
Polytechnic University, Dept. Electrical and Computer Engineering
EL612 --- Video Processing, S06 (Prof. Yao Wang)

Final Exam, 4/18/2007, 3:35-5:50
One sheet of Notes (double sided) Allowed

1. (15 pt) Consider coding a 2-D random vector that is uniformly distributed over the region illustrated in Fig. 1(a). Suppose
you want to design a codebook with 4 codewords. Figure 1(b),1(c),1(d) illustrate three possible codebooks with their
corresponding region partitions.

a. Which codebook will minimize the mean square quantization error?
b. Determine the x- and y- coordinate of each codeword in your chosen codebook that will minimize the mean square

error.
c. Do the other two codebooks satisfy the necessary condition for minimizing the mean square error?

Hint: you should make use of symmetry in deriving your solution.

Solution:

a) (d) will have the minimal distortion, as the largest distance of a point in each partition to its codeword is smaller in (d).
b) The codeword position of (d) can be determined using the centroid condition, which says the codeword position in one

partition is the center of the mass of the partition. Let us call the codeword in the upper left triangle (B1) (x1,y1), then

3/1)1()2(*)1|,(*1
1

0

21

0

1

0

1

0

1

0
=−=== ∫∫ ∫∫ ∫

−−
dyydxdyxdxdyByxfxx

yy

By symmetry, we know y1=1/3. The other codewords are (-1/3,1/3), (1/3,-1/3), (-1/3,-1/3).

Alternatively, you can determine x1 and y1 by minimizing the MSE in the upper left triangle:

() ()()
0,0

)1|,(111

1
1

1
1

1

0

1

0

22

==

−+−=

∂
∂

∂
∂

−

∫ ∫
y
D

x
D

y
dxdyByxfyyxxD

This will give you the same answer.

c) The other two codewords satisfy both the nearest neighbor and centroid conditions, but they are only locally optimal.

2. (10 pt) Consider the following predictive coding method (see Fig. 2). A sample in frame n,),(yxfF n= is predicted from

its two neighboring pixels in the same frame),1(yxfA n −= and)1,(−= yxfB n and a pixel in a previous frame

),(1 yxfC n−= and following frame),(1 yxfD n+= , using the linear predictor: dDcCbBaAF +++= .
Suppose the correlations between these samples

are 2222 }{,}{}{,}{}{ σρσρσρ tts CDEFDEFCEFBEFAE ===== and all other samples are uncorrelated. Find

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

(a) (b) (c) (d)

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

(a) (b) (c) (d)

Figure 1

the optimal values for predictor coefficients a, b, c, d that will minimize the mean square prediction error, and the
corresponding minimal prediction error. What is the coding gain compared to code each sample directly?

 Figure 2

The coefficients satisfy the following equation:



















=




































),(
),(
),(
),(

),(),(),(),(
),(),(),(),(
),(),(),(),(
),(),(),(),(

FDR
FCR
FBR
FAR

d
c
b
a

DDRCDRBDRADR
DCRCCRBCRACR
DBRCBRBBRABR
DARCARBARAAR

Using the provided correlations, we get

.
1

 ,immediatlyget can you Then . that grecognizin andsymmetry

 of use make toisy simpler wa a matrix, inverse thefind may try toyou Although equation. 2x2 simple a isequation last two The
. give equations first two The

100
100

0010
0001

2

2

2

t

t

s

t

t

s

s

t

t

dcdc

ba

d
c
b
a

ρ
ρ

ρ

ρ
ρ
ρ
ρ

ρ
ρ

+
===

==



















=




































The minimal prediction error with the optimal predictor is

[]















