

Multimedia Communication Systems I

Video Coding Basics

Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao

Outline

- Video application
- Motivation for video coding
- Basic ideas in video coding
- Block diagram of a typical video codec
- Desirable features: scalability and error resilience

Video Applications

- Digital TV/HDTV broadcast over the air/cable/satellite
- Video-on-demand
 - On-line video store
 - CNN news video
- Internet Video broadcast/multicast
- DVD movies
- Home video capture and sharing
- ...

Why Compress?

Video Format	Y Size	Color	Frame Rate	Raw Data Rate
		Sampling	(Hz)	(Mbps)
HDIV Over air.	cable, satellite, MPEC	j2 video, 20-45 Mbj		0.55/000/551
SMPTE296M	1280x720	4:2:0	24P/30P/60P	265/332/664
SMPTE295M	1920x1080	4:2:0	24P/30P/60I	597/746/746
Video production	, MPEG2, 15-50 Mbj	DS		
BT.601	720x480/576	4:4:4	60I/50I	249
BT.601	720x480/576	4:2:2	60I/50I	166
High quality vide	o distribution (DVD,	SDTV), MPEG2, 4	-10 Mbps	
BT.601	720x480/576	4:2:0	60I/50I	124
Intermediate qual	ity video distribution	(VCD, WWW), MI	PEG1, 1.5 Mbps	
SIF	352x240/288	4:2:0	30P/25P	30
Video conferencii	ng over ISDN/Interne	et, H.261/H.263/MP	EG4, 128-384 Kbps	
CIF	352x288	4:2:0	30P	37
			C4 00 64 Klass	
viaeo telephony (over wired/wireless n	noaem, H.263/MPE	J4, 20-64 Kops	
		1 2 0	00D	0.1

Multimedia Communication Standards

Application	Video Format	Raw Data Rate	Compressed Data Rate
Video conferencing over ISDN	CIF	37 Mbps	>=384 Kbps
	QCIF	9.1 Mbps	>=64 Kbps
Video conferencing over Internet	4CIF/ CIF/		>=64 Kbps
	QCIF		
Video over phone lines/ wireless	QCIF	9.1 Mbps	>=18 Kbps
Video distribution on CD/ WWW	CIF	30 Mbps	1.5 Mbps
Video distribution on DVD /	CCIR601 4:2:0	128 Mbps	3-10 Mbps
digital TV			
Multimedia distribution	QCIF/CIF		28-1024 Kbps
over Inter/Intra net			
HDTV broadcasting	SMPTE296/295	<=700 Mbps	1845 Mbps
Newest video coding standard	All		
	ApplicationVideo conferencing over ISDNVideo conferencing over InternetVideo over phone lines/ wirelessVideo distribution on CD/ WWWVideo distribution on DVD / digital TVMultimedia distribution over Inter/Intra netHDTV broadcastingNewest video coding standard	ApplicationVideo FormatVideo conferencing over ISDNCIF QCIFVideo conferencing over Internet4CIF/CIF/ QCIFVideo over phone lines/ wirelessQCIFVideo distribution on CD/ WWWCIFVideo distribution on DVD / digital TVCCIR601 4:2:0Multimedia distribution over Inter/Intra netQCIF/CIFHDTV broadcastingSMPTE296/295Newest video coding standardAll	ApplicationVideo FormatRaw Data RateVideo conferencing over ISDNCIF37 MbpsVideo conferencing over Internet4CIF/ CIF/ QCIF9.1 MbpsVideo over phone lines/ wirelessQCIF9.1 MbpsVideo distribution on CD/ WWWCIF30 MbpsVideo distribution on DVD / digital TVCCIR601 4:2:0128 MbpsMultimedia distribution over Inter/Intra netQCIF/CIFHDTV broadcastingSMPTE296/295<=700 Mbps

Components in a Coding System

Image Coding Revisited

- Why can we compress an image
 - Adjacent pixels are correlated (have similar color values)
- How to compress (the JPEG way)
 - Use transform to decorrelate the signal (DCT)
 - Quantize the DCT coefficients
 - Runlength code the quantized indices
 - Zigzag ordering
 - Huffman coding each pair (zero runlength, non-zero value)
- What is different with video?
 - We can apply JPEG to each video frame (Motion-JPEG)
 - But we can do more than that to achieve higher compression!

