Medical Imaging (EL582/BE620/GA4426)

Ultrasound Imaging

Reference
Prince and Links, Medical Imaging Signals and Systems, Chap. 10 (Sec. 10.5 not required), 11.2, 11.3

Acknowledgement
Thanks to Professor Yao Wang for use of her course materials!

Ultrasound Imaging

- Measure the reflectivity of tissue to sound waves
- Can also measure velocity of moving objects, e.g. blood flow (Doppler imaging)
- No radiation exposure, completely non-invasive and safe (*)
- Fast
- Inexpensive (relatively)

Medical Ultrasound Imaging

- Medical applications: fetus, heart, abdominal, ...
- 3-10 MHz
- ≤ 1 mm resolution (limited contrast)
- ≥ 60 images per second

In vivo microimaging in mice

Ultrasound Biomicroscopy (UBM)
- 40-50 MHz ultrasound
- 50-80 µm lateral resolution, better axial
- up to 1000 images/s

UBM of Mouse Embryos

APPLICATIONS

- Brain imaging
- Image-guided injections
- Cardiac imaging
- (Image-guided injections)
- Vascular imaging
- Blood flow (Doppler)
- Tumors

Ultrasound biomicroscopy enables in utero volumetric brain analysis

E13.5 Mouse Embryo

In utero UBM Ventricle Segmentation 3D rendering

Aristizábal et al., Ultrasound Med Biol, 2006
UBM-Doppler provides sensitive analysis of cardiovascular function

Phoon et al, Circ Res, 2004

Molecular imaging with ultrasound: targeted microbubbles

Microbubbles targeted to vascular endothelial cells in E11.5 mouse embryos

Acoustic Waves

- Pressure waves that propagate through matter via compression and expansion of the material
 - Generated by compressing and releasing a small volume of tissue
- Longitudinal wave
 - Particles in the medium move back and forth in the same direction that the wave is traveling
- Shear Wave
 - Particles move at right angles to the direction of the wave
 - Not used for medical ultrasound imaging

Longitudinal Wave

EM vs Acoustic Waves

- Electromagnetic
 - Self-propagating, consisting of electric and magnetic components oscillating at right angles to each other, and in propagation direction
 - Does not require a material medium through which to propagate
 - Classification (increasing in frequency, decreasing in wavelength):
 - radio, microwave, infrared, visible light, ultraviolet, x-ray, gamma ray
- Acoustic
 - Pressure waves that propagate through matter via compression and expansion of the material
 - Requires a material medium through which to propagate
 - Classification (increasing in frequency, decreasing in wavelength):
 - Infrasonic sound, audible sound, ultrasound

Transfer / Transformation of Energy

- Light becomes sound — photoacoustic phenomena
- Sound becomes light — sonoluminescence
- Absorbed electromagnetic (EM) and acoustic energy both become heat
- Nevertheless, EM and acoustic energy are fundamentally distinct phenomena!
Acoustic Wave Energy Ranges

<table>
<thead>
<tr>
<th>Infrasound</th>
<th>Audible</th>
<th>Ultrasound</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Hz</td>
<td>20 kHz</td>
<td></td>
</tr>
</tbody>
</table>

- Just as there are infrared, visible, and ultraviolet ranges in the EM spectrum, so there are infrasound ("infra" = "below," "beneath"), audible (i.e., sound) and ultrasound ("ultra" = "beyond," "above") ranges of acoustic wave frequencies.

- Note that the ratio of the highest to the lowest audible frequencies is 10^3, while the ratio of the highest to the lowest frequencies of visible light is a bit less than 2!

Speed of Sound

- Each medium has a characteristic speed:
 - $c \text{ [m/s]} = \lambda \text{ [m]} \times f \text{ [MHz]}$
 - $= \text{wavelength} \times \text{frequency}$

- Approximate ultrasound speeds:
 - Air: 330 m/s
 - Water: 1500 m/s
 - Muscle: 1600 m/s
 - Fat: 1480 m/s
 - Bone: 3000 m/s

Pulse-Echo Ultrasound Imaging

- **Transducer**
- **Object**
- **Scan**
 - Beam builds up image

- **Excitation Pulse**
- **RF Amplitude**
- **Envelope Amplitude**

- **Time = Depth**
 - 1 line of image data

Image frame rate is determined by sound speed

- Sound speed = 1540 m/s = 1.54 mm/μs
- 256 line image / Depth = 10 mm

 - Propagation length = 20 mm (2-way)
 - Time per line = 20/1.54 ~ 13 μs

 - Time per image = 13 × 256 = 3300 μs = 3.3 ms

 - Frame rate = 1/3.3 ms ~ 300 images/s

3D Wave Equation

- **Acoustic pressure:** $p(x, y, z, t)$
- **3-D wave equation**
 $$\nabla^2 p(x, y, z, t) = \frac{1}{c^2} \frac{\partial^2 p(x, y, z, t)}{\partial t^2}$$

 where
 $$\nabla^2 p = p_{xx} + p_{yy} + p_{zz}$$

 and c is the speed of sound

- **General solution is very complicated**

Plane Wave

- **Plane wave in z-direction:**
 $$p(z, t) = p(x, y, z, t)$$

- **Plane wave equation:**
 $$p_{zz}(z, t) = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}(z, t)$$