+
−−=























+

+
−=



















−=

2

2
22

2

2
222

1
221

1

1
,,,)],(),,(),,(),,([),(

t

t
s

t

t

t

t

s

s

ttssp

d
c
b
a

DFRCFRBFRAFRFFR

ρ
ρρσ

ρ
ρ

ρ
ρ

ρ
ρ

ρρρρσσσ

The coding gain is















+
−−

==

2

2
22

2

2

1
221

1

t

t
s

p
DPCMG

ρ
ρρσσ

σ

F A
B

C D

3. (15 pt) Consider applying transform coding to every two horizontally adjacent pixels in an image. Suppose every pixel has
the same variance 2σ and the correlation between two adjacent pixels is ρ . (a) Determine the Karhunen Loeve transform
basis vectors. (b) Determine the variance of the transformed coefficients. (c) If the total number of bits for the two
coefficients is R, what is the optimal bit allocation to each coefficient? (d) What is the coding gain over direct coding of
individual pixels? Express your results in terms of given variables.

Solution:

(a) the covariance matrix of the two samples is









=

1
12

ρ
ρ

σC

To determine the eigen values, we set

() ()
() ()

() ();1;1

0det)det(

2
2

2
1

22

222
22

22

ρσλρσλ

ρσλσ

ρσλσ
λσρσ

ρσλσλ

−=+=

±=−

=−−=












−
−=− IC

To determine the basis vector associated with each eigen value, we solve
() 0=− kk IC φλ
With first eigenvalue, we get









==>=













−
−

1
1

2
10 ``22

22
φφ

ρσρσ
ρσρσ

Similarly, for the second eigenvalute, we get










−
==>=













1
1

2
10 ``22

22
φφ

ρσρσ
ρσρσ

(b) the coefficient variances are the same as the eigenvalues:

);1();1(22
2,

22
1, ρσσρσσ −=+= tt

(c) The optimal bit allocation is

)1(
)1(

log
2
1

)1)(1(

)1(
log

2
1

)1(
)1(

log
2
1

)1)(1(

)1(
log

2
1

)1)(1(

log
2
1

1

2
2
2

2
1

2

22
2

2

2

1
2
2

2
1

2

22
1

1

2
2

2
1

2
2/1

2
,

2

2/1
2
,

2

2
,

2

ρε
ρε

ρρεεσ

ρσε

ρε
ρε

ρρεεσ

ρσε

ρρεεσσε

σε

σε

+
−

+=
+−

−
+=

−
+

+=
+−

+
+=

+−=



























+=

∏

∏

RRR

RRR

RR

ktk
k

ktk
k

ktk
k

(d) The coding gain is

)1(22
2

2
1

2

2/1
2
,

2

22

ρεε

ε

σε

σε

−
=














==

∏ ktk
k

TC

PCM
TC D

DG

It is OK to assume the factor \epsilon are all the same to simplify your solution.

4. (15 pt) Consider a temporal scalable coder. The base layer contains all even frames: frame n (n=even) is predicted from

frame n-2, and the prediction error is coded. The enhancement layer contains remaining odd frames: frame n (n=odd) is
predicted from the frame n-1 decoded from the base layer, and the prediction error is coded. See Fig. 4. For simplicity, we
do not consider motion. The base layer predictor is),(),(2, yxfyxf nnb −= and the enhancement layer predictor is

),(),(1, yxfyxf nne −= . (In reality, the prediction should be based on decoded values. But for ease of analysis, let us
assume the prediction is based on the original values). Assume the corresponding pixels in frame n and frame n-1 have
correlation 2

1)},(),({ σρ=− yxfyxfE nn , and the corresponding pixels in frame n and frame n-2 have correlation
22

2)},(),({ σρ=− yxfyxfE nn . Also assume the rate-distortion function of a predictive coder can be represented as
R

pRD ασε −= 2)(22 , where 2
pσ is the prediction error variance. Assume the base layer and enhancement layer are coded

with bR and eR bits/pixel respectively. Determine the distortion (in terms of mean square error per pixel) when only the
base layer is decoded, and the distortion when both the base and enhancement layer are decoded. Compare the distortion of
this coder (including both base and enhancement layers) with a single layer coder that codes every frame and predicts each
frame from a previous frame, using the same average rate of .2/)(eb RRR +=

