Two-Dimensional Motion Estimation
(Part III: Advanced Techniques)

Yao Wang
Polytechnic University, Brooklyn, NY11201
yao@vision.poly.edu
Outline

• Deformable block matching algorithm (DBMA)
 – Node-based motion model
• Mesh-based motion estimation
 – Mesh-based motion representation
 – Mesh-based motion estimation
• Global motion estimation
 – Direct method
 – Indirect method
• Region-based motion estimation
• Summary
Problems with EBMA

• Blocking effect (discontinuity across block boundary) in the predicted image
 – Because the block-wise translation model is not accurate
 – Real motion in a block may be more complicated than translation
 • Fix: Deformable BMA
 – There may be multiple objects with different motions in a block
 • Fix:
 – region-based motion estimation
 – mesh-based using adaptive mesh
 – Intensity changes may be due to illumination effect
 • Should compensate for illumination effect before applying “constant intensity assumption”
Problems with EBMA (Cntd)

- Motion field somewhat chaotic
 - because MVs are estimated independently from block to block
 - Fix:
 - Imposing smoothness constraint explicitly
 - Multi-resolution approach
 - Mesh-based motion estimation

- Wrong MV in the flat region
 - because motion is indeterminate when spatial gradient is near zero
 - Ideally, should use non-regular partition
 - Fix: region based motion estimation
Deformable Block Matching Algorithm
Overview of DBMA

- Three steps:
 - Partition the anchor frame into regular blocks
 - Model the motion in each block by a more complex motion
 - The 2-D motion caused by a flat surface patch undergoing rigid 3-D motion can be approximated well by projective mapping
 - Projective Mapping can be approximated by affine mapping and bilinear mapping
 - Various possible mappings can be described by a node-based motion model
 - Estimate the motion parameters block by block independently
 - Discontinuity problem cross block boundaries still remain
- Still cannot solve the problem of multiple motions within a block or changes due to illumination effect!
Affine and Bilinear Model

- **Affine (6 parameters):**
 - Good for mapping triangles to triangles
 \[
 \begin{bmatrix}
 d_x(x, y) \\
 d_y(x, y)
 \end{bmatrix} = \begin{bmatrix}
 a_0 + a_1x + a_2y \\
 b_0 + b_1x + b_2y
 \end{bmatrix}
 \]

- **Bilinear (8 parameters):**
 - Good for mapping blocks to quadrangles
 \[
 \begin{bmatrix}
 d_x(x, y) \\
 d_y(x, y)
 \end{bmatrix} = \begin{bmatrix}
 a_0 + a_1x + a_2y + a_3xy \\
 b_0 + b_1x + b_2y + b_3xy
 \end{bmatrix}
 \]
Difficulties in Estimating Affine and Bilinear Motion Parameters

- The coefficients need floating point precision
- The coefficients have different influence on the estimated motion
 - 0-th order coefficients \((a_0, b_0)\) represent the translation component
 - Other coefficients’ influence depend on the pixel coordinates
Node-Based Motion Model

Control nodes in this example: Block corners

Motion in other points are interpolated from the nodal MVs $d_{m,k}$

Control node MVs can be described with integer or half-pel accuracy, all have same importance

Translation, affine, and bilinear are special case of this model

$$d_m(x) = \sum_{k=1}^{K} \phi_{m,k}(x)d_{m,k}, \quad x \in B_m.$$
Interpolation Kernels

- Requirement:

\[0 \leq \phi_{m,k}(x) \leq 1, \quad \sum_k \phi_{m,k}(x) = 1, \quad \forall x \in B_{1,m}, \]
\[\phi_{m,k}(x_l) = \delta_{k,l} = \begin{cases} 1 & k = l, \\ 0 & k \neq l. \end{cases} \]

- For standard triangular element:

\[\phi_1^t(x, y) = x, \quad \phi_2^t(x, y) = y, \quad \phi_3^t(x, y) = 1 - x - y. \]

- For standard quadrilateral element:

\[\phi_1^q(x, y) = (1 + x)(1 - y)/4, \quad \phi_2^q(x, y) = (1 + x)(1 + y)/4, \]
\[\phi_3^q(x, y) = (1 - x)(1 + y)/4, \quad \phi_4^q(x, y) = (1 - x)(1 - y)/4. \]
Estimation of Nodal Motions