- **General solution:**
 - **Forward traveling wave**
 $$p(z, t) = \phi(t - c^{-1}z) + \phi(t + c^{-1}z)$$

 where $\phi(t)$ and $\phi(t)$ are arbitrary
Harmonic Waves

- Harmonic plane wave:
 \(p(z,t) = \cos(k[z - ct]) \)
- Viewed at a fixed particle, the pressure changes in time with frequency \(f = k/c \) (cycles/s)
- Viewed at a fixed time, the pressure changes in \(z \) with frequency \(f_z = k/2\pi \)
 - \(k \) is called wavenumber
- Wavelength is the spacing between peak or valleys of the wave at any time
 \(\lambda = 1/f_z = \frac{2\pi}{k} = \frac{c}{f} \)
- (approximately) Harmonic waves are widely used in ultrasound imaging
- Given \(f \), the wavelength depends on material properties!
 - Wavelength determines the resolution of ultrasound imaging
 - Example: \(f = 3.5 \text{ MHz}, c = 1540 \text{ m/s (most tissue)}, \lambda \approx 0.44 \text{ mm} \)

Reflection/refraction: Snell’s Law

- Reflection / refraction at interfaces follows Snell’s law:
 \[
 \frac{\sin(\theta_i)}{\sin(\theta_t)} = \frac{c_1}{c_2}
 \]
 \(\theta_i = \theta_r \)

Acoustic Impedance

- Acoustic Impedance, \(Z \) [MRayl = \(10^6 \text{ kg/m}^2/\text{s} \)]
 \(Z = \text{density} \times \text{sound speed} \)
 - Determines the amplitude of the reflected / transmitted waves at interface
 - Complex scattering properties of tissues are due to acoustic impedance interfaces in microstructure of tissues

Reflection at Interfaces

Reflection Coefficients:

<table>
<thead>
<tr>
<th>Reflection</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_1)</td>
<td>(Z_2)</td>
</tr>
<tr>
<td>(I)</td>
<td>(R)</td>
</tr>
<tr>
<td>(T)</td>
<td></td>
</tr>
</tbody>
</table>

\(R = |(Z_2 - Z_1)/(Z_2 + Z_1)| \)
\(T = 1 - R \)
\(= 2Z_2/(Z_2 + Z_1) \)

Reflection at Interfaces: Example

<table>
<thead>
<tr>
<th>Reflected Sound Pressure:</th>
<th>Muscle</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_{\text{mus}} = 1.7 \text{ MRayl})</td>
<td>(Z_{\text{fat}} = 1.4 \text{ MRayl})</td>
<td></td>
</tr>
</tbody>
</table>

\(R/I = |(Z_{\text{mus}} - Z_{\text{fat}})/(Z_{\text{mus}} + Z_{\text{fat}})| \)
\(= 0.3/3.1 \)
\(\approx 0.1 (10% = -20 \text{ dB}) \)

Attenuation of Ultrasound

- Attenuation = Energy lost through interactions between ultrasound waves and soft tissues:
 - Absorption:
 \(\text{Power deposited in tissue (Heat)} \)
 - Scattering:
 \(\text{Ultrasound radiated away from transducer} \)
Attenuation of Ultrasound

- Attenuation is frequency dependent:
 \[a(f) = a_o f^n \]
 - \(a_o \) is the attenuation coefficient at 1 MHz
 - \(n \approx 1 \) for most soft tissues
- Attenuation leads to a decrease in amplitude of the ultrasound signal:
 \[\text{Attenuation} \approx 1 \text{ dB} / \text{cm} / \text{MHz} \]

Attenuation: An Example

What relative amplitude of a 60 MHz ultrasound signal do you expect to receive from a depth of 5 mm?

- Attenuation \(\approx 1 \text{ dB} / \text{cm} / \text{MHz} \)
- @ 60 MHz: Attenuation \(\approx 60 \text{ dB/cm} \)
- Depth = 5 mm: Ultrasound propagates through 1 cm
- Attenuation \(\approx 60 \times 1 = 60 \text{ dB} \)
- 1/1000 of the transmitted signal is received!

Attenuation: Consequences

- Consequences of frequency dependent attenuation for imaging:
 - Penetration of ultrasound is limited by frequency
 - Frequency of ultrasound decreases with increasing depth of imaging

Resolution in Ultrasound Imaging

- Axial Resolution:
 - Resolution in propagation direction
 - Determined by length of pulse propagating in tissue
- Lateral Resolution:
 - Resolution orthogonal to propagation direction
 - Determined by focusing properties of transducer

Axial Resolution

- Axial Resolution:
 \[\text{Axial Resolution} = \frac{\text{pulse width (s)} \times \text{speed of sound (m/s)}}{2} = \frac{2N\lambda}{2} \]

