2-D Fourier Transforms

Yao Wang
Polytechnic University, Brooklyn, NY 11201

With contribution from Zhu Liu, Onur Guleryuz, and Gonzalez/Woods, Digital Image Processing, 2ed
Lecture Outline

• Continuous Fourier Transform (FT)
 – 1D FT (review)
 – 2D FT
• Fourier Transform for Discrete Time Sequence (DTFT)
 – 1D DTFT (review)
 – 2D DTFT
• Linear Convolution
 – 1D, Continuous vs. discrete signals (review)
 – 2D
• Filter Design
• Computer Implementation
What is a transform?

- Transforms are decompositions of a function $f(x)$ into some basis functions $\varnothing(x, u)$. u is typically the freq. index.

\[\text{Figure 4.1} \text{ The function at the bottom is the sum of the four functions above it. Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum of sines and cosines was met with skepticism.} \]
Illustration of Decomposition

\[f = \alpha_1 \Phi_1 + \alpha_2 \Phi_2 + \alpha_3 \Phi_3 \]
Decomposition

- Ortho-normal basis function

\[\int_{-\infty}^{\infty} \phi(x, u_1) \phi^*(x, u_2) dx = \begin{cases} 1, & u_1 = u_2 \\ 0, & u_1 \neq u_2 \end{cases} \]

- Forward

\[F(u) = \langle f(x), \phi(x, u) \rangle = \int_{-\infty}^{\infty} f(x) \phi^*(x, u) dx \]

Projection of \(f(x) \) onto \(\phi(x, u) \)

- Inverse

\[f(x) = \int_{-\infty}^{\infty} F(u) \phi(x, u) du \]

Representing \(f(x) \) as sum of \(\phi(x, u) \) for all \(u \), with weight \(F(u) \)
Fourier Transform

- **Basis function**
\[\phi(x, u) = e^{j2\pi ux}, \quad u \in (-\infty, +\infty). \]

- **Forward Transform**
\[F(u) = F\{f(x)\} = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux} \, dx \]

- **Inverse Transform**
\[f(x) = F^{-1}\{F(u)\} = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} \, du \]
Important Transform Pairs

\[
\begin{align*}
 f(x) &= 1 \quad \Leftrightarrow \quad F(u) = \delta(u) \\
 f(x) &= e^{j2\pi f_0 x} \quad \Leftrightarrow \quad F(u) = \delta(u - f_0) \\
 f(x) &= \cos(2\pi f_0 x) \quad \Leftrightarrow \quad F(u) = \frac{1}{2} \left(\delta(u - f_0) + \delta(u + f_0) \right) \\
 f(x) &= \sin(2\pi f_0 x) \quad \Leftrightarrow \quad F(u) = \frac{1}{2j} \left(\delta(u - f_0) - \delta(u + f_0) \right) \\
 f(x) &= \begin{cases}
 1, & |x| < x_0 \\
 0, & \text{otherwise}
\end{cases} \quad \Leftrightarrow \quad F(u) = \frac{\sin(2\pi x_0 u)}{\pi u} = 2x_0 \text{sinc}(2x_0 u)
\end{align*}
\]

where, \(\text{sinc}(t) = \frac{\sin(\pi t)}{\pi t} \)

Derive the last transform pair in class
FT of the Rectangle Function

\[
F(u) = \frac{\sin(2\pi x_0 u)}{\pi u} = 2x_0 \text{sinc}(2x_0 u) \quad \text{where,} \quad \text{sinc}(t) = \frac{\sin(\pi t)}{\pi t}
\]

Note first zero occurs at \(u_0 = 1/(2x_0) = 1/\text{pulse-width} \), other zeros are multiples of this.
IFT of Ideal Low Pass Signal

• What is $f(x)$?
Representation of FT

- Generally, both $f(x)$ and $F(u)$ are complex
- Two representations
 - Real and Imaginary
 \[F(u) = R(u) + jI(u) \]
 - Magnitude and Phase
 \[F(u) = A(u)e^{j\phi(u)}, \text{ where} \]
 \[A(u) = \sqrt{R(u)^2 + I(u)^2}, \phi(u) = \tan^{-1}\frac{I(u)}{R(u)} \]

- Relationship
 \[R(u) = A(u)\cos\phi(u), \quad I(u) = A(u)\sin\phi(u) \]

- Power spectrum
 \[P(u) = A(u)^2 = F(u) \times F(u)^* = |F(u)|^2 \]
What if $f(x)$ is real?

