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Experiment 3      

MULTIMEDIA SIGNAL COMPRESSION: SPEECH AND 
AUDIO 

I Introduction 

A key technology that enables distributing speech and audio signals without mass storage 
media or transmission bandwidth is compression, also known as coding. It reduces the amount of 
data needed to transmit and store digitally sampled audio either during analog-to-digital 
conversion step or after the raw file is stored digitally. Audio compression and decompression 
can be accomplished by various types of algorithms, which can be incorporated in software 
applications or programmed into special-purpose integrated-circuit chips.  

Several international standards have been established for audio and video coding. These 
include the MPEG-1 and MPEG-2. No international or national standards have been established 
for compressing and decompressing the waveform speech and audio files for desktop multimedia 
applications. Yet there are many schemes that user can choose from for compressing the 
waveform files. The following sections talk about the most commonly used algorithms and 
various types of compression methods for audio and speech compression.  

II Theories and Schemes 

We have already discussed the sampling theorem in experiment 2. There it was shown that 
samples of an analog signal are a unique representation of the signal if the analog signal is 
bandlimited and if the sampling rate is at least twice the signal frequency. Since we are concerned 
with digital representations of speech and audio signals, we need to consider the spectral 
properties of speech and audio. It has been observed that for voiced sounds, the high frequencies 
above 4 kHz are more than 40 dB below the peak of the spectrum. On the other hand, for audio 
signals, the spectrum does not fall off appreciably even above 8 kHz. Thus, to accurately 
represent all audio sounds would require a sampling rate greater than 20 kHz. In addition, for the 
computer to represent a sampled signal,  the possible values taken by a sample, which varies in a 
continuous range, must be discretized to a finite set of values. This process is called quantization. 

II.1 Quantization of Sampled Signals 

II.1.1 Uniform Quantization 

The quantization ranges and levels may be chosen in a variety of ways depending on the 
intended applications of the digital representation. With uniform quantization, the dynamic range 
(minimum to maximum) of the signal R is divided into L equal sized intervals, each with length 
∆. We call ∆ the quantization step-size. The input (unquantized value) and output (quantized 
value) relationship in a uniform quantizer is shown in Fig. 3.1. There, xi   represents the right 
boundary of interval i, and )xi  the quantization level of this interval. They satisfy  
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      x xi i− =−1 ∆      (3.1) 

and               ) )x xi i− =−1 ∆ .       (3.2) 

Any value in the i-th interval is mapped into the middle value in this interval, i.e. 

 

Q(x) = )xi  = Xmin+(i-1) ∆ + ∆/2,  if  x i-1 <= x < xi           (3.3) 

  

 

In the computer, each level is represented by a binary codeword. With a total of L quantized levels, 
each level can be represented by B=[log2(L)] bits, as shown in Fig. 3.1. 

 

 

 

 

Given the signal range R, a uniform quantizer has only one parameter: the number of levels 
N or the quantization step size ∆, as the two are related by  

∆ = R / N .      (3.4) 

Fig. 3.1    Input-output characteristic of a 3-bit quantizer. 
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The number of levels N is generally chosen to be of the form 2B so as to make the most 
efficient use of B-bit binary code words. If the signal has a symmetrical probability density 
function so that |x(n)| ≤ X max , or R= 2 Xmax, then we should set 

   2 2X B
max = ∆  or  ∆ =

2
2
X

B
max  .    (3.5) 

In discussing the effect of quantization it is helpful to represent the quantized samples )x n( ) 
as 
   )x n x n e n( ) ( ) ( )= +       (3.6) 

where x(n) is the unquantized sample and e(n) is the quantization error or noise. It can be seen from 
both Fig. 3.1 that if ∆ and B are chosen as in Eq.(3.5), then 
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Define the signal-to-quantization noise ratio as 
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Recall that for a signal with a uniform distribution in a range of R, the variance is 
R 2

12
. If we assume a 

uniform amplitude distribution in (−
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Substituting Eq. (3.10) into Eq. (3.9) gives 
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or expressing the signal-to-quantizating error in dB units, 
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If we assume that the quantizer range is such that X xmax = 4σ , then Eq. (3.12) become 

 
   )(2.76 dBBSNR −= .      (3.13) 

This implies that every additional bit contribute to 6 dB improvement in SNR. The actual 
SNR value for a given B depends on the relation between Xmax and σx, which depends on the 
probability distribution of the signal.  In order to maintain a fidelity of representation with 
uniform quantization so that it is acceptable perceptually, it is necessary to use more bits than 
might be implied by the previous analysis in which we have assumed that the signal is stationary 
and has a symmetric distribution and that X xmax = 4σ . For example, whereas Eq. (3.13) suggests 
that B=7 would provide about 36 dB SNR which would most likely provide adequate quality in a 
communication system, it is generally accepted that about 11 bits are required to provide high 
quality representation of speech signals with a uniform quantizer. 

