Polytechnic University, Dept. Electrical and Computer Engineering

EL612 --- Video Processing, S06 (Prof. Yao Wang)

Final Exam (Open Book), 4/25/2006, 3:35-5:50
1. (20 pt) We need to code a sequence of two discrete random variables
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. Consider the following three lossless coding methods, and give the lower bound on the achievable bit rate for each method (i.e. minimal number of bits required for coding every two samples 
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). Define any entropy terms that you may use. Based on your results, order these three methods in terms of coding efficiency (i.e. which method requires the lowest bit rate, the second lowest, and so on).
a. Code the two variables 
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 separately;

b. Code the two variables 
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 jointly;

c. Code the variable 
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 first, predict 
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 from 
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, and code the prediction error.

Solution:

a. The lower bound for coding 
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 The lower bound for coding 
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 The lower bound for coding both separately is thus 
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b. The lower bound for coding 
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 jointly is the joint entropy of 
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c. The lower bound for coding 
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. The lower bound for coding the prediction error is the entropy for the prediction error. Let 
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. The entropy of 
[image: image37.wmf])

(

k

k

X

E

for given 
[image: image38.wmf]k

X

 is the same as the entropy of 
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 The overall lower bound is thus 
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d. Generally we have 
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 Therefore, method (a) is least efficient, method (b)  and method (c) have the same coding efficiency, better than method (a).  
2. (15 pt) Vector Quantization
a. (5 pt) What is the operation count of a nearest neighbor vector quantizer with vector dimension 
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 and bit rate 
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 bits/sample? Consider one addition, one subtraction, one multiplication each as one operation. 

b. (10 pt) In order to reduce the complexity, we can code the norm (or gain) of an input vector using a scalar quantizer and the normalized vector (or shape vector) using a vector quantizer. This method is called gain-shape vector quantizer. Suppose an input vector is 
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, its norm (called gain factor) is defined as 
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, the normalized vector is 
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 bits to quantize the gain factor G, and 
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 bits/sample to quantize the normalized vector 
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are chosen such that the total bit rate (bits/sample) is the same as in (a) (that is, 
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), what will be the total operation count for this method? What is the saving factor compared to direct vector quantization? (Consider square root as one operation, also assume the scalar quantizer is in general non-uniform, and you need to use the nearest neighbor rule to determine the quantized level.)

Solution:

a. To compare the input vector with each codeword needs N operations. The total number of codewords is L=2^{R*N}. The total number of operations to compare with all codewords is C=N*L=N*2^{RN}.

b. To determine the gain factor, we need C1=N operations. To quantize the gain factor, we need to compare the actual gain factor with all possible quantized levels (L1=2^R_1), with C2=L1=2^R1 operations. To determine the shape vector, we need C3=N operations (normalize each component by the gain factor). To compare the shape vector with all possible shape codewords (L2=2^{N R2}), we need C4=N*L2=N 2^{N R2} operations. The total operation is C1+C2+C3+C4=2N+2^R1+N 2^{NR2}. With practical range of R1 and R2 and N, the dominating component is C4=N 2^{N R2}. Therefore, as long as R2 < R, the computation can be reduced. The saving factor is roughly  C/C4=2^{N (R-R2)}. For example, if N=16, R=2 bits/sample, R2=1.5 bits/sample, the saving factor is 2^{16*0.5}=256.
3. (15pt) Consider a predictive image coder, which generally predicts a current pixel A from its three neighbors B (above), C (left), D (top left) (see figure below), using 
[image: image55.wmf].
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 Suppose pixel A is sitting on a vertical edge, so that the correlation coefficients between two vertically adjacent pixels is 
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, and that between horizontally adjacent pixels and that between diagonally adjacent pixels are zero.  The variance of each pixel is 
[image: image57.wmf]2

s

. Determine the minimal mean square error (MMSE) predictor coefficients, the corresponding prediction MSE. Suppose we code the prediction error with R bits, what is the reconstruction error in terms of MSE? What is the coding gain compared to code the original pixels directly.

Hint: The quantization error (MSE) for a source with variance 
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.  For this problem assume the constant 
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 is the same for quantizing the original samples and the prediction errors.
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Solution:
Because the correlation between A and C and between A and D are zero, the optimal predictor should only use B to predict A. That is a2=a3=0. To determine a1, we need to minimize prediction error:  
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. If we quantize the prediction error with R bits, the quantization error is 
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. Had we code the original samples directly, the quantization error would be 
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Note that you can also solve the problem by directly determine all three coefficients, a1, a2, a3, by minimizing 
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which in this case is
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Obviously the solution is a2=a3=0,a1=\rho. The rest of the answer is the same.
4. (15 pt) Consider a source with i.i.d. samples with uniform distribution with a dynamic range of B. One way to generate a two-layer stream is by first quantizing each sample with average bit rate (bit/sample) 
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(the resulting bit stream is the base layer), and then quantize the quantization error of each sample from stage one with an average bit rate (bit/sample) of 
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(generating the enhancement layer).  Determine the average distortion (in terms of MSE) per sample 
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 when only the base-layer is received, and when both the base-layer and the enhancement layer are received.  Do we lose any coding efficiency compared to quantize original coefficients with rate (bit/sample) 
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Solution: 