- Real world signals $f(x)$ are usually real
- $F(u)$ is still complex, but has special properties

\[
F^*(u) = F(-u)
\]

\[
R(u) = R(-u), \ A(u) = A(-u), \ P(u) = P(-u) : \text{even function}
\]

\[
I(u) = -I(-u), \ \phi(u) = -\phi(-u) : \text{odd function}
\]
Property of Fourier Transform

- **Duality**
 \[f(t) \iff F(u) \]
 \[F(t) \iff f(-u) \]

- **Linearity**
 \[F\{a_1 f_1(x) + a_2 f_2(x)\} = a_1 F\{f_1(x)\} + a_2 F\{f_2(x)\} \]

- **Scaling**
 \[F\{af(x)\} = a F\{f(x)\} \]

- **Translation**
 \[f(x - x_0) \iff F(u) e^{-j2\pi u_0 u}, \quad f(x)e^{j2\pi u_0 x} \iff F(u - u_0) \]

- **Convolution**
 \[f(x) \otimes g(x) = \int f(x - \alpha) g(\alpha) d\alpha \]
 \[f(x) \otimes g(x) \iff F(u)G(u) \]

We will review convolution later!
Two Dimension Fourier Transform

• Basis functions

\[\phi(x, y; u, v) = e^{j(2\pi u x + 2\pi v y)} = e^{j2\pi u x} e^{j2\pi v y}, \quad u, v \in (-\infty, +\infty). \]

• Forward – Transform

\[F(u, v) = F\{f(x, y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi(ux+vy)} \, dx \, dy \]

• Inverse – Transform

\[f(x, y) = F^{-1}\{F(u, v)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j2\pi(ux+vy)} \, du \, dv \]

• Property

 – All the properties of 1D FT apply to 2D FT
Example 1

\[f(x, y) = \sin 4\pi x + \cos 6\pi y \]

\[
F\{\sin 4\pi x\} = \iint \sin 4\pi x e^{-j2\pi(ux+vy)} \, dx \, dy \\
= \int \sin 4\pi x e^{-j2\pi u} \, dx \int e^{-j2\pi v} \, dy \\
= \int \sin 4\pi x e^{-j2\pi u} \, dx \delta(v) \\
= \frac{1}{2j} (\delta(u - 2) - \delta(u + 2)) \delta(v) \\
= \frac{1}{2j} (\delta(u - 2, v) - \delta(u + 2, v))
\]

where \(\delta(x, y) = \delta(x) \delta(y) = \begin{cases}
\infty, & x = y = 0 \\
0, & \text{otherwise}
\end{cases} \)

Likewise, \(F\{\cos 6\pi y\} = \frac{1}{2} (\delta(u, v - 3) + \delta(u, v + 3)) \)
Example 2

\[f(x, y) = \sin(2\pi x + 3\pi y) = \frac{1}{2j} \left(e^{j(2\pi x + 3\pi y)} - e^{-j(2\pi x + 3\pi y)} \right) \]

\[F\{e^{j(2\pi x + 3\pi y)}\} = \iint e^{j(2\pi x + 3\pi y)} e^{-j2\pi (ux + vy)} \, dx \, dy \]
\[= \int e^{j2\pi x} e^{-j2\pi ux} \, dx \int e^{j3\pi y} e^{-j2\pi vy} \, dy \]
\[= \delta(u - 1)\delta(v - \frac{3}{2}) = \delta(u - 1, v - \frac{3}{2}) \]

Likewise, \[F\{e^{-j(2\pi x + 3\pi y)}\} = \delta(u + 1, v + \frac{3}{2}) \]

Therefore,
\[F\{\sin(2\pi x + 3\pi y)\} = \frac{1}{2j} \left(\delta(u - 1, v - \frac{3}{2}) - \delta(u + 1, v + \frac{3}{2}) \right) \]

[X,Y]=meshgrid(-2:1/16:2,-2:1/16:2);
f=sin(2*pi*X+3*pi*Y);
imagesc(f); colormap(gray)
Truesize, axis off;
Important Transform Pairs

\[
\sin(2\pi f_x x + 2\pi f_y y) \iff \frac{1}{2j} \left(\delta(u - f_x, v - f_y) - \delta(u + f_x, v + f_y) \right)
\]

\[
\cos(2\pi f_x x + 2\pi f_y y) \iff \frac{1}{2} \left(\delta(u - f_x, v - f_y) + \delta(u + f_x, v + f_y) \right)
\]