Solution:

Base layer prediction error (){ } () (){ } () 22
2

2
2

22
2

2
, 122 σρσ −=++=−= −−− nnnnnnbp ffffEffE

Rate distortion function for base layer encoding: () bb RR
bpbRD αα σρεσε −− −== 2)1(22 2222
,

2

Enhancement layer prediction error: (){ } () (){ } () 2
1

2
1

22
1

2
, 122 σρσ −=++=−= −−− nnnnnnep ffffEffE

Rate distortion function for enhancment layer encoding: () ee RR
epeRD αα σρεσε −− −== 2)1(22 222
,

2

Distortion with base and enhancement layer () ()eb RR
ebbe RRD αα ρρσε −− −+−= 2)1(2)1(2, 222

Base layer

Enhancement
layerρ

2ρ

Base layer

Enhancement
layerρ

2ρ

Figure 4

Single layer prediction error: (){ } () (){ } () 2
1

2
1

22
1

2
, 122 σρσ −=++=−= −−− nnnnnnsp ffffEffE

Distortion of single layer coding: () ()R
s RD αρσε −−= 2)1(2 22

To compare single layer distortion at R=(R_b+R_e)/2 with the two layer coder, we compare

()() ()()2/22 2)1(22/ eb RR
ebs RRD +−−=+ αρσε and () ()eb RR

ebbe RRD αα ρρσε −− −+−= 2)1(2)1(2, 222

Note that when $R_b >=R_e, D_s <= second term of D_be. D_be ‘s first term is positive. Therefore D_s always <=D_be when
R_b is relatively large. In our derivation, we have ignored quantization error in the base layer coding, when considering the
prediction in the enhancementt layer, this essentially assumes that the base layer is coded accurately, or R_b is relatively large.

5. (15 pt) Consider stereo imaging using parallel camera configuration with a baseline distance of B. Assuming a 3D point with

coordinate (X,Y,Z) is projected into left and right image planes with coordinates),(ll yx and),(rr yx .

a. Derive the formulae for recovering X,Y, Z from rrll yxyx ,,, .

b. Suppose another point has the 3D coordinate ZZZYYXX ∆+=== ',',' . Relate the difference in disparity for
these two points d∆ with Z∆ . Show that when \delta Z is small, the disparity difference d∆ is linearly related
to Z∆ .

(a)

dx
Bxx

F
ZxxX

Z
XFxx

dx
By

F
ZyY

dx
FBZ

dx
B

F
Z

Z
FBxxdx

Z
YFyy

Z
BXFx

Z
BXFx

ZZZYYYBXXBXX

rlrl
rl

ll

rl

rlrl

rlrlrl

22
2

;;

;

;2/;2/
;;;2/;2/

+=+=>−=+

===

==−=

==−=+=

====−=+=

 (b)

() 2,,'
'

,'
'

Z
FB

ZZ
FB

Z
FB

Z
FBdxdx

Z
FBdx

∆≈
∆+
∆=−=−

=

Where \delta is small, the above relation is linearly related to \delta, as shown above.

B

X,Y,Z

X’,Y’,Z’

6. (10pt)

a. List one major difference between H.261 and H.263 video coding standard, one major difference between MPEG-
1 and MPEG-2standards (video part only), and one major difference between H.261 and MPEG-1 video. The
difference may be in video formats that can be handled, the motion estimation methods, the use of deblocking
filtering, the prediction methods, the intended applications, etc.

b. Describe some of the new coding techniques adopted in the H.264 standard. You should point out at least 3 new
features.

a.
H261 vs H263: H261 uses integer pel motion search only, H263 allows half-pel motion search. H.261 uses explicit
loop filtering; H263 does not, because half-pel motion compensation accomplishes filtering implicitly.

MPEG-1 and MPEG-2: MPEG-1 is for progressive sequences, MPEG-2 is for both progressive and interlaced
sequences. MPEG-2 has many motion estimation modes and DCT modes that are designed to code the interlaced
sequences more efficiently. Also, MPEG-2 has different scalability modes, whereas MPEG-1 does not.