First stage: with L1=2^R1 levels, the quantization step size is q=B/2^R1,the quantization error is uniformly distributed in (-q/2,q/2) with variance =q^2/12=B^2/12 2^{-2R1}. This variance is by definition the MSE quantization error after the first stage. Hence D1= q^2/12=B^2/12 2^{-2R1}.
Second stage: Because the quantization error after first stage quantization is still uniformly distributed with a dynamic range of q, we can apply results from first stage with B changed to q, and R1 changed to R2. This yields second stage quantization error=D2= q^2/12  2^{-2R2}= B^2 /12 2^{-2(R1+R2)}.

When only the base layer is received, the distortion is D1. When both layers are received, the diction is D2, which is the same as the distortion with a non-layer coder using a uniform quantizer with R=R1+R2 bits/sample. Therefore, this two-layer coder does not lose any coding efficiency. 

5. (15pt) 
a. (5 pt) List one major difference between H.261 and H.263 video coding standard, one major difference between MPEG-1 and MPEG-2standards (video part only), and one major difference between H.261 and MPEG-1 video.  The difference may be in video formats that can be handled, the motion estimation methods, the use of deblocking filtering, the prediction methods, the intended applications, etc.

H261 vs H263: H261 uses integer pel motion search only, H263 allows half-pel motion search. H.261 uses explicit loop filtering; H263 does not, because half-pel motion compensation accomplishes filtering implicitly.

MPEG-1 and MPEG-2: MPEG-1 is for progressive sequences, MPEG-2 is for both progressive and interlaced sequences. MPEG-2 has many motion estimation modes and DCT modes that are designed to code the interlaced sequences more efficiently. Also, MPEG-2 has different scalability modes, whereas MPEG-1 does not.

H.261 vs. MPEG-1: MPEG standard is developed for video distribution.In order to enable random access, it organize frames into GOPs, with periodic I-frames. H.261 (and H.263) on the other hand is mainly targeted for video telephone/conferencing and only the first frame is coded as I-frame. MPEG-1 uses bidirectional motion estimation but H.261 uses only unidirectional motion estimation.

b. (5 pt) Describe some of the new coding techniques adopted in the H.264 standard. You should point out at least 3 new features.

Intra-prediction, interger transform (replacing DCT), explicit deblocking filtering, more sophisticated motion search (up to 1/8 pel accuracy, variable block size down to 4x4, multiple reference frames)

c. (5 pt) As we learnt in the class, the compressed video bit stream is very sensitive to transmission errors. Describe possible ways to combat transmission errors in the source encoder, the transport layer, the decoder, and jointly between encoder, decoder and transport layer. (you only need to suggest one possible way for each category).

Source encoder: insert Intra-coded macroblocks periodically, insert resync markers, multiple description coding;
Transport layer: cross-packets FEC, constrained retransmission,…

Decoder: error concealment

Interactive between encoder, decoder, transport layer: changing coding mode or motion search range for a MB in the encoder based on decoder feedback; retransmitting selected blocks; layered coding+unequal FEC,…

6. (20 pt) Write a matlab code that implements coding of a P-frame in a block-based hybrid video coding (using 16x16 pixel macroblock for motion estimation and 8x8 block size for DCT and quantization and runlength coding). For simplicity, consider the coding of Y-pixels only. For each macroblock, you may decide to code it in either IntraMode or InterMode. To determine which mode to use, you should first do motion estimation to find the best matching block in the previous reference frame and compute the SAD (sum of absolute difference) with the best matching block. You should also compute the sum of absolute difference between each original pixel and the mean value of the macroblock (denote this as SAD_intra). If SAD<SAD_intra, you should use the InterMode (Mode=0), and perform DCT on the each 8x8 prediction error block. Otherwise you should use the IntraMode (Mode=1) and perform DCT on each 8x8 original block. With InterMode, you would quantize the DCT coefficients using  QP_inter and quantization matrix QMatrix_inter. With IntraMode, you would use QP_intra and QMatrix_intra. 
Denote the frame to be coded by CurrentFrame, the previous frame used for prediction by ReferenceFrame. Your program should write the resulting bits for successive macroblocks into a file outfile. You should first write the bit describing the mode. If the mode is Inter, you would then write the bits for motion vector, followed by quantized DCT bits for the prediction errors in each 8x8 block. If the mode is Intra, you would write only the quantized DCT bits for each 8x8 block in the original macroblock.  Your program should also compute and save the reconstructed frame in QuantizedFrame. Also use Width and Height to denote the width and height of a frame and assume both the width and height are dividable by 16.  Furthermore, assume the following functions are available (i.e. can be called by your matlab code). Your program can call these functions as well as other MATLAB functions and functions defined by yourself.