2D rectangular function \iff 2D sinc function
Properties of 2D FT (1)

• Linearity

\[F\{a_1 f_1(x, y) + a_2 f_2(x, y)\} = a_1 F\{f_1(x, y)\} + a_2 F\{f_2(x, y)\} \]

• Translation

\[f(x - x_0, y - y_0) \iff F(u, v)e^{-j2\pi(x_0u + y_0v)}, \]
\[f(x, y)e^{j2\pi(u_0x + v_0y)} \iff F(u - u_0, v - v_0) \]

• Conjugation

\[f^*(x, y) \iff F^*(-u, -v) \]
Properties of 2D FT (2)

• Symmetry

\[f(x, y) \text{ is real } \iff |F(u, v)| = |F(-u, -v)| \]

• Convolution

– Definition of convolution

\[f(x, y) \otimes g(x, y) = \int \int f(x - \alpha, y - \beta) g(\alpha, \beta) d\alpha d\beta \]

– Convolution theory

\[f(x, y) \otimes g(x, y) \iff F(u, v)G(u, v) \]

We will describe 2D convolution later!
Separability of 2D FT and Separable Signal

- Separability of 2D FT

\[F_2 \{ f(x, y) \} = F_y \{ F_x \{ f(x, y) \} \} = F_x \{ F_y \{ f(x, y) \} \} \]

 - where \(F_x \), \(F_y \) are 1D FT along \(x \) and \(y \).
 - one can do 1DFT for each row of original image, then 1D FT along each column of resulting image

- Separable Signal

 - \(f(x,y) = f_x(x)f_y(y) \)
 - \(F(u,v) = F_x(u)F_y(v) \),
 - where \(F_x(u) = F_x\{f_x(x)\} \), \(F_y(u) = F_y\{f_y(y)\} \)
 - For separable signal, one can simply compute two 1D transforms!
Example 1

\[f(x, y) = \sin(3\pi x) \cos(5\pi y) \]

\[f_x(x) = \sin(3\pi x) \quad \Leftrightarrow \quad F_x(u) = \frac{1}{2j} \left(\delta(u - 3/2) - \delta(u + 3/2) \right) \]

\[f_y(y) = \cos(5\pi y) \quad \Leftrightarrow \quad F_y(v) = \frac{1}{2} \left(\delta(v - 5/2) + \delta(v + 5/2) \right) \]

\[F(u, v) = F_x(u) F_y(v) \]

\[= \frac{1}{4j} \left(\delta \left(u - \frac{3}{2}, v - \frac{5}{2} \right) - \delta \left(u + \frac{3}{2}, v - \frac{5}{2} \right) + \delta \left(u - \frac{3}{2}, v + \frac{5}{2} \right) - \delta \left(u + \frac{3}{2}, v + \frac{5}{2} \right) \right) \]
Example 2

\[f(x, y) = \begin{cases}
1, & x \leq x_0, \ y \leq y_0 \\
0, & otherwise
\end{cases} \Rightarrow
\]

\[F(u, v) = 4x_0y_0 \text{sinc}(2x_0u) \text{sinc}(2y_0v) \]

\[x_0 = 2 \]
\[y_0 = 1 \]

w/ logarithmic mapping
Rotation

- Let \(x = r \cos \theta, \quad y = r \sin \theta, \quad u = \rho \cos \omega, \quad v = \rho \sin \omega \).
- 2D FT in polar coordinate \((r, \theta)\) and \((\rho, \Phi)\)

\[
F(\rho, \phi) = \int_0^\infty \int_0^{2\pi} f(r, \theta) e^{-j2\pi (r \cos \theta \rho \cos \phi + r \sin \theta \rho \sin \phi)} r dr d\theta \\
= \int_0^\infty \int_0^{2\pi} f(r, \theta) e^{-j2\pi \rho \cos (\theta - \phi)} r dr d\theta
\]

- Property

\[
f(r, \theta + \theta_0) \Leftrightarrow F(\rho, \phi + \theta_0)
\]
Example of Rotation

Figure 3.10 Rotation properties of the Fourier transform: (a) a simple image; (b) spectrum; (c) rotated image; (d) resulting spectrum.
Fourier Transform For Discrete Time Sequence (DTFT)