II.1.2 µ-Law 

The uniform quantizer is only optimal for uniformly distributed signal. For a signal that is 
more concentrated near small amplitude values, e.g. a Gaussian distribution with a zero mean, it 
is desirable to quantize more finely small amplitudes. This can be accomplished by first apply a 
mapping to the signal so that small values are boosted, and then apply a uniform quantization to 
the mapping signal. One of such mappings is 
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Fig. 3.2 shows a family of curves of y(n) verse x(n) for different values of µ. It is clear that 
using the function of Eq.(3.14) small input amplitudes are enhanced. Fig. 3.3 shows the 
distribution of quantization levels for the case µ = 40 and N=8. If µ = 0, Eq. (3.14) reduces to y(n) 
= x(n); i.e., the quantization levels are uniformly spaced. However, for large µ, and for large 
|x(n)|, 

 

   | ( )| log
( )

max
max

y n X
x n
X

≈       (3.15) 

 or   | ( )| max

( )

maxx n X
y n
x≈ 10  

 Fig 3.2 Input-output relations for a µ-law characteristics. (after Smith [2]) 



 6

Thus except for very low amplitudes, the quantization levels increases exponentially with the 
quantization index. This quantization is called µ-law quantization and is first proposed by Smith [2]. 

 

      

Employing the same kind assumptions that were used to analyze the uniform quantization 
case, Smith [2] derived the following formula for the signal-to-quantizing noise ratio for a µ-law 
quantizer: 
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This equation, when compared to Eq. (3.13), indicates a much less severe dependence of 
SNR upon the quantity ( X xmax /σ  ), which depends on the signal distribution. It can be seen that 
as µ increases, the SNR becomes less and less sensitive to the changes in ( X xmax /σ ); i.e., 
although the term − ⋅ +20 110log [ln( )]µ  reduces the SNR, the range of ( X xmax /σ  ) for which 
the SNR is constant increases with µ. Therefore, using a large µ  the quantizer performance less 
sensitive to the variation in signal statistics.  

 

 

 

Fig 3.3  Distribution of quantization levels for a µ-law 3-bit quantizer with µ = 40. From [1]. 
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II.2     Predictive Coding 

In a typical speech waveform, adjacent samples take similar values, except at transitions 
between different phonemes. One way to exploit this correlation is by linear prediction coding. It 
first predicts a present sample x n( )  using a linear combination of previously reconstructed 
samples )x n k( )−  so that  

xp(n) = a x n kk
)( )−∑  

 

Then the error between the actual samples value and the predicted ones,  

d n x n x np( ) ( ) ( )= −  

is quantized to )(nd
)

 and coded into a codeword c(n).  

In the decoder, the same predicted value is first produced from previously decoded samples. 
This value is then added to the decoded quantized error value to yield the quantized value for the 
current samples, i.e.  

$( ) ( ) $( )x n x n e np= + . 

The encoder and decoder block diagrams of a predictive coding system are given in Fig. 3.4. 
A predictive coding system is more commonly known as differential pulse coded modulation or 
DPCM. The word “differential” refers to the fact that a prediction error signal is coded, and 
“PCM” refers to a modulation scheme where each coded bit is symbol is represented by a pulse 
(with amplitude 1 or 0). Directly quantizing an original sample uniformly followed by a fixed 
length binary encoding is called PCM. 
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II.2.1 Delta Modulation 

A simple predictive coding system is the delta modulation (DM) system depicted in Fig. 3.5.  
In this case the quantizer for the prediction error has only two levels and the step size is fixed.  
The positive quantization level is represented by c(n) = 0 and the negative by c(n) = 1. Thus, )
d n( )  is 
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A simple first order prediction is used, i.e. x n x np ( ) $( )= − 1 . It can be seen from Fig. 3.5(a) 
that in general, )x n( ) satisfies the difference equation 

 
   ) ) )

x n x n d n( ) ( ) ( )= − +α 1      (3.18) 

Figure 3.4  Predictive Coding: (a) Encoder; (b) Decoder 
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With α = 1, this equation is the digital equivalent of integration, in the sense that it 
represents the accumulation of positive and negative increments of magnitude ∆. We also note 
that input to the quantizer is 

 
  d n x n x n x n x n e n( ) ( ) ( ) ( ) ( ) ( )= − − = − − − −) 1 1 1   (3.19) 

Thus except for the quantization error in )x n( )− 1 , d(n) is a first order backward difference 
of x(n), which can be viewed as a digital approximation to the derivative of the input, the inverse 
of the digital integration process. 

Because the error quantization is only two-level, the delta modulation has a bit rate of 1 
bit/sample. If it is applied to a 16 bit/sample sequence, then it leads to a compression ratio (CR) 
of 16. 
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Fig. 3.5  Block diagram of a delta modulation system; (a) encoder;   (b) decoder.    
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For the delta modulation to work well, the step size must be chosen properly to match the 
signal variation. This is a difficult task as the signal characteristics often changed from tone to 
tone. Fig 3.6(a) illustrates the quantization process of delta modulation with a fine step size. We 
can see that the step size is too small in the beginning, which causes the quantized signal lags 
below the actual signal magnitude. On the other hand, the step size is too large in the latter 
portion, which causes the quantized signal to oscillate about the actual signal. For a better 
performance, the step size should  be adaptively adjusted, which is the subject of the next session. 

 

    

II.2.2 Adaptive Delta Modulation 

A large variety of adaptive delta modulation (ADM) schemes have been proposed. Most of 
these schemes are of the feedback type, in which the step size for the two-level quantizer is 
adapted based on the output code words. The system that we present below  was proposed by 
Jayant [3]. The step size in Jayant’s algorithm obeys the rule 

   ∆ ∆( ) ( )n M n= − 1       (3.20a)  

     ∆ ∆ ∆min max( )≤ ≤n       (3.20b) 

   Fig. 3.6    Illustration of  delta modulation; (a) using a