
Image Compression: JPEG and JPEG 2000

Maria Loginova
Jie (Kerry) Zhan

Abstract

 How to save an image file efficiently without losing the quality? JPEG has been

one of the answers for quite some years.

 JPEG stands for Joint Photographic Experts Group, and these are the people who

developed the standards of JPEG image compression. Over the past few years, JPEG has

been a quite popular format for images, especially when working with the booming

Internet. Using DCT (Discrete Cosine Transform) algorithms and related quantization

method, JPEG can compress the original image file to a relative reasonable size without

losing much detail. In this report, we will be exploring, with simulations and coding, the

technical details of JPEG.

 As time passed by, JPEG is gradually becoming insufficient in some applications

due to its “block effects.” Therefore, there is a need to develop new standards for better

performance in image compression. That’s original goal of JPEG 2000, that is, to

represent an image using even less bytes while not losing the details and also not creating

“artifacts” like JPEG did. So, followed by discussion of JPEG, there will be a description

part for this new image compression standard.

Project Plan

Project Accomplishments

PART I: JPEG Standard

JPEG is a very widely used lossy data compression standard. The figure 1 below

outlines the basic steps involved in the compression process. First image data is divided

into 8 by 8 blocks. These blocks are then transformed using a discrete cosine transform

Week 1 (Sun, Feb 2 - Sun, Feb 9) Primary Resp. Status
Initial Look on Image Coding Maria/Kerry Done
Search for Relevant Literature Maria/Kerry Done
Overall Project Plan Decisions and Project Plan Report Writing Maria/Kerry Done
Weeks 2,3 (Sun, Feb 9 - Sun, Feb 23) Primary Resp. Status
Overview of DCT and Quantization and their use in JPEG coding Maria Done
Overview of wavelets and their use in JPEG2000 coding Kerry Done
Weeks 4,5 (Sun, Feb 23 - Sun, March 9) Primary Resp. Status
Finding JPEG2000 demo software Kerry Done
Starting simple C++ drawing program Maria Done
Week 6 (Sun, March 9 - Sun, March 16) Primary Resp. Status
Mid-Report Writing Maria/Kerry Done
Week 7 (Sun, March 16 - Sun, March 23) Primary Resp. Status
Spring Break!
Weeks 8,9 (Sun, March 23 - Sun, April 6) Primary Resp. Status
JPEG2000-standard research Kerry Done
Continue with the drawing program Maria Done
Week 10-13 (Sun, March 6 - Sun, May 4) Primary Resp. Status
Write simple DCT algorithm Maria Done
Write simple Quantizer algorithm Maria Done
Write simple Run-Length coder algorithm Maria Done
Combine Algorithms with a drawing program Maria Done
JPEG vs. JPEG2000 Kerry Done
Prepare material for presentation Maria/Kerry Done
Week 14 (Sun, May 4 - End of the Semester) Primary Resp. Status
Anything Past Deadline Maria/Kerry Done
Any Newly Found Relevant Material Maria/Kerry Done
Final Report Writing Maria/Kerry Done

(DCT) that decomposes each 8 by 8 block into 64 DCT coefficients, each of which

corresponds to a respective DCT basis vector. DCT transform is a lossless step.

Next this transformed image data is forwarded to a quantizer. The purpose of

quantization is to achieve the maximum amount of compression by representing DCT

coefficients with no greater precision than it is necessary to achieve the desired image

quality. JPEG has defined matrices that can be used for quantization. This is the lossy

step.

 Finally the quantized coefficients are encoded achieving additional lossless

compression.

In further sections of this report we will analyze each step and show how we

implemented it in our simple C++ drawing program showing.

Figure 1. Compression and Decompression Steps

Obtaining Raw Data

In our drawing program the raw data is obtained by taking the RGB values of

each pixel from the 128x128 drawing window (Figure 2) and converting them into

YCbCr.

Figure 2. Draw the Picture and Get its RGB Values

The next step is breaking up the 128x128 data matrix into minimal coding units (MCU’s)

where each MCU consists of 4 8x8 Y blocks, 1 8x8 Cb Block and 1 8x8 Cr block. This

step is lossy because the chrominance values are obtained by taking the average of each

four pixels. This affects the sharp edges if any are present in the image. Because of this

step JPEG compression does not work well with cartoon-like images having sharp edges

and color changes.