- One Dimensional DTFT
 - $f(n)$ is a 1D discrete time sequence
 - Forward Transform
 $$F(u) = \sum_{n=-\infty}^{\infty} f(n)e^{-j2\pi un}$$
 F(u) is periodic in u, with period of 1
 - Inverse Transform
 $$f(n) = \int_{-1/2}^{1/2} F(u)e^{j2\pi un} du$$
Properties unique for DTFT

- **Periodicity**
 - \(F(u) = F(u+1) \)
 - The FT of a discrete time sequence is only considered for \(u \in (-\frac{1}{2}, \frac{1}{2}) \), and \(u = \pm \frac{1}{2} \) is the highest discrete frequency

- **Symmetry for real sequences**

\[
f(n) = f^*(n) \iff F(u) = F^*(-u) \\
\Rightarrow |F(u)| = |F(-u)| \\
\Rightarrow |F(u)| \text{ is symmetric}
\]
Example

\[f(n) = \begin{cases} 1, & n = 0, 1, \ldots, N - 1; \\ 0, & \text{others} \end{cases} \]

\[
F(u) = \sum_{n=0}^{N-1} e^{-j2\pi nu} = \frac{1 - e^{-j2\pi uN}}{1 - e^{-j2\pi u}} = e^{-j\pi(N-1)u} \frac{\sin 2\pi u(N/2)}{\sin 2\pi u(1/2)}
\]

There are \(N/2\) zeros in \((0, 1/2]\), 1/N apart.
Two Dimensional DTFT

• Let \(f(m,n) \) represent a 2D sequence

• Forward Transform

\[
F(u, v) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m, n) e^{-j2\pi(mu+nv)}
\]

• Inverse Transform

\[
f(m, n) = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} F(u, v) e^{j2\pi(mu+nv)} \, dudv
\]

• Properties
 – Periodicity, Shifting and Modulation, Energy Conservation
Periodicity

\[F(u, v) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m, n)e^{-j2\pi(mu+nv)} \]

- \(F(u, v) \) is periodic in \(u, v \) with period 1, i.e., for all integers \(k, l \):
 - \(F(u+k, v+l) = F(u, v) \)
- To see this consider

\[
e^{-j2\pi(m(u+k)+n(v+l))} = e^{-j2\pi(mu+nv)}e^{-j2\pi(mk+nl)} = e^{-j2\pi(mu+nv)}
\]

In MATLAB, frequency scaling is such that 1 represents maximum freq \(u, v = 1/2 \).
Illustration of Periodicity

Low frequencies

High frequencies
Fourier Transform Types

- **Low Pass**
 - Non-zero frequency components
- **High Pass**
 - Non-zero frequency components
- **Band Pass**
 - Non-zero frequency components

Yao Wang, NYU-Poly

EL5123: Fourier Transform
Shifting and Modulation

- **Shifting**

\[
F\{f(m-m_0, n-n_0)\} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m-m_0, n-n_0)e^{-j2\pi(mu+nv)}
\]

\[
k = m-m_0, l = n-n_0 = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(k,l)e^{-j2\pi((k+m_0)u+(l+n_0)v)}
\]

\[
= e^{-j2\pi(m_0u+n_0v)} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(k,l)e^{-j2\pi(ku+lv)}
\]

\[
f(m-m_0, n-n_0) \Leftrightarrow e^{-j2\pi(m_0u+n_0v)}F(u,v)
\]

- **Modulation**

\[
e^{j2\pi(mu_0+nv_0)} f(m,n) \Leftrightarrow F(u-u_0, v-v_0)
\]
Energy Conservation

- Inner Product

\[
<f, g> = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m,n)g^*(m,n)
\]

\[
= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m,n) \left[\int_{-0.5}^{0.5} \int_{-0.5}^{0.5} G^*(u,v)e^{-j2\pi(mu+nv)} dudv \right]
\]

\[
= \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} \left[\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m,n)e^{-j2\pi(mu+nv)} \right] G^*(u,v) dudv
\]

\[
= \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} F(u,v)G^*(u,v) dudv = <F, G>
\]

- Energy Conservation

\[
\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} |f(m,n)|^2 = \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} |F(u,v)|^2 dudv
\]
Delta Function

- Fourier transform of a delta function

\[
F(u, v) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(m, n) e^{-j2\pi(mu+nv)} = 1
\]

\[\delta(m, n) \leftrightarrow 1\]

