for the test sequence Paris for video conferencing applications (from [36]).

Coding efficiency for conferencing

Table 2.		
Average bit rate savings	for video conferencing appl	lications (from [10]).

	Average Bit Rate Savings Relative To:		
Coder	H.263 CHC	MPEG-4 SP	H.263 Base
H.264/AVC BP	27.69%	29.37%	40.59%
H.263 CHC	-	2.04%	17.63%
MPEG-4 SP	-	-	15.69%

From [Ostermann02]

What about complexity?

- H.264 decoder is about 2 times as complex as an MPEG-4 Visual decoder for the Simple profile
- H.264 encoder is about 10 times as complex as a corresponding MPEG-4 Visual encoder for the Simple profile
- The H.264/AVC main profile decoder suitable for entertainment applications is about 4 times more complex than MPEG-2

AVS (Audio Visual Coding Standard) Overview

- Chinese standard; 2002-2003 (Video)
- Licensing fees for all ISO and ITU standards after (not including) MPEG-1
- China produces more than 30 million Set Top Boxes
- Interlaced pictures, SDTV and HDTV
- Similar (slightly less) compression efficiency as H.264
- Interlaced pictures
- Intra prediction
- Variable block-size MC
- ¼ resolution motion, 4-tap interpolation filter
- 8x8 Integer Transform
- Deblocking

High Efficiency Video Coding (HEVC) The latest video coding standard

- Targeting for high resolution videos: HD (1920x1080) to ultra HD (7680x4320), progressive only (60p)
- Two targeted applications
 - Random access
 - Low delay
- Two categories of profile
 - High efficiency (HE)
 - Low complexity (LC)
- Performance: 2x better video compression performance compared to H.264/AVC.
 - Half the bit rate for similar quality
- Committee draft: Feb 2012.
- Target Standadization: Early 2013

New Coding Tools in HEVC

- Quadtree partition in 64x64 blocks: Block sizes from 8x8 to 64x64
- Up to 34 directions for intra-prediction
- For sub-pel motion estimation (down to ¼ pel), use 6or 12-tap interpolation filter
- Advanced motion vector prediction
- CABAC or Low Complexity Entropy Coding
- Deblocking filter or Adaptive Loop Filter
- Extended precision options

Tree Structure for block partition

Processing order

HEVC vs. H.264 Performance (sample sequence)

JM: H264 reference code

RAHE: HEVC high efficiency

RALC: HEVA low complexity

Better visual quality at half of the bit rate!

Summary

H.261:

- First video coding standard, targeted for video conferencing over ISDN
- Uses block-based hybrid coding framework with integer-pel MC

H.263:

- Improved quality at lower bit rate, to enable video conferencing/telephony below 54 bkps (modems or internet access, desktop conferencing)
- Half-pel MC and other improvement
- MPEG-1 video
 - Video on CD and video on the Internet (good quality at 1.5 mbps)
 - Half-pel MC and bidirectional MC
- MPEG-2 video
 - TV/HDTV/DVD (4-15 mbps)
 - Extended from MPEG-1, considering interlaced video

Summary (Cnt'd)

MPEG-4

- To enable object manipulation and scene composition at the decoder -> interactive TV/virtual reality
- Object-based video coding: shape coding
- Coding of synthetic video and audio: animation

• H.264:

- Significant improvement in coding efficiency over H.263/MPEG4
- Fundamentally similar ideas but with more adaptive/optimized implementation, feasible only with recent advance in computation power.

Other MPEG standards

- MPEG-7
 - To enable search and browsing of multimedia documents
- MPEG-21
 - beyond MPEG-7, considering intellectual property protection, etc.

References

- Chap. 13
- H.264:
 - J. Ostermann et al., Video coding with H.264/AVC: Tools, performance, and complexity, IEEE Circuits and Systems Magazine, First Quarter, 2004
 - IEEE Trans. Circuits and Systems for Video Technology, special issue on H.264, July 2003.
- AVS
 - http://vspc.ee.cuhk.edu.hk/~ele5431/AVS.pdf
 (King Ngan, Chinese University of Hong Kong)
- HEVC
 - IEEE Trans. Circuits and Systems for Video Technology, Special Section on the Joint Call for Proposals on High Efficiency Video Coding (HEVC) Standardization. Dec. 2010