Figure 3. Breaking Up into MCU’s and 8x8 blocks

DCT Transform

To perform DCT transform, first we had to find 1D basis:

u(k; n) = a(k)cos(πk(2n+1)/2N), where a(0) = sqrt(1/N), a(k) = sqrt(2/N) for k = 1,…,N-1

 and in our case N = 8 because of 8x8 matrices.

void CJPEGDlg::getBasis()
{
 int n,k;

 for(n = 0; n < 8; n++)
 {
 BasisArray[0].base[n] = sqrt(1.0/8.0) * 1.0;
 }

 for(k = 1; k < 8; k++)
 {
 for(n = 0; n < 8; n++)
 {
 BasisArray[k].base[n] = sqrt(2.0/8.0) * cos(k * 3.141592 * (2*n + 1) / 16);
 }
 }

}

Then find the full 8D basis using:

U(k,l) = u(k)T(u(l))

void CJPEGDlg::getFullBasis()
{
 int i, j;
 int k, l;

 for (k = 0; k < 8; k++)
 {
 for(l = 0; l < 8; l++)
 {
 for(i = 0; i < 8; i++)
 {
 for(j = 0; j < 8; j++)
 {
 fullBaseArray[k][l].fullBase[i][j] = BasisArray[k].base[j] * BasisArray[l].base[i];
 }
 }
 }
 }
}

Finally to find DCT coefficients the following formula was used:

T(k,l) = (U(k,l),S) where S is the 8x8 block that is being transformed.

for(count = 0; count < 64; count++)
 {
 for(m = 0; m < 8; m++)
 {
 for(n = 0; n < 8; n++)
 {
 for(i = 0; i < 8; i++)
 {
 for(j = 0; j < 8; j++)
 {
 DCTcoefficients[count].YBlock1[m][n] += fullBaseArray[m][n].fullBase[i][j]
 * Units[count].YBlock1[i][j];
 DCTcoefficients[count].YBlock2[m][n] += fullBaseArray[m][n].fullBase[i][j]
 * Units[count].YBlock2[i][j];
 DCTcoefficients[count].YBlock3[m][n] += fullBaseArray[m][n].fullBase[i][j]
 * Units[count].YBlock3[i][j];
 DCTcoefficients[count].YBlock4[m][n] += fullBaseArray[m][n].fullBase[i][j]
 * Units[count].YBlock4[i][j];
 DCTcoefficients[count].CbBlock[m][n] += fullBaseArray[m][n].fullBase[i][j]
 * Units[count].CbBlock[i][j];
 DCTcoefficients[count].CrBlock[m][n] += fullBaseArray[m][n].fullBase[i][j]
 * Units[count].CrBlock[i][j];
 }
 }
 }
 }
 }

Figure 4 demonstrates the image received by reconstructing the DCT coefficients. These

operations produce no visible changes to the image.

Figure 4. Image Reconstructed from DCT coefficients

Quantization

Quantizing the DCT coefficients involves two steps. First finding the Qindex:

Qindex (f) = floor((f + Q/2))/Q)

void CJPEGDlg::getQindex()
{
 int count(0);
 int i, j;

 for(count = 0; count < 64; count ++)
 {
 for(i = 0; i < 8; i++)
 {
 for(j = 0; j < 8; j++)
 {
 Qindex[count].YBlock1[i][j] = floor((DCTcoefficients[count].YBlock1[i][j] +
 Qluminance[i][j]/2.0)/Qluminance[i][j]);
 Qindex[count].YBlock2[i][j] = floor((DCTcoefficients[count].YBlock2[i][j] +
 Qluminance[i][j]/2.0)/Qluminance[i][j]);
 Qindex[count].YBlock3[i][j] = floor((DCTcoefficients[count].YBlock3[i][j] +
 Qluminance[i][j]/2.0)/Qluminance[i][j]);
 Qindex[count].YBlock4[i][j] = floor((DCTcoefficients[count].YBlock4[i][j] +
 Qluminance[i][j]/2.0)/Qluminance[i][j]);
 Qindex[count].CbBlock[i][j] = floor((DCTcoefficients[count].CbBlock[i][j] +
 Qchrominance[i][j]/2.0)/Qchrominance[i][j]);
 Qindex[count].CrBlock[i][j] = floor((DCTcoefficients[count].CrBlock[i][j] +
 Qchrominance[i][j]/2.0)/Qchrominance[i][j]);
 }
 }
 }

}

And then finding quantized values using: Q(f) = Qindex(f) * Q

void CJPEGDlg::Quantize()
{
 int count;
 int i, j;

 for(count = 0; count < 64; count++)
 {
 for (i = 0; i < 8; i++)
 {
 for(j = 0; j < 8; j++)
 {
 QMatrix[count].YBlock1[i][j] = Qindex[count].YBlock1[i][j] * Qluminance[i][j];
 QMatrix[count].YBlock2[i][j] = Qindex[count].YBlock2[i][j] * Qluminance[i][j];
 QMatrix[count].YBlock3[i][j] = Qindex[count].YBlock3[i][j] * Qluminance[i][j];
 QMatrix[count].YBlock4[i][j] = Qindex[count].YBlock4[i][j] * Qluminance[i][j];
 QMatrix[count].CbBlock[i][j] = Qindex[count].CbBlock[i][j] * Qchrominance[i][j];
 QMatrix[count].CrBlock[i][j] = Qindex[count].CrBlock[i][j] * Qchrominance[i][j];
 }
 }
 }

}

In our program we used default JPEG Quantization matrices for our Qchrominance and

Qluminance.

Qluminance Qchrominance

16 11 10 16 24 40 51 61 17 18 24 47 99 99 99 99
12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99
14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99
14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99
18 22 37 56 68 109 103 77 99 99 99 99 99 99 99 99
24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99
49 64 78 87 103 121 120 101 99 99 99 99 99 99 99 99
72 92 95 98 112 100 103 99 99 99 99 99 99 99 99 99

 Figure 5 below shows the result of applying our quantization algorithm in the drawing

program.