- Inverse Fourier transform of a delta function

\[
f(m, n) = \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} \delta(u, v) e^{j2\pi(mu+nv)} \, du \, dv = 1
\]

\[1 \leftrightarrow \delta(u, v)\]
Example

\[f(m, n) = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]

\[F(u, v) = 1e^{-j2\pi(-1*u-1*v)} + 2e^{-j2\pi(-1*u+0*v)} + 1e^{-j2\pi(-1*u+1*v)} \]
\[-1e^{-j2\pi(1*u-1*v)} - 2e^{-j2\pi(1*u+0*v)} - 1e^{-j2\pi(1*u+1*v)} \]
\[= j2 \sin 2\pi u e^{j2\pi v} + j4 \sin 2\pi u + j2 \sin 2\pi u e^{-j2\pi v} \]
\[= j4 \sin 2\pi u (\cos 2\pi v + 1) \]

Note: This signal is low pass in the horizontal direction, and band pass in the vertical direction.
Graph of $F(u,v)$

$$
\begin{align*}
\text{du} &= [-0.5:0.01:0.5]; \\
\text{dv} &= [-0.5:0.01:0.5]; \\
\text{Fu} &= \text{abs}(\sin(2 \pi \text{du})); \\
\text{Fv} &= \cos(2 \pi \text{dv}); \\
F &= 4 \times \text{Fu} \times (\text{Fv} + 1); \\
mesh(\text{du}, \text{dv}, F); \\
colorbar; \\
\text{Imagesc}(F); \\
\text{colormap}(\text{gray}); \text{truesize};
\end{align*}
$$

Using MATLAB freqz2:

```matlab
f=[1,2,1;0,0,0;-1,-2,-1];
freqz2(f)
```
Linear Convolution

- Convolution of Continuous Signals
 - 1D convolution
 \[f(x) * h(x) = \int_{-\infty}^{\infty} f(x - \alpha)h(\alpha)d\alpha = \int_{-\infty}^{\infty} f(\alpha)h(x - \alpha)d\alpha \]
 - Equalities
 \[f(x) * \delta(x) = f(x), \quad f(x) * \delta(x - x_0) = f(x - x_0) \]
 - 2D convolution
 \[f(x, y) * h(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x - \alpha, y - \beta)h(\alpha, \beta)d\alpha d\beta \]
 \[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha, \beta)h(x - \alpha, y - \beta)d\alpha d\beta \]
Examples of 1D Convolution

(1) $0 \leq x < 1$

(2) $1 \leq x < 2$

$f(x) * h(x) = f(\alpha)h(x-\alpha)$

Yao Wang, NYU-Poly

EL5123: Fourier Transform
Example of 2D Convolution

(1) 0≤x≤1, 0≤y≤1
\[g(x, y) = x \times y \]

(2) 0≤x≤1, 1≤y≤2
\[g(x, y) = x \times (2 - y) \]

(3) 1≤x≤2, 0≤y≤1
\[g(x, y) = (2 - x) \times y \]

(4) 1≤x≤2, 1≤y≤2
\[g(x, y) = (2 - x) \times (2 - y) \]
Convolution of 1D Discrete Signals

• Definition of convolution

\[f(n) \ast h(n) = \sum_{m=-\infty}^{\infty} f(n-m)h(m) = \sum_{m=-\infty}^{\infty} f(m)h(n-m) \]

• The convolution can be considered as the weighted average:
 – sample \(n-m \) is multiplied by \(h(m) \)

• Filtering: \(f(n) \) is the signal, and \(h(n) \) is the filter
 – Finite impulse response (FIR) filter
 – Infinite impulse response (IIR) filter

• If the range of \(f(n) \) is \((n_0, n_1) \), and the range of \(h(n) \) is \((m_0, m_1) \), then the range of \(f(n)\ast h(n) \) is \((n_0+m_0, n_1+m_1) \)
Example of 1D Discrete Convolution

(a) $n < 0$, $g(n) = 0$

(b) $0 \leq n \leq 8$, $g(n) > 0$

(c) $n > 8$, $g(n) = 0$
Convolution of 2D Discrete Signals

- Definition of convolution

\[f(m, n) * h(m, n) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(m-k, n-l)h(k, l) \]

\[= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(k, l)h(m-k, n-l) \]

- Weighted average:
 - Pixel \((m-k,n-l)\) is weighted by \(h(k,l)\)