H.261 vs. MPEG-1: MPEG standard is developed for video distribution. In order to enable random access, it
organize frames into GOPs, with periodic I-frames. H.261 (and H.263) on the other hand is mainly targeted for
video telephone/conferencing and only the first frame is coded as I-frame. MPEG-1 uses bidirectional motion
estimation but H.261 uses only unidirectional motion estimation.

b. Intra-prediction, interger transform (replacing DCT), explicit deblocking filtering, more sophisticated motion
search (up to 1/8 pel accuracy, variable block size down to 4x4, multiple reference frames)

7. (20 pt) Write a matlab code that implements coding of a B-frame in a block-based hybrid video coder (using 16x16 pixel

macroblock for motion estimation and 8x8 block size for DCT and quantization and runlength coding). For simplicity,
consider the coding of Y-pixels only. For each macroblock, you may decide to code it in either I-Mode (coding a block
directly) or BP-Mode (predict from a best matching block in the previous frame), FP-mode (predict from the best matching
block in the following frame) or B-Mode (predict from the average of the best matching blocks in both previous and
following frames). For the I-mode, you perform DCT on each 8x8 original image block. For the other modes, you perform
DCT on the prediction error block. With either mode, you quantize the DCT coefficients using QP and quantization matrix
QMatrix.

Denote the frame to be coded by CurrentFrame, the previous frame used for prediction by PrevFrame, the following frame
used for prediction by NextFrame. Your program should write the resulting bits for successive macroblocks into a file outfile.
You should first write the bit describing the mode. If the mode is I-mode, you would then write the quantized DCT bits for each
8x8 block in the original macroblock. For the other mode, you would then write the bits for motion vector(s), followed by
quantized DCT bits for the prediction errors in each 8x8 block. Your program should also compute and save the reconstructed
frame in QuantizedFrame. Also use Width and Height to denote the width and height of a frame and assume both the width
and height are dividable by 16. Furthermore, assume the following functions are available (i.e. can be called by your matlab
code). Your program can call these functions as well as other MATLAB functions and functions defined by yourself.

function [mvh, mvv,PredictedMBlock]=MotionEstimation(MBlock,ReferenceFrame):
finds the best matching block for a given 16x16 macroblock (MBlock) in ReferenceFrame, [mvh, mvv] are the returned
motion vector components, and PredictedMBlock is the best matching macroblock.

function [RunSymbols]=RunlengthOrdering(QuantizedDCTIndexBlock)
converts a 8x8 block of quantized DCT indices (QuantizedDCTIndexBlock) into symbols with each symbol including a
runlength and a non-zero value.

function [DCTBits]=HuffmanCodingDCT(RunSymbols)
performs Huffman coding on the RunSymbols using default Huffman tables.

function [MVBits]=HuffmanCodingMV(mvh,mvv)
performs Huffman coding on the motion vector using default Huffman tables.

function WriteDCTBits(DCTBits,outfile): writes the bits for each 8x8 block (DCTBits) into a file outfile which stores the
coded bits for this frame.

function WriteMVBits(MVBits,outfile): writes the bits for motion vector of a macroblock into a file outfile which stores the
coded bits for this frame.

Suggestions:
You may want to define following functions, and call these functions from your main function
function [QuantizedDCTIndexBlock]=quantizeDCT(DCTBlock,QP,QMatrix)
performs quantization on a block of 8x8 DCT coefficients (DCTBlock), with quantization parameter QP and QMatrix, return
the quantization indices in QuantizedDCTIndexBlock.

function [QuantizedDCTBlock]=dequantizeDCT(QuantizedDCTIndexBlock,QP,QMatrix)
takes the quantized DCT indices of a block (QuantizedDCTIndexBlock) and applies inverse quantization to obtain quantized
DCT coefficients (QuantizedDCTBlock)