Characteristics of Typical Videos

Adjacent frames are similar and changes are due to object or camera motion --- Temporal correlation Frame 66

SIEMENS

Absolute Difference w/o Motion Compensation

Absolute Difference with Motion Compensation

Frame 69

Key Ideas in Video Coding

- Predict a new frame from a previous frame and only specify the prediction error (INTER mode)
- Prediction error will be coded using an image coding method (e.g., DCT-based as in JPEG)
- Prediction errors have smaller energy than the original pixel values and can be coded with fewer bits
- Those regions that cannot be predicted well will be coded directly using DCT-based method (INTRA mode)
- Use motion-compensated temporal prediction to account for object motion
- Use spatial directional prediction to exploit spatial correlation (H.264)
- Work on each macroblock (MB) (16x16 pixels) independently for reduced complexity
 - Motion compensation done at the MB level
 - DCT coding of error at the block level (8x8 pixels or smaller)
 - Block-based hybrid video coding

MB Structure in 4:2:0 Color Format

┝╼╠╼╬╼╬╼	╈╼╆╼╆╼╆╼

				H
_				

4 8x8 Y blocks 1 8x8 Cb blocks 1 8x8 Cr blocks

Encoder Block Diagram of a Typical Block-Based Hybrid Coder

Decoder Block Diagram

Decoder

From [Wang02]

Block Matching Algorithm for Motion Estimation

(Reference Frame)

Frame t (Predicted frame)

Block Matching Algorithm Overview

- For each MB in a new (predicted) frame
 - Search for a block in a reference frame that has the lowest matching error
 - Using sum of absolute differences (SAD) between corresponding pels
 - Search range: depends on the anticipated motion range

$$E_{\text{DFD}}(\mathbf{d}_{\text{m}}) = \sum_{\mathbf{x}\in B_{m}} |\psi_{2}(\mathbf{x} + \mathbf{d}_{m}) - \psi_{1}(\mathbf{x})|^{p} \rightarrow \min$$

- Displacement between the current MB and the best matching MB is the MV
- Current MB is replaced by the best matching MB (motioncompensated prediction or motion compensation)
- This subject will be discussed in more detail in a separate lecture

Temporal Prediction

- No Motion Compensation:
 - Work well in stationary regions

$$\hat{f}(t,m,n) = f(t-1,m,n)$$

- Uni-directional Motion Compensation:
 - Does not work well for uncovered regions due to object motion or newly appeared objects

$$\hat{f}(t,m,n) = f(t-1,m-d_x,n-d_y)$$

- Bi-directional Motion Compensation
 - Can handle better covered/uncovered regions

$$\hat{f}(t,m,n) = w_b f(t-1,m-d_{b,x},n-d_{b,y}) + w_f f(t+1,m-d_{f,x},n-d_{f,y})$$

Different Coding Modes

Bidirectional: predicted from a previous frame and a following frame._

Can be done at the block or frame level. From [Wang02]

DCT-Based Coding Revisited

- Why do we use DCT:
 - To exploit the correlation between adjacent pixels
 - Typically only low frequency DCT coefficients are significant
- For I-blocks, DCT is applied to original image values
 - The new H.264 standard applies intra-prediction and DCT is applied to intra-prediction error
- For P/B-blocks, DCT is applied to prediction errors

Basis Images of 8x8 DCT

DCT on a Real Image Block

>>imblock = lena256(128:135,128:135)-128

imblock=

- 54 68 71 73 75 73 71 45
- 47 52 48 14 20 24 20 -8
- 20 -10 -5 -13 -14 -21 -20 -21
- -13 -18 -18 -16 -23 -19 -27 -28
- -24 -22 -22 -26 -24 -33 -30 -23
- -29 -13 3 -24 -10 -42 -41 5
- -16 26 26 -21 12 -31 -40 23
- 17 30 50 -5 4 12 10 5

>>dctblock =dct2(imblock)

dctblock=

31.0000 51.7034 1.1673 -24.5837 -12.0000 -25.7508 11.9640 23.2873 113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005 195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585 35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125 40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606 7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087 -1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041 -6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799

Note that most DCT coefficients are close to zero except those at the low-low range

EE4414: Video Coding Basics

Quantization Matrices

• For I-blocks: non-uniform scaling is used (as in JPEG)

$W_{H,V}$	0	1	2	3	4	5	6	8
0	8	16	19	22	26	27	29	34
1	16	16	22	24	27	29	34	37
2	19	22	26	27	29	34	34	38
3	22	22	26	27	29	34	37	40
4	22	26	27	29	32	35	40	48
5	26	27	29	32	35	40	48	58
6	26	27	29	34	38	46	56	69
7	27	29	35	38	46	56	69	83

Figure 13.13 Default weights for quantization of I-blocks in MPEG-1. Weights for horizontal and vertical frequencies differ.

 For P/B blocks: the same stepsize (8) is used for all coefficients, and this stepsize can be scaled by a userselectable parameter (quantization parameter or QP) that controls the trade-off between bit-rate and quality

Zig-Zag Ordering

Zig-Zag ordering: converting a 2D matrix into a 1D array, so that the frequency (horizontal+vertical) increases in this order, and the coefficient variance (average of magnitude square) decreases in this order.