- Range
 - If the range of \(f(m, n)\) is \(m_0 \leq m \leq m_1, n_0 \leq n \leq n_1\)
 - If the range of \(h(m, n)\) is \(k_0 \leq m \leq k_1, l_0 \leq n \leq l_1\)
 - Then the range of \(f(m, n) * h(m, n)\) is \(m_0 + k_0 \leq m \leq m_1 + k_1, n_0 + l_0 \leq n \leq n_1 + l_1\)
Example of 2D Discrete Convolution

\[f(m,n) \]

[Diagram showing convolution process]

\[h(m,n) \]

\[h(-k,-l) \]

\[f(k,l)h(-1-k, -2-l) \]

\[f(k,l)h(2-k,1-l) \]

\[f(m,n)\ast h(m,n) \]
• Go through an example in class for an arbitrary 3x3 (non-symmetric) filter
Separable Filtering

• A filter is separable if \(h(x, y) = h_x(x)h_y(y) \) or \(h(m, n) = h_x(m)h_y(n) \).
• Matrix representation
 \[
 H = h_x h_y^T
 \]
 – Where \(h_x \) and \(h_y \) are column vectors
• Example

\[
H = \begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{bmatrix} = \begin{bmatrix} 1 \\
2 \\
1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} = h_x h_y^T
\]
DTFT of Separable Filter

- Previous example

\[
H = \begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} \begin{bmatrix}
1 & 0 & -1
\end{bmatrix} = h_x h_y^T
\]

- Recognizing that the filter is separable

\[
\begin{bmatrix}
1 & 0 & -1
\end{bmatrix} \leftrightarrow F_y(v) = 1e^{j2\pi v} + 0 + (-1)e^{-j2\pi v} = 2j\sin 2\pi v
\]
\[
\begin{bmatrix}
1 & 2 & 1
\end{bmatrix} \leftrightarrow F_x(u) = 1e^{j2\pi u} + 2 + e^{-j2\pi u} = 2 + 2\cos 2\pi u
\]
\[
F(u, v) = F_x(u)F_y(v) = 4j(1 + \cos 2\pi u)\sin 2\pi v
\]
Separable Filtering

- If $H(m,n)$ is separable, the 2D convolution can be accomplished by first applying 1D filtering along each row using $h_y(n)$, and then applying 1D filtering to the intermediate result along each column using the filter $h_x(n)$.

- Proof

$$f(m,n) * h(m,n) = \sum_k \sum_l f(m-k, n-l) h_x(k) h_y(l)$$

$$= \sum_k \left(\sum_l f(m-k, n-l) h_y(l) \right) h_x(k)$$

$$= \sum_k g_y(m-k, n) h_x(k)$$

$$= (f(m,n) * h_y(n)) * h_x(n)$$
• Go through an example of filtering using separable filter in class
Computation Cost

- **Suppose**
 - The size of the image is $M \times N$.
 - The size of the filter is $K \times L$.
- **Non-separable filtering**
 - Each pixel: $K \times L$ mul; $K \times L - 1$ add.
 - Total: $M \times N \times K \times L$ mul; $M \times N \times (K \times L - 1)$ add.
 - When $M = N$, $K = L$
 - M^2K^2 mul + $M^2(K^2 - 1)$ add.
Computation Cost

• Separable:
 – Each pixel in a row: \(L \) mul; \(L-1 \) add.
 – Each row: \(N*L \) mul; \(N*(L-1) \) add.
 – \(M \) rows: \(M*N*L \) mul; \(M*N*(L-1) \) add.
 – Each pixel in a column: \(K \) mul; \(K-1 \) add.
 – Each column: \(M*K \) mul; \(M*(K-1) \) add.
 – \(N \) columns: \(N*M*K \) mul; \(N*M*(K-1) \) add.
 – Total: \(M*N*(K+L) \) mul; \(M*N*(K+L-2) \) add.
 – When \(M=N, K=L \):
 • \(2M^2K \) mul; \(2M^2(K-1) \) add.
 • Significant savings if \(K \) (and \(L \)) is large!
Boundary Treatment

• When assuming the image values outside a given image are zero, the filtered values in the boundary are affected by assumed zero values adversely.

• For better results, use symmetric extension (mirror image) to fill the outside image values.

