Video Stabilization and Deblurring

Yao Wang
Polytechnic University, Brooklyn, NY11201
http://eeweb.poly.edu/~yao
Outline

- Video stabilization
- Video deblurring
Video Stabilization

- A video may be unstable due to unwanted camera motion
- Especially prevalent in home video captured by hand-held cameras with a “shaky hand”
General Block Diagram

- Camera motion estimation between every two adjacent frames
- Motion smoothing in time
- Warping current frame to a reference frame
 - Use a global reference frame (every frame is registered to this frame)
 - Remove undesired global motion
 - Only correct unwanted small noisy motion, by registering over a local reference frame
- Filling missing pixels (on the border) in each frame

Yao Wang, 2013
Camera Motion Estimation (AKA Global Motion Estimation)

- What motion model to use?
 - Ideally projective mapping
 - Affine is more commonly used

- Feature based:
 - Find a set of feature points in one frame
 - Harris Corner detector
 - SIFT feature
 - Find their corresponding points in the other frame (matching)
 - Fit the motion at these points into a global motion (e.g. affine)

- Intensity based:
 - Find the global motion parameters so that the image intensity at corresponding points are similar
 - Direct method: directly estimate the affine parameters
 - Indirect method: first find motions over regular blocks or selected points, then fit the motion at these points into a global motion
Global Motion Smoothing

Kalman filtering approach: Separating observed motion parameters into intentional and unwanted motion [Ref 2]

Figure 5: Red straight lines – Inter-frame motion parameters obtained for sequence A; Green dashed lines - intentional cumulative transform parameters estimated using smoothing Kalman filtering
Video Completion by Motion Inpainting [Ref 1]

Image with missing image area

Local motion computation

Mosaicing with local warping

Motion Inpainting
Sample Results (from [1])
Image Deblurring

- When the object or camera is moving, the captured image is blurred, especially when the image is taken under low light with long exposure
- Fundamental:
 - motion blur can be modeled by a degradation filter (blurring kernel) which is motion dependent
- Two main approaches
 - Blind deblurring: Using a single captured image:
 - Estimate the motion and hence blurring kernel
 - Inverse filtering
 - Non-blind deblurring: Using multiple images (e.g. one blurred due to motion, one noisy due to short exposure) to help motion and blur kernel estimation [5]
Deblurring from a Blurred and a Noisy Image [Ref 5]

Figure 1: Photographs in a low light environment. (a) Blurred image (with shutter speed of 1 second, and ISO 100) due to camera shake. (b) Noisy image (with shutter speed of 1/100 second, and ISO 1600) due to insufficient light. (c) Noisy image enhanced by adjusting level and gamma. (d) Our deblurred image.
Deblurring from a Blurred and a Noisy Image [Ref 5]

- Denoising: Noisy image -> denoised image
- Kernel estimation:
 - Assume Blurred image = Original Image * kernel
 - $b = A \cdot k$
 - Using denoised image as the initial estimate of original image, estimate the kernel, by solving a optimization problem
References

