1. (15 pt) Consider the following two raster scan formats: progressive scan using 30 frames/second, 600 lines/frame, and interlaced scan using 60 fields/second, 300 lines/field. For each scan format, determine
 a. The overall line rate (lines/second)

 \[30 \times 600 = 18000 \text{ lines/s.} \]

 b. The maximum temporal frequency the system can handle
 This is half of the temporal frame/field rate;
 Progressive: 15 Hz (cycles/s); Interlaced: 30 Hz

 c. The maximum vertical frequency the system can handle
 This should be half of the line numbers per frame
 Progressive: 300 cycles/frame-height; interlaced: 150 cycles/frame-height

 d. The maximum frequency (cycles per second) in the 1D waveform of the raster signal, assuming the maximum horizontal frequency is similar to maximum vertical frequency, and that the image aspect ratio (width:height) is 4:3.

 \[N_s = \text{The total number of samples/s} = 30 \times 600 \times \text{samples/line} = 30 \times 600 \times (600 \times 4/3) = 14.4 \times 10^6 \]

 Maximum freq. \(f_{\text{max}} = N_s / 2 = 7.2 \text{ MHz} \)

 e. Now suppose we need to digitize the raster scan video into full digital signal. What should be the sampling rate (samples/s) so that the horizontal spacing between samples is equal to vertical spacing, and the samples are aligned vertically?

 This should be twice of the maximum freq.
 \[F_s = 2 \times f_{\text{max}} = 14.4 \text{ MHz} \]

 Note: For parts (b)-(c), assuming a Kell factor=1 for simplicity. For (d)-(e): you only need to consider progressive scan (although the solutions for both are actually the same).

2. (10 pt) Consider a plane surface that has a texture that can be described by
 \[\psi(x, y) = \sin(10\pi x - 6\pi y). \]

 a. If this plane moves horizontally at 3 meters/second and vertically at 6 meters/second, what is the temporal frequency of the video taken of this moving plane?

 Based on the given signal, \(f_x = 5, f_y = -3 \)
 \[F_t = -f_x v_x - f_y v_y = -5 \times 3 + 3 \times 6 = 3 \text{ Hz} \]
b. What if the motion is 3 meters/second horizontally and 5 meters/second vertically? $F_{t,0}$
Since the velocity is orthogonal to the spatial freq.

c. Suppose the plane moves as in (a). What is the perceived temporal frequency if the eye tracks the plane motion with eye speed of 3 meters/second horizontally and 6 meters/second vertically?
0 since the eye tracks the plane motion exactly.

3. (10 pt) Consider a video taken while the camera is undergoing a pan and tilt with rotation angels described by θ_z and θ_x respectively. When the rotation angles are small, the 3-D positions of any object point before and after this camera motion are related by

$$
\begin{bmatrix}
X' \\
Y' \\
Z'
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & \theta_y \\
0 & 1 & -\theta_x \\
-\theta_y & \theta_x & 1
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
$$

Assume that camera projection can be approximated by the perspective projection, i.e. $x = F \frac{X}{Z}$, $y = F \frac{Y}{Z}$. Prove that the 2D positions after and before the camera motion are related by the following relation, and express the constants a_0,a_1,b_0,b_1,c_1,c_2 in terms of θ_z,θ_x,F.

$$
x' = \frac{a_0 + a_1 x}{1 + c_1 x + c_2 y}, \quad y' = \frac{b_0 + b_1 y}{1 + c_1 x + c_2 y}
$$

Solution:

From given motion equation, $X' = X + \theta_y Z$.

From the projective motion model, $x = F X / Z$, we have $X = x Z / F, X' = x' Z' / F$.