<table>
<thead>
<tr>
<th>Actual image pixels</th>
<th>Extended pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 200 205 203 203</td>
<td></td>
</tr>
<tr>
<td>200 200 205 203 203</td>
<td></td>
</tr>
<tr>
<td>195 195 200 200 200</td>
<td></td>
</tr>
<tr>
<td>200 200 205 195 195</td>
<td></td>
</tr>
<tr>
<td>200 200 205 195 195</td>
<td></td>
</tr>
</tbody>
</table>
Computer implementation of convolution

- **Boundary treatment**
 - An image of size MxN convolving with a filter of size KxL will yield an image of size (M+K-1,N+L-1)
 - If the filter is symmetric, the convolved image should have extra boundary of thickness K/2 on each side
 - Filtered values in the outer boundary of K/2 pixels depend on the extended pixel values
 - For simplicity, we can ignore the boundary problem, and process only the inner rows and columns of the image, leaving the outer K/2 rows and L/2 columns unchanged (if filter is low-pass) or as zero (if filter is high-pass)

- **Renormalization:**
 - The filtered value may not be in the range of (0,255) and may not be integers
 - Use two-pass operation
 - First pass: save directly filtered value in an intermediate floating-point array
 - Second pass: find minimum and maximum values of the intermediate image, renormalize to (0,255) and rounding to integers
 - F= round(((F1-fmin)*255/(fmax-fmin))
 - To display the unnormalized image directly, use “imagesc()” function
Sample Matlab Program

```matlab
% readin bmp file
x = imread('lena.bmp');
[xh xw] = size(x);
y = double(x);

% define 2D filter
h = ones(5,5)/25;
[hh hw] = size(h);
hhh = (hh - 1) / 2;
hhw = (hw - 1) / 2;

% linear convolution, assuming the filter is non-separable (although this example filter is separable)
z = y; %or z=zeros(xh,xw) if not low-pass filter
for m = hhh + 1:xh - hhh,
    %skip first and last hhh rows to avoid boundary problems
    for n = hhw + 1:xw - hhw,
        %skip first and last hhw columns to avoid boundary problems
        tmpy = 0;
        for k = -hhh:hhh,
            for l = -hhw:hhw,
                tmpv = tmpv + y(m - k,n - l)*h(k + hhh + 1, l + hhw + 1);
                %h(0,0) is stored in h(hhh+1,hhw+1)
            end
        end
        z(m, n) = tmpv;
    end
end

%for more efficient matlab coding, you can replace the above loop with
z(m,n)=sum(sum(y(m-hhh:m+hhh,n-hhw:n+hhw).*h))
end
end
```

Yao Wang, NYU-Poly
Results

\[h = \frac{1}{25} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \]

\[f(m,n) \quad g(m,n) \]
• What if the filter is symmetric? Can you write a different MATLAB code that has reduced computation time?
• MATLAB built-in functions
 – 1D filtering: conv
 – 2D filtering: conv2
 – Computing DTFT: freqz, freqz2
Convolution Theorem

\[f * h \iff F \times H, \quad f \times h \iff F * H \]

Proof

\[
g(m, n) = f(m, n) * h(m, n) = \sum_{k} \sum_{l} f(m - k, n - l)h(k, l)
\]

FT on both sides

\[
G(u, v) = \sum_{m,n} \sum_{k,l} f(m - k, n - l)h(k, l)e^{-j2\pi(mu+nv)}
\]

\[
= \sum_{m,n} \sum_{k,l} f(m - k, n - l)e^{-j2\pi((m-k)u+(n-l)v)}h(k, l)e^{-j2\pi(ku+lv)}
\]

\[
= \sum_{m,n} f(m - k, n - l)e^{-j2\pi((m-k)u+(n-l)v)} \sum_{k,l} h(k, l)e^{-j2\pi(ku+lv)}
\]

\[
= \sum_{m',n'} f(m', n')e^{-j2\pi(m'u+n'v)} \sum_{k,l} h(k, l)e^{-j2\pi(ku+lv)}
\]

\[
= F(u, v) \times H(u, v)
\]
Explanation of Convolution in the Frequency Domain

\[
f(x) \ast h(x) = g(x)
\]

- In the frequency domain:

 \[
 G(u) = F(u) \ast H(u)
 \]