- Objective function:

\[
E(a) = \sum_{x \in B} |\psi_2(w(x; a)) - \psi_1(x)|^p,
\]
\[
a = [d_k, \ k \in \mathcal{K}]
\]
\[
w(x; a) = x + \sum_{k \in \mathcal{K}} \phi_k(x)d_k.
\]

- Search method:
 - Exhaustive search:
 - search \(K \) nodal MVs simultaneously in integer or half-pel accuracy, may not be feasible in practice
 - Gradient descent approach:
 - See textbook for the Newton-Raphson update algorithm
 - Solution depends on the initial solution. A good initial solution is the translation MV found using EBMA
Problems with DBMA

- Motion discontinuity across block boundaries, because nodal MVs are estimated independently from block to block
 - Fix: mesh-based motion estimation
 - First apply EBMA to all blocks
- Cannot do well on blocks with multiple moving objects or changes due to illumination effect
 - Three mode method
 - First apply EBMA to all blocks
 - Blocks with small EBMA errors have *translational motion*
 - Blocks with large EBMA errors may have *non-translational motion*
 - First apply DBMA to these blocks
 - Blocks still having errors are *non-motion compensable*
- [Ref] O. Lee and Y. Wang, Motion compensated prediction using nodal based deformable block matching. J. Visual Communications and Image Representation (March 1995), 6:26-34
Mesh-Based Motion Estimation: Overview

(a) Using a triangular mesh

(b) Using a quadrilateral mesh

\[d_m(x) = \sum_{k \in K} \phi_{m,k}(x) d_{m,k}, \quad x \in B_{1,m}, \]

©Yao Wang, 2002 2-D Motion Estimation
Mesh-based vs. block-based motion estimation

(a) block-based backward ME

(b) mesh-based backward ME

(c) mesh-based forward ME
Mesh-Based Motion Model

- The motion in each element is interpolated from nodal MVs

\[d_m(x) = \sum_{k \in K} \phi_{m,k}(x) d_{n(m,k)}, \quad x \in B_{1,m}. \]

- Mesh-based vs. node-based model:
 - Mesh-based: Each node has a single MV, which influences the motion of all four adjacent elements
 - Node-based: Each node can have four different MVs depend on within with element it is considered
Mesh Generation and Motion Estimation

- Two problems:
 - Given a mesh in the anchor frame, determine nodal positions in the target frame – **Motion estimation**
 - Set up the mesh in the anchor frame, so that the mesh conforms with object boundaries – **Mesh generation**
 - Backward ME: can use either regular mesh or object adaptive mesh at each new frame
 - Motion estimation is easier with a regular mesh, but adaptive mesh can yield more accurate result
 - Forward ME:
 - only need to establish a mesh for the initial frame. Meshes in the following frames depend on the nodal MVs between successive frames.
 - To accommodate appearing/disappearing objects, the mesh geometry needs to be updated.
 - Only discuss motion estimation problem here
Estimation of Nodal Motion

- Unlike DBMA, all nodal MVs should be estimated simultaneously

\[E(d_n, n \in N) = \sum_{m \in M} \sum_{x \in B_{1,m}} |\psi_2(w_m(x)) - \psi_1(x)|^p, \]
\[w_m(x) = x + \sum_{k \in K} \phi_{m,k}(x)d_{n(m,k)}, \quad x \in B_{1,m}. \]

- Unless the anchor frame uses a regular mesh, the interpolation kernels are complicated

- Using a mapping to master element:
Estimation of Nodal Motion (cntd)

- **Simplification:**
 - Update one node at a time, minimizing DFD over all adjacent elements
 - Gradient descent method [Wang and Lee 1994]
 - Exhaustive search [Wang and Ostermann 1998]
 - Update order is important
 - First update those nodes where motion can be estimated accurately (near edges)
 - Motion of this node should be constrained not to cause excessively deformed elements
Example: Half-pel EBMA
EBMA vs. Mesh-based Motion Estimation

EBMA (29.86dB) vs. Mesh-based method (29.72dB)
Mesh-based vs. block-based motion estimation

(a) block-based backward ME

(b) mesh-based backward ME

(c) mesh-based forward ME
Global Motion Estimation

• Global motion:
 – Camera moving over a stationary scene
 • Most projected camera motions can be captured by affine mapping!
 – The scene moves in its entirety — a rare event!
 – Typically, the scene can be decomposed into several major regions, each moving differently (region-based motion estimation)

• If there is indeed a global motion, or the region undergoing a coherent motion has been determined, we can determine the motion parameters
 – Direct estimation
 – Indirect estimation

• When a majority of pixels (but not all) undergo a coherent motion, one can iteratively determine the motion parameters and the pixels undergoing this motion
 – Robust estimator
Direct Estimation

- Parameterize the DFD error in terms of the motion parameters, and estimate these parameters by minimizing the DFD error.

\[E_{DFD} = \sum_{n \in N} w_n |\psi_2(x_n + d(x_n; a)) - \psi_1(x_n)|^p \]

Weighting \(w_n \) coefficients depend on the importance of pixel \(x_n \).

