EL5823/BE6203/G16.4426 Medical Imaging, Spring 2014, Midterm Solution
1.
(a) both the minimal horizontal and vortical distance is W (b)

2.
(a)

$$
\begin{aligned}
& \Delta E_{1}=50-8=42 \mathrm{keV} \\
& \Delta E_{2}=50-2=48 \mathrm{keV}
\end{aligned}
$$

(b)

There would be no characteristic rays, because the incident electron energy
is not enough.
(c) To provide attenuation contrast otherwise may not enough to do a good medical imaging.
For example vessel and soft tissue may have similar attenuation wefficiont, say 0.3 and 0.4. It does not provide enough intrinsic contrast. By using contrast agents, the attenuation wefficiont may become ${ }^{5}$ and $\$.4$. It will allow us to make a good imaging.

The contrast agents have K-shall binding energy just below the x-ray photon and hence very cigh attenuation coefficient in x-ray energy shiglitty highers then the bindery energy.
3.
(a) outside body
photon
the attenuation coefficient distribution
(b) inside lordly photon
radioactive distribution
4.
(a) radiotracer Resiting half-value-layer that ${ }^{\text {are }}$ common to vactiotracer should also be considered. (b) radiotracer with Positron Decay.
(c) we need a collimator in SPECT to deal with scattering we do not need a collimator in PET because it uses Annihilation Coincidence Detection to deal with scattering, and other noise.
(d) first we should choose vadiotracer with proper half-life from minutes to hours. It's long enough for us to do medical imaging and wot too long to keep patients to stay on the imaging equipments too long or causing other problems in their lite.
If half-life is relatively short, imaging must be taken short offer the ingest or injection of the radiotracer. If half-life is relatizdy long, patients. have to waite wame time before imaging.
Another affect would be the product place of radiotracer. If lalf-life is short, it may need to be made just in hospital. otherwise, it may be male in other factories.

Prob 5 Solution
Detector Plane

(a)

The detected signal follows different trenches in 3
Different segments. Only positive axis is shown above
Region I: $-y<y<y_{1}$: x-ray go throgh entire object with length $L / \cos \theta$
II: $y_{1}<y<y_{2} \&-y_{2}<y<-y_{1}$: x-ray gothregh pant of obj
III: $\quad y>y_{2} \times \quad y<-y_{2}$: x-ray does not hit obs.
To determine y_{1}, y_{2} :

$$
\begin{array}{r}
\tan \theta_{1}=\frac{H / 2}{D_{1}+L}=\frac{y_{1}}{D_{1}+D_{2}+L} \rightarrow y_{1}=\frac{H\left(D_{1}+D_{2}+L\right)}{2\left(D_{1}+L\right)} \\
\tan \theta_{2}=\frac{H / 2}{D_{1}}=\frac{y_{2}}{D_{1}+D_{2}+L} \rightarrow y_{2}=\frac{1+\left(D_{1}+D_{2}+L\right)}{2\left(D_{1}\right)} \\
A\left(s o \tan \theta(y)=\frac{|y|}{D_{1}+D_{2}+L}, \quad \cos \theta(y)=\frac{D_{1}+D_{2}+L}{\sqrt{\left(D_{1}+D_{2}+L\right)^{2}+y^{2}}}\right. \\
\quad \sin \theta(y)=\frac{|y|}{\sqrt{\left(D_{1}+D_{2}+L\right)^{2}+y^{2}}}
\end{array}
$$

Region I:

$$
I(y)=\frac{I}{I_{0}} \frac{I}{4 \pi\left(D_{1}+D_{2}+L\right)^{2}} \cos ^{3} \theta(y) e^{-\mu L / \cos \theta(y)}
$$

The x-ray intersect the object $\omega /$ lenget $\frac{x}{\cos \theta}$
Region I: we neal to determine X :

$$
\begin{aligned}
& \frac{H}{2\left(D_{1}+x\right)}=\frac{y}{D_{1}+D_{2}+L}=\tan \theta \\
& D_{1}+x=\frac{H}{x\left(D_{1}+D_{2}+D_{1}\right)} \frac{H}{2} \frac{\left(D_{1}+D_{2}+L\right)}{y}
\end{aligned}
$$

$$
x=\frac{H}{2} \frac{D_{1}+D_{2}+L}{y}-D_{1}
$$

$$
I(y)=\frac{I_{0} \cos ^{3} \theta}{4 \pi\left(D_{1}+D_{2}+L\right)^{2}} e^{-\mu x / \cos \theta}=\frac{I_{0} \cos ^{3} \theta}{4 \pi\left(D_{1}+D_{i}+L\right)^{2}} e^{-\mu \frac{\left(\frac{H\left(D_{1}+D_{2}+L\right)}{2 y}-D_{1}\right.}{\cos \theta}}
$$

Other solutions as vertical length $y=\frac{H}{2}-y^{\prime}$

$$
\begin{aligned}
& \tan \theta=\frac{y^{\prime}}{D_{1}}=\frac{y}{D_{1}+D_{2}+L} \rightarrow y^{\prime}=\frac{y D_{1}}{\left(D_{1}+D_{2}+L\right)} \\
& I(y)=\frac{I_{0} \cos ^{3} \theta}{4 \pi\left(D_{1}+D_{2}+L\right)^{2}} e^{-a y / \sin \theta}=I_{s} \cos ^{3} \theta e^{-\mu\left(\frac{H}{2}-\frac{y D_{1}}{\left.D_{1}+D_{2}+L\right)}\right.} \sin \theta
\end{aligned}
$$