Yao Wang, NYU-Poly
EL5123: Fourier Transform
Example

- Given a 2D filter, show the frequency response. Apply to a given image, show original image and filtered image in pixel and freq. domain

\[h = \frac{1}{25} \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix} \]
Matlab Program Used

```matlab
x = imread('lena256.bmp');
figure(1); imshow(x);
f = double(x);
ff=abs(fft2(f));
figure(2); imagesc(fftshift(log(ff+1))); colormap(gray);truesize;axis off;
h = ones(5,5)/9;
hf=abs(freqz2(h));
figure(3);imagesc((log(hf+1)));colormap(gray);truesize;axis off;
y = conv2(f, h);
figure(4);imagesc(y);colormap(gray);truesize;axis off;
yf=abs(fft2(y));
figure(5);imagesc(fftshift(log(yf+1)));colormap(gray);truesize;axis off;
```
\[H_1 = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \]
Filter Design

- Given desired frequency response of the filter $H_d(u,v)$
- Perform an inverse transform to obtain the desired impulse response $h_d(m,n)$.
- When $H_d(u,v)$ is band limited, $h_d(m,n)$ is infinitely long.
- Truncate $h_d(m,n)$ to yield a realizable $h(m,n)$.
- Will distort the original frequency response.
- Better approach is to apply a well designed window function over the specified frequency response.
Use of Window Function in Filter Design

\[
H(u) \quad H(w(u))
\]

Hamming window

\[w(x) = 0.54 - 0.46 \cos(2\pi \frac{x}{X}), \quad 0 < x < X \]
Homework

1. Let

\[f(x, y) = \sin 2\pi f_c (x + y), \quad h(x, y) = \frac{\sin(2\pi f_c x) \sin(2\pi f_c y)}{\pi^2 xy} \]

Find the convolved signal \(g(x, y) = f(x, y) \ast h(x, y) \) for the following two cases:

a) \(f_0/2 < f_c < f_0 \); and b) \(f_0 < f_c < 2f_0 \).

Hint: do the filtering in the frequency domain. Explain what happened by sketching the original signal, the filter, the convolution process and the convolved signal in the frequency domain.

2. Repeat the previous problem for

\[h(x, y) = \begin{cases} f_c^2, & -\frac{1}{2f_c} < \{x, y\} < \frac{1}{2f_c} \\ 0, & \text{otherwise} \end{cases} \]
3. For the three filters given below (assuming the origin is at the center):
 a) find their Fourier transforms (2D DTFT);
 b) sketch the magnitudes of the Fourier transforms. You should sketch by hand the DTFT as a function of \(u \), when \(v=0 \) and when \(v=1/2 \); also as a function of \(v \), when \(u=0 \) or \(1/2 \). Also please plot the DTFT as a function of both \(u \) and \(v \), using Matlab plotting function.
 c) Compare the functions of the three filters.

In your calculation, you should make use of the separable property of the filter whenever appropriate. If necessary, split the filter into several additive terms such that each term can be calculated more efficiently.

\[
H_1 = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad H_2 = \frac{1}{24} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 12 & -2 \\ 1 & -2 & 1 \end{bmatrix} \quad H_3 = \frac{1}{24} \begin{bmatrix} -1 & -2 & -1 \\ -2 & 12 & -2 \\ -1 & -2 & -1 \end{bmatrix}
\]
Programming Assignment

1. Write a Matlab or C-program for implementing filtering of a gray scale image. Your program should allow you to specify the filter with an arbitrary size (in the range of k0->k1, l0->l1), read in a gray scale image, and save the filtered image into another file. For simplicity, ignore the boundary effect. That is, do not compute the filtered values for pixels residing on the image boundary. If the filter has a size of $M \times N$, the boundary pixels are those in the top and bottom $M/2$ rows, and left and right most $N/2$ columns. You should properly normalize the filtered image so that the resulting image values can be saved as 8-bit unsigned characters. Apply the filters given in the previous problem to a test image. Observe on the effect of these filters on your image. Note: you cannot use the MATLAB `conv2()` function. In your report, include your MATLAB code, the original test image and the images obtained with the three filters. Write down your observation of the effect of the filters.

2. Optional: Now write a convolution program assuming the filter is separable. Your program should allow you to specify the horizontal and vertical filters, and call a 1D convolution sub-program to accomplish the 2D convolution. Note: you cannot use the MATLAB `conv()` function.

3. Learn the various options of `conv2()` function in MATLAB using online help manual.
Reading

- Gonzalez and Woods, Sec. 4.1 and 4.2, 4.3, 3.4, 3.5, 3.5