Run-length Coding

- Runlength coding
 - Many coefficients are zero after quantization
 - Runlength Representation:
 - Ordering coefficients in the zig-zag order
 - Specify how many zeros before a non-zero value
 - Each symbol=(length-of-zero, non-zero-value)
 - For I-blocks, the DC coefficient is specified directly
 - Code all possible symbols using Huffman coding
 - More frequently appearing symbols are given shorter codewords
 - One can use default Huffman tables or specify its own tables.
 - Instead of Huffman coding, arithmetic coding can be used to achieve higher coding efficiency at an added complexity.
 - More efficient entropy coding methods can be used
 - Context-based arithmetic coding

Example of Runlength Coding

Quantized DCT indices for an I block =

2	5	0	-2	0	-1	0	0	
9	1	-1	2	0	1	0	0	
14	1	-1	0	-1	0	0	0	
3	-1	-1	-1	0	0	0	0	
2	-1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

Run-length symbol representation:

 $\{2,(0,5),(0,9),(0,14),(0,1),(1,-2),(0,-1),(0,1),(0,3),(0,2),(0,-1),(0,-1),(0,2),(1,-1),(2,-1),(0,-$

EOB: End of block, one of the symbol that is assigned a short Huffman codeword

Macroblock Coding in I-Mode (without Intra Prediction)

Macroblock Coding in I-Mode (with Intra Prediction)

Macroblock Coding in P-Mode

Macroblock Coding in B-Mode

- Same as for the P-mode, except that a macroblock is predicted from both a previous picture and a following one.
- Two pair of MVs needed to be coded.

Coding Mode Selection

- Which mode should we use for a given MB?
- Frame-level control
 - I frame use only I-mode
 - P-frame use P-mode, except when prediction does not work (back to I-mode)
 - B-frame use B-mode (but can switch to P-mode and I-mode)
- Block-level control
 - A MB is coded using the mode that leads to the lowest bitrate for the same distortion -> rate-distortion optimized mode selection
 - I-mode is used for the first frame, and is inserted periodically in following frames, to stop transmission error propagation
- Mode information is coded in MB header

Rate Control

- For a fixed QP, the bit rate varies from block to block
 - I mode needs more bits than P and B modes
 - Even when the mode is the same, blocks with complex motion and texture require more bits
- To reach a desired bit rate (averaged over a frame or a group of frames), one can adjust
 - QP
 - Encoding frame rate (frame skip)
 - Controlled by the status of a buffer that stores the bits produced by the encoder

Sensitivity to Transmission Errors

- Prediction and variable length coding makes the video stream very sensitive to transmission errors on the bitstream or packet stream
 - Error in one frame will propagate to subsequent frames
 - Bit errors or packet losses in one part of the bit stream make the following bits undecodable

EE4414: Video Coding Basics

Effect of Transmission Errors

Example reconstructed video frames from a H.263 coded sequence, subject to packet losses

Error Resilient Encoding

- To help the decoder to resume normal decoding after errors occur, the encoder can
 - Periodically insert INTRA mode (INTRA refresh)
 - Insert resynchronization codewords at the beginning of a group of blocks (GOB)
- More sophisticated error-resilience tools
 - Multiple description coding
- Trade-off between efficiency and error-resilience
- Can also use channel coding / retransmission to correct errors

Error Concealment

- With proper error-resilience tools, packet loss typically lead to the loss of an isolated segment of a frame
- The lost region can be "recovered" based on the received regions by spatial/temporal interpolation → Error concealment
- Decoders on the market differ in their error concealment capabilities

Without concealment

With concealment

© Yao Wang, 2005

Scalable Coding

- Motivation
 - Real networks are heterogeneous in rate
 - streaming video from home (56 kbps) using modem vs. corporate LAN (10-100 mbps)
- Scalable video coding
 - Ideal goal (embedded stream): Creating a bitstream that can be accessed at any rate
 - Practical video coder:
 - layered coder: base layer provides basic quality, successive layers refine the quality incrementally
 - Coarse granularity (typically known as layered coder)
 - Fine granularity (FGS):
 - bit plane coding or wavelet-based coding

Bit Stream Scalability

Illustration of Scalable Coding

6.5 kbps

133.9 kbps

436.3 kbps

Quality (SNR) scalability EE4414: Video Coding Basics

© Yao Wang, 2005

37

What you should know

- What are the principle steps in a video coder? What are the three types of information coded? You should be able to draw the block diagram of a typical block-based video codec (encoder and decoder) using motion-compensation and know the function of each step
- Why do we use motion-compensated prediction?
- What are the difference between I, B, and P modes? Why do we use different modes? What may be the problem if we use P-modes only (except the first frame)?
- What are the basic steps in DCT-based coding? How to apply it to I and P/B blocks ?
- Why is error-resilience and error-concealment important in video encoder and decoder design?
- What is scalable coding? What are the benefits and trade-offs?

References

- Y. Wang, J. Ostermann, Y. Q. Zhang, *Video Processing and Communications,* Prentice Hall, 2002. Chapters 9,11,13
- Y. Wang and Q. Zhu, "Error control and concealment for video communication: a review," *Proceedings of the IEEE*, vol. 86, pp. 974-997. May 1998.