Bots are equivalent.
Region III $\quad I(y)=I_{s} \cdot \operatorname{Cos}^{3} \theta(y)$
Sketch:
Note that attenuate in Regions IX II make the signal much lower them in Region III

(b)

As shanin above, the boundary of the detectal objuil will become blunseal with a width D.
D^{\prime} is velate to D with

$$
\frac{D^{\prime}}{D}=\frac{D_{2}}{D_{1}} \quad \text { or } \quad D^{\prime}=\frac{D_{2}}{D_{1}} D
$$

The equivatel filter response along vertical direction is

$$
h(y)=\operatorname{rect}\left(\frac{y}{D^{\prime}}\right)
$$

The signal captmad can be
 approximaterl by

$$
I^{\prime}(y)=I(y) * h(y)
$$

(b)

(c) 135° would be a good choose in the the projection of 135° will show dear that those is no object of left-top area of the slice
(d)
$g_{0}(t)=\operatorname{rect}(t+1.5)+5 \operatorname{rect}(\xrightarrow{(-1.5})$

$$
\begin{aligned}
-G_{0^{\circ}}(\rho) & =\frac{\sin (\pi \rho)}{\pi \rho} e^{2 \pi f(15 j}+5 \frac{\sin (\pi \rho)}{\pi \rho} e^{-2 \pi \rho / 15 j} \\
& =\frac{\sin \pi \rho \rho)}{\pi \rho} e^{3 \pi \rho}+5 \frac{\sin (\pi \rho)}{\pi \rho} e^{-3 \pi \rho}
\end{aligned}
$$

(e)
mark $\hat{g}_{0}(l)$ is the result with area detectors.
$\hat{g}_{\cdot}(l)=g_{0} \cdot(l) * h(l)$

$$
h(t)=5 \operatorname{rect}\left(\frac{1}{0.2}\right)
$$

(t)

$$
\begin{aligned}
& \hat{f}(x, y,)=f(x, y) * R^{-1}\{h(1)\}=f(x, y) * g(r) \\
& F\{h(1)\}=H(\rho)= \\
& \text { here } \\
& h(1)=\operatorname{srec}\left(\frac{l}{0.2}\right) \\
& \therefore H(\rho)=\sin (0,2 \rho) \\
& g(r)=H^{-1}\{\sin (0.2 \rho,)\}
\end{aligned}
$$

7.

(a) $T_{1}=\frac{0.693}{\lambda} \Rightarrow \lambda=\frac{0.693}{T_{1}}$

$$
A(t)=A_{1} e^{-\lambda t}=A_{1} e^{-t \frac{0.693}{T_{1}}}
$$

$$
A\left(\frac{T}{2}\right)=A_{1} e^{-0.3465}
$$

For point B

$$
\begin{aligned}
\phi_{B} & =\int_{-\infty}^{3} \frac{A(x(s), y(s)}{4 \pi(3-s)^{2}} e^{-\int_{s}^{3} \mu\left(x\left(s^{\prime}\right), y\left(s^{\prime}\right)\right) d s^{\prime}} d s \\
& =\int_{-2}^{-1} \frac{A_{\left(\frac{\pi}{2}\right)}}{-(-1-s) \mu_{1}-\mu_{3}-2 \mu_{2}-\mu_{3}} e^{-(-1-s)^{2}} d s \\
& +\int_{0}^{2} \frac{A\left(\frac{T}{2}\right)}{} e^{-(2-s) \mu_{2}-\mu_{3}} d s
\end{aligned}
$$

For point A

$$
\begin{aligned}
\phi_{A} & =\int_{-\infty}^{3} \frac{A\left(r(s), y_{(s)}\right.}{4 \pi(3-s)^{2}} e^{\left.-\int_{s}^{3} \mu_{1} x_{\left(s^{\prime}\right)}, y_{\left(s^{\prime}\right)}\right) d s^{\prime}} d s \\
& =\int_{-2}^{0} \frac{A\left(\frac{\pi}{2}\right)}{} e^{-(0-s) \mu_{2}-\mu_{3}-\mu_{1}-\mu_{3}} d s(3-s)^{2} \\
& +\int_{1}^{2} \frac{A\left(\frac{T}{2}\right)}{} e^{-(2-s) u_{1}-\mu_{3}} d s(3-s)^{2}
\end{aligned} \text { where } A\left(\frac{\pi}{2}\right)=t
$$

(b)

$$
\begin{aligned}
& A\left(\frac{T_{2}}{2}\right)=A, e^{-0.4665} \\
& \rho=k \int_{-3}^{3} A c x(s), y(s) d s \exp \left(-\int_{-3}^{\left(k_{3}\right)} \psi(x(s), y(s)) d s\right. \\
& =k \times(1+2) \times \exp \left(-\left(\mu_{3}+\mu_{1}+\mu_{3}+2 \mu_{3}+\mu_{3}\right)\right) \\
& =\frac{3}{\operatorname{lin}} / \mathrm{K}
\end{aligned}
$$

4)

() $\phi_{\text {SPECT }}\left(T_{1}\right)=\phi_{\text {SPEC }} \frac{T_{2}}{2} e^{-\frac{0.693}{T_{1}} \frac{T_{1}}{2}}=\phi_{\text {SEECT }}\left(\frac{T_{1}}{2}\right) e^{-0.3665}$

$$
\varphi_{\text {PPET }}\left(T_{1}\right)=\varphi_{P E T}\left(\frac{T_{1}}{2}\right) e^{-\frac{0.6 \gamma_{3}}{T_{2}} \cdot \frac{T_{2}}{2}}=\rho_{P E T}\left(\frac{T_{1}}{2}\right) e^{-0.3465}
$$