Substituting

$$
x' = \frac{a_0 + a_1 x}{1 + c_1 x + c_2 y}, \quad y' = \frac{b_0 + b_1 y}{1 + c_1 x + c_2 y}
$$
4. (10 pt) Suppose the motion between two adjacent frames f1 and f2 can be described well by a
global bilinear mapping, described by:
\[
d_x(x, y) = a_0 + a_1x + a_2y + a_3xy,
\]
\[
d_y(x, y) = b_0 + b_1x + b_2y + b_3xy.
\]
One way to estimate the bilinear parameters from the given two frames is assuming the
corresponding pixel positions between the two frames satisfy the optical flow equation. Set up
your optimization problem using this approach and derive a closed-form solution for the bilinear
parameters, assuming you can calculate the image gradients at different pixel positions from the
given images.

5. (20 pt) Consider the computation complexity for performing motion estimation on a video of
30 frames/second, 400x300 pixels/frame.
 a. (2 pt) What is the number of operations needed per second to accomplish integer-pel
 EBMA if we use block size of 10x10, search range of –16 to 16? (count one
 subtraction and taking absolute value, and sum of two numbers as one operation).
 b. (2 pt) What will be the number of operations if you use half-pel? (you can ignore
 operations needed for frame interpolation)
 c. (4 pt) In general, how does the operation count for EBMA vary with the search range,
 search accuracy, block size, the frame size, frame rate? What parameters affect the
 accuracy of the predicted image?
 d. (8 pt) What is the number of operations required by the following two-level HBMA
 algorithm: At the top level, use a search range so that the equivalent search range at
 the lowest level (same as original image) is equal to (-16,16). Use block size of 10x10
 and integer pel search. For the bottom level, use a search range of (-2,2) and block
 size of 10x10. Initially use integer-pel search. After you obtain the best matching with
 integer search, refine the result using a half-pel search over the (-1,1) region for all
 unsearched positions. Compare your results with that from (a) and (b).
 e. (4 pt) What are the advantages and disadvantages of HBMA over EBMA?

6. (15 pt) We need to code a sequence of two discrete random variables \(\{X_k, Y_k; k = 1, 2, \ldots \} \).
 Assume the sequence is stationary and follows joint distribution \(P_{XY}(x, y) \), marginal
 distribution \(P_X(x) \), \(P_Y(y) \) and conditional distribution \(P_{Y|X}(y|x) \), \(P_{X|Y}(x|y) \). Consider the
 following three lossless coding methods, and give the lower bound on the achievable bit rate
 for each method (i.e. minimal number of bits required for coding every two samples \(X_k \) and
 \(Y_k \)). Define any entropy terms that you may use in terms of the given probability distribution.
 Based on your results, order these three methods in terms of coding efficiency (i.e. which
 method requires the lowest bit rate, the second lowest, and so on).
 a. Code the two variables \(X_k \) and \(Y_k \) separately;
 b. Code the two variables \(X_k \) and \(Y_k \) jointly;
 c. Code the variable \(X_k \) first, predict \(Y_k \) from \(X_k \), and code the prediction error.
7. (20 pt) Write a pseudo-code (in C or Matlab style) for performing EBMA between two frames. Specifically, it should first perform integer-pel EBMA with a search range specified by you, and then perform half-pel search with a search range of 1 around the solution obtained by integer-pel EBMA. Your program should produce the estimated motion field as well as the predicted image. It should have the following syntax:

\[
\text{[mvx,myy,pimg]} = \text{EBMA(inimg1,inimg2,R,B,width,height)}
\]

The input variables are:
- \(\text{inimg1} \): the anchor image;
- \(\text{inimg2} \): the target image;
- \(R \): search range. Assume the search range in horizontal and vertical directions are the same, both equal to \(R \);
- \(B \): block size is \(B \times B \);
- \(\text{Width, height} \): the horizontal and vertical dimension of \(\text{inimg1} \) and \(\text{inimg2} \). For simplicity, assume width and height both are integer multiples of the block size \(B \).

The output variables are:
- \(\text{mvx,myy} \): the images storing the horizontal and vertical components of the estimated motion field, respectively;
- \(\text{pimg} \): the predicted image for the anchor frame using the estimated motion field.

Note that if you need to use some additional image arrays within the program, you should properly allocate its memory.