Figure 5. Image Reconstructed from Quantized DCT coefficients

Run-Length Coding

At this step the 8x8 blocks of quantized coefficients are written as strings using the Zig

Zag ordering.

Each string starts with a DC coefficient which is the first coefficient in the matrix. It is

followed by the pair of numbers, the first of which represents the amount of zero’s before

the non-zero coefficient and the second one is the non-zero coefficient itself. When there

are no more non-zero coefficients in a matrix the string is ended with the symbol EOB –

End Of Block. Figure 6 shows the image reconstructed from the run-length

representation. This is supposed to be a lossless step, but in our program there are a very

few small differences probably due to various data conversions from variables of type

double to integer. Overall the image is unchanged.

 Finally, the run-length symbols are represented in binary using JPEG tables. Each

symbol is encoded by representing the table category it belongs to and its position in that

category.

Figure 6. Image Reconstructed from Quantized DCT

Coefficients that are extracted from Run-Length Representation

Part II: JPEG 2000

 With the collaboration between Digital Image Group (DIG) and International

Standard Organization (ISO) JPEG 2000 group, the JPEG2000 became an ISO standard

in August, 2000, “ISO 15444: JPEG 2000 Image Coding System.”

 JPEG 2000, instead of DCT and quantization methods, uses the new technology

called wavelet compression. The general concept is as following: the whole image is first

scanned with a “mother wave”, giving a very general and blurring whole image, then add

more and more waves to the mother wave to make the image clearer and clearer.

 The technical differences between JPEG and JPEG 2000 can be roughly

represented by this semaphore. Imagine DCT compression as a long wall of blocks.

When you compress the image, various square holes are knocked out at one end of the

wall. When you push the end of the wall to compress it, many gaps remain that need to be

spackeled. That’s why a lot of the times we see those ugly square spackeled patches in

JPEG files. In contrast, wavelet compression creates gaps that have rough, uneven edges.

When you push one end of the wall, the edges mesh together but with fewer noticeable

gaps being created, and the block effects in JPEG is eliminated very much in JPEG 2000.

 JPEG 2000 has many advantages over JPEG, some obvious ones such as:

• Better image quality at the same file size (see following examples)

• Good image quality even at very high compression ratios

• Progressive transmission by pixel accuracy and resolution (Scalability)

• Error resilience.

• Default color space (for replacement of nonspecified RGB colors).

• And many more!

Let’s take a look at the image comparison between JPEG and JPEG 2000.

 At compression ratio = 20:1 (above), both files are 32 KB, and the images are not

very different from each other. At compression ratio = 100: 1 (below), if both files are

kept at the same file size, it is obvious that there are “block effects” in the JPEG image

because JPEG use DCT on blocks, not on the whole picture.

 Let’s look another example. In the following images, the original image requires 3

Mega bytes to be represented. In the JPEG 2000 file, even at a compression ratio of

158:1, only 19 Kilo bytes are needed, while keeping almost the same image quality.

However, with the same file size, JPEG file presents a very bad image quality, with a lot

of block effects around the background part.

 One of the special features of JPEG 2000 is called “Progressive Transmission by

pixel accuracy.” As described by LuraTech, “Progressive transmission allows images to

be reconstructed with different resolutions and pixel accuracy, as needed or desired, for

different target devices. The image architecture of JPEG2000 provides for efficient

delivery of image data in Internet and client/server applications.” The following picture is

an illustration of this feature. At time 1, the image is not very clear because only certain

waves are represented. As more and more waves are added, the image can become more

and more clearer.

 Since JPEG 2000 has not an ISO standard for long time, there are not a few

companies providing the encoding software. The software I used is downloaded from

Aware.com, a very simple tool to compare the compressed image using JPEG and JPEG

2000 standards. The interface is as following,

 The software allows user to open an image, do the compression with the user’s

target compression ration (from 10:1 to 120:1), and finally save the compressed image. It

also displays to the user, with the same compression ratio, the compressed JPEG 2000

image and JPEG image, along with the actual compression ratio and sizes of the

compressed files.

Summary

JPEG 2000 has more complicated compression methods, so it will be very

difficult to work out the simulation within this course’s scope. However, since JPEG

2000 has more advantages over JPEG, it is expected that JPEG 2000 will become more

and more popular in the coming years and should gradually replace the dominant weight

of JPEG.

References

Books:

Compressed Image File Formats: JPEG, PNG, Gif, XBM, BMP(ACM Press), John

Miano, Addison – Wesley Pub Co., August 19, 1999.

Websites:

hhttttpp::////wwwwww..jjppeegg..oorrgg - General Information about JPEG

hhttttpp::////wwwwww..aawwaarree..ccoomm - JPEG vs. JPEG2000 software demo

hhttttpp::////wwwwww..jjppeegg22000000iinnffoo..ccoomm - Information about JPEG2000 and many sample images