Lateral Resolution

- Lateral Resolution:
 \[\text{Lateral Resolution} = \frac{\text{wavelength} \times \text{f-number}}{2a} \]
Resolution vs Penetration
- Resolution (axial and lateral) with frequency
- Penetration with frequency

Compromise between resolution and penetration

Doppler Ultrasound: Basic Concepts
- Ultrasound wave reflected from moving targets (Blood cells)
- Frequency shift in received ultrasound wave compared to transmitted wave:

 Doppler Shift Frequency, f_d

Doppler Ultrasound: Basic Concepts

Transducer $\square \square \square \square \square \bullet$ Target (stationary): $f_d = 0$

- Target moves towards transducer:
 - More compressions per unit time: $f_d > 0$

- Target moves way from transducer:
 - Fewer compressions per unit time: $f_d < 0$

Doppler Ultrasound: Concepts
- Doppler Equation:

 $f_d = 2f_o \cdot v \cdot \cos \theta / c$

 - f_o is the frequency transmitted
 - v is the velocity of the moving blood
 - c is the sound speed in the medium (blood, ~1600 m/s)

Doppler Equation: Consequences
- Shift frequency is proportional to blood velocity
- $f_o = 2-10$ MHz, $v = 0-5$ m/s \rightarrow $f_d = 0-15$ kHz

 (Audio frequencies)
- f_d is maximized when blood flow is in-line with ultrasound beam ($\theta = 0$)
- $f_d = 0$ when flow is perpendicular to the beam

Doppler Data Processing

(Reprinted from Ultrasound in Medicine & Biology 1998)
UBM-Doppler analysis is sensitive to blood flow abnormalities

Flow reversal in mouse mutants with defective cardiac valves

E13.5

Wildtype

NFATc1-/-

Schematic: Ultrasound Imaging System

Functions of the transducer

- Used both as Transmitter And Receiver
- Transmission mode: converts an oscillating voltage into mechanical vibrations, which causes a series of pressure waves into the body
- Receiving mode: converts backscattered pressure waves into electrical signals

Piezoelectric Material

- Converts electrical voltage to mechanical vibration and vice versa
- The thickness of the crystal varies with the applied voltage
- When an AC voltage is applied across the crystal, the thickness oscillates at the same frequency of the voltage
- Examples of piezoelectric Materials:
 - Crystalline (quartz), Ceramic (PZT, lead zirconium titanate), Polymers (PVDF)
 - PZT is the most efficient material
- The crystal vibrates sinusoidally after electrical excitation has ended (resonance)
 - Resonant frequency \(f = c/2d \) (with) thickness
 - The damping material damps the vibration after 3-5 cycles
 - When the diameter \(D \) of the surface is much larger than \(d \), longitudinal waves are transmitted into the body
 - The crystal is shaped into a disk or rectangle, with either flat or concave surface

Matching Layer(s)

- To provide acoustic coupling between transducer and the patient skin to transfer maximum energy into the body
- \(Z \) of PZT \(Z_T \) is \(15 \) times greater than \(Z \) of tissue \(Z_L \)
- Placing crystal directly on skin results in a large amount of energy being reflected back from the boundary
- \(R = \frac{|(Z_L - Z_T)/(Z_L + Z_T)|}{|Z_L + Z_T|} \approx 1 \)
- Matching layer
 - \(\frac{Z_T}{Z_L} \) thickness = \(\frac{1}{4} \)
 - \(Z_T = (Z_L + Z_T) \)
 - Maximizes energy transfer into the body
 - Show as a homework(*)
- Problem: Finding material with exact \(Z \) value
Flat (Piston) Plate Transducer

- Simple model:
 - Fraunhofer
 - Fresnel

Beam Properties of a Piston Transducer

- At border of the beam width, the signal strength drops by a factor of 2, compared to the strength on the z-axis.
- Beam width determines the imaging resolution (lateral resolution).
- Smaller D is good only before far field
- \(D=1-5\) cm in practice, very poor lateral resolution
- Focused plate is used to produce narrow beam

Focused Transducer

- Beam focusing can be accomplished by
 - Using a crystal with a curved surface
 - Placing a concave lens in front of the crystal

Transducer Array

- With a single crystal, manual or mechanical steering of the beam is needed to produce a two-dimensional image
- Practical systems today use an array of small piezoelectric crystals
- Allow electronic steering of the beam to optimize the lateral resolution

Array types

- Linear Sequential (switched)
 - \(1\) cm \(\times\) 10-15 cm, up to 512 elements
- Curvilinear similar to (a), wider field of view
- Linear Phased
 - up to 128 elements, small footprint = cardiac imaging
- 1.5D Array
 - 5-9 elements in elevation allow for focusing
- 2D Phased
 - Focusing, steering in both dimensions

Homework

- Reading:
 - Prince and Links, Medical Imaging Signals and Systems, Chap. 10 (Sec. 10.5 not required), 11.2, 11.3
- Problems:
 - P10.1
 - P10.3
 - P10.6
 - P10.8
 - P10.12
 - P10.13
- Considering the \((1/4)\) matching layer in a transducer, show that the transmitted energy into the tissue is maximized with an impedance of \(\sqrt{Z_T Z_L}\)