function [mvh, mvv,PredictedMBlock]=MotionEstimation(MBlock,ReferenceFrame):

finds the best matching block for  a given 16x16 macroblock (MBlock) in ReferenceFrame, [mvh, mvv] are the returned motion vector components, and PredictedMBlock is the best matching macroblock.

function [RunSymbols]=RunlengthOrdering(QuantizedDCTIndexBlock)

converts a 8x8 block of quantized DCT indices (QuantizedDCTIndexBlock) into symbols with each symbol including a runlength and a non-zero value.

function [DCTBits]=HuffmanCodingDCT(RunSymbols)

performs Huffman coding on the RunSymbols using default Huffman tables.

function [MVBits]=HuffmanCodingMV(mvh,mvv)

performs Huffman coding on the motion vector mvh,mvv using default Huffman tables.

Function WriteModeBits(Mode,outfile): write the bits for the mode of a Mblock;

function WriteDCTBits(DCTBits,outfile): writes the bits for each 8x8 block (DCTBits) into a file outfile  which stores the coded bits for this frame.

function WriteMVBits(MVBits,outfile): writes the bits for motion vector of a macroblock into a file outfile  which stores the coded bits for this frame.

Suggestions: You may want to define following functions, and call these functions from your main function

function [QuantizedDCTIndexBlock]=quantizeDCT(DCTBlock,QP,QMatrix)

performs quantization on a block of 8x8 DCT coefficients (DCTBlock), with quantization parameter QP and QMatrix, return the quantization indices in QuantizedDCTIndexBlock.
function [QuantizedDCTBlock]=dequantizeDCT(QuantizedDCTIndexBlock,QP,QMatrix)

takes the quantized DCT indices of a block (QuantizedDCTIndexBlock) and applies inverse quantization to obtain quantized DCT coefficients (QuantizedDCTBlock)

Solution:
Function QuantizedFrame=PFrameCoding(CurrentFrame,ReferenceFrame,QP,QMatrix,outfile)
QuantizedFrame=zeros(height,width);

For (r=1:16:height) for (c=1:16:width) %processing each macroblock

MBlock=CurrentFrame(r:r+15,c:c+15);


[mvh,mvv,PredictedMBlock]=MotionEstimation(MBlock,ReferenceFrame);


SAD=sum(sum(abs(MBlock-PredictedMBlock)));


Mean=mean(mean(MBlock));


SAD_intra=sum(sum(abs(Mblock-Mean)));


If (SAD<SAD_intra) mode=0;


else mode =1;

end;

WriteModeBits(mode,outfile);

If (mode==0)



[MVBits]=HuffmanCodingMV(mvh,mvv);

WriteMVBits(MVBits,outfile);



QP=QP_inter; QMatrix=QMatrix_inter;

else

PredictedMBlock=zeros(16,16);

QP=QP_intra; QMatrix=QMatrix_intra;

end;


ErrBlock=MBlock-PredictedMBlock;

for (i=1:8:9) for (j=1:8:9)  %for each 8x8 block in ErrBlock, do following


Block=ErrBlock(i:i+7, j:j+7);


DCTBlock=dct2(Block);



[QuantizedDCTIndexBlock]=quantizeDCT(DCTBlock,QP,QMatrix); %defined below
RunSymbols=RunlengthOrdering(QuantizedDCTIndexBlock);
[DCTBits]=HuffmanCodingDCT(RunSymbols);
WriteDCTBits(DCTBits,outfile);


QuantizedDCTBlock=dequantizeDCT(QuantizedDCTIndexBlock,QP,QMatrix); %defined below


QuantizedBlock=idct2(QuantizedDCTBlock);



QuantizedErrBlock(i:i+7,j:j+7)=QuantizedBlock;

end;end


QuantizedMBlock=PredictedMBlock+QuantizedErrBlock;

QuantizdFrame(r:r+15,c:c+15)=QuantizedMBlock;

end;end

%definition of functions:

function [QuantizedDCTIndexBlock]=quantizeDCT(DCTBlock,QP,QMatrix)

QuantizedDCTIndexBlock=floor((DCTBlock+QMatrix*QP/2) ./(QMatrix*QP));

Function QuantizedDCTBlock=dequantizeDCT(QuantizedDCTIndexBlock,QP,QMatrix)
QuantizedDCTBlock=QuantizedDCTIndexBlock.*(QMatrix*QP);
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