Solution:

Function QuantizedFrame=BFrameCoding(CurrentFrame,PrevFrame,NextFrame,QP,QMatrix,outfile)

QuantizedFrame=zeros(height,width);
For (r=1:16:height) for (c=1:16:width) %processing each macroblock
 MBlock=CurrentFrame(r:r+15,c:c+15);
%first do backward motion estimation
 [mvh_BP,mvv_BP,PredictedMBlock_BP]=MotionEstimation(MBlock,PrevFrame);
 SAD_BP=sum(sum(abs(MBlock-PredictedMBlock_BP)));
%Then do forward motion estimation

[mvh_FP,mvv_FP,PredictedMBlock_FP]=MotionEstimation(MBlock,NextFrame);
 SAD_FP=sum(sum(abs(MBlock-PredictedMBlock_FP)));
%Form the B prediction from BP and FP
 PredictedMBlock_B=(PredictedMBlock_FP+ PredictedMBlock_BP)/2;

SAD_B=sum(sum(abs(MBlock-PredictedMBlock_B)));

%Calculate intra SAD
 Mean=mean(mean(MBlock));
 SAD_intra=sum(sum(abs(Mblock-Mean)));

 MinErr=min(SAD_FP,SAD_BP,SAD_B,SAD_intra);

 If (MinErr==SAD_FP) mode=0;
 else If (MinErr==SAD_BP) mode =1;

else If (MinErr==SAD_B) mode =2;
else If (MinErr==SAD_intra) mode =3;
end;
WriteModeBits(mode,outfile);
If (mode==0)

[MVBits]=HuffmanCodingMV(mvh_FP,mvv_FP); WriteMVBits(MVBits,outfile);
PredictedMBlock= PredictedMBlock_BP;

Else If (mode==1)
[MVBits]=HuffmanCodingMV(mvh_BP,mvv_BP); WriteMVBits(MVBits,outfile);

PredictedMBlock= PredictedMBlock_FP;
Else If (mode==2)

[MVBits]=HuffmanCodingMV(mvh_BP,mvv_BP); WriteMVBits(MVBits,outfile);
[MVBits]=HuffmanCodingMV(mvh_FP,mvv_FP); WriteMVBits(MVBits,outfile);
PredictedMBlock= PredictedMBlock_B;
%note you need to code both motion vectors in B-mode

else
PredictedMBlock=zeros(16,16);

end;
 ErrBlock=MBlock-PredictedMBlock;

for (i=1:8:9) for (j=1:8:9) %for each 8x8 block in ErrBlock, do following
 Block=ErrBlock(i:i+7, j:j+7);
 DCTBlock=dct2(Block);
 [QuantizedDCTIndexBlock]=quantizeDCT(DCTBlock,QP,QMatrix); %defined below

RunSymbols=RunlengthOrdering(QuantizedDCTIndexBlock);
[DCTBits]=HuffmanCodingDCT(RunSymbols);
WriteDCTBits(DCTBits,outfile);

 QuantizedDCTBlock=dequantizeDCT(QuantizedDCTIndexBlock,QP,QMatrix); %defined
below

 QuantizedBlock=idct2(QuantizedDCTBlock);
 QuantizedErrBlock(i:i+7,j:j+7)=QuantizedBlock;

end;end
 QuantizedMBlock=PredictedMBlock+QuantizedErrBlock;

 QuantizdFrame(r:r+15,c:c+15)=QuantizedMBlock;
end;end

%definition of functions:
function [QuantizedDCTIndexBlock]=quantizeDCT(DCTBlock,QP,QMatrix)
QuantizedDCTIndexBlock=floor((DCTBlock+QMatrix*QP/2) ./(QMatrix*QP));

Function QuantizedDCTBlock=dequantizeDCT(QuantizedDCTIndexBlock,QP,QMatrix)
QuantizedDCTBlock=QuantizedDCTIndexBlock.*(QMatrix*QP);