Ex: Affine motion:

\[
\begin{bmatrix}
 d_x(x_n; a) \\
 d_y(x_n; a)
\end{bmatrix} =
\begin{bmatrix}
 a_0 + a_1 x_n + a_2 y_n \\
 b_0 + b_1 x_n + b_2 y_n
\end{bmatrix},
\quad a = [a_0, a_1, a_2, b_0, b_1, b_2]^T
\]

Exhaustive search or gradient descent method can be used to find \(a \) that minimizes \(E_{DFD} \).
Indirect Estimation

- First find the dense motion field using pixel-based or block-based approach (e.g. EBMA)
- Then parameterize the resulting motion field using the motion model through least squares fitting

\[
E_{fit} = \sum w_n (d(x_n; a) - d_n)^2
\]

Affine motion:
\[
d(x_n; a) = [A_n] a
\]
\[
[A_n] = \begin{bmatrix}
1 & x_n & y_n & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x_n & y_n
\end{bmatrix}
\]

\[
\frac{\partial E_{fit}}{\partial a} = \sum w_n [A_n]^T ([A_n] a - d_n) = 0
\]

\[
a = \left(\sum w_n [A_n]^T [A_n]\right)^{-1} \left(\sum w_n [A_n]^T d_n\right)
\]

Weighting \(w_n\) coefficients depend on the accuracy of estimated motion at \(x_n\).
Robust Estimator

Essence: iteratively removing “outlier” pixels.

1. Set the region to include all pixels in a frame
2. Apply the direct or indirect method method over all pixels in the region
3. Evaluate errors (E_{DFD} or E_{fit}) at all pixels in the region
4. Eliminate “outlier” pixels with large errors
5. Repeat steps 2-4 for the remaining pixels in the region

Details: Hard threshold vs. soft threshold. See textbook.
Illustration of Robust Estimator

Fitting a line to the data points by using LMS and robust estimators. Courtesy of Fatih Porikli
Region-Based Motion Estimation

• Assumption: the scene consists of multiple objects, with the region corresponding to each object (or sub-object) having a coherent motion
 – Physically more correct than block-based, mesh-based, global motion model
• Method:
 – Region First: Segment the frame into multiple regions based on texture/edges, then estimate motion in each region using the global motion estimation method
 – Motion First: Estimate a dense motion field, then segment the motion field so that motion in each region can be accurately modeled by a single set of parameters
 – Joint region-segmentation and motion estimation: iterate the two processes
Summary

• Fundamentals:
 – Optical flow equation
 • Derived from constant intensity and small motion assumption
 • Ambiguity in motion estimation
 – How to represent motion:
 • Pixel-based, block-based, region-based, global, etc.
 – Estimation criterion:
 • DFD (constant intensity)
 • OF (constant intensity+small motion)
 • Bayesian (MAP, DFD+motion smoothness)
 – Search method:
 • Exhaustive search, gradient-descent, multi-resolution (next lecture)
Summary (Cntd)

• Basic techniques:
 – Pixel-based motion estimation
 – Block-based motion estimation
 • EBMA, integer-pel vs. half-pel accuracy, Fast algorithms
 – Multiresolution approach
 • Avoid local minima, smooth motion field, reduced computation

• More advanced techniques
 – Deformable block matching algorithm (DBMA)
 • To allow more complex motion within each block
 – Mesh-based motion estimation
 • To enforce continuity of motion across block boundaries
 – Global motion estimation
 • Good for estimating camera motion
 – Region-based motion estimation
 • More physically correct: allow different motion in each sub-object region

• Application in Video Coding
Homework

• Reading assignment
 – Read Secs. 6.5-6.8,6.10
 – Go through and verify the gradient descent algorithm presented for DBMM (Eqs. 6.5.2-6.5.6).
 – Go through the derivation of the objective function definition (Eq. 6.6.6-6.6.8) for mesh-based motion estimation carefully, and verify the gradient function given in Eq. 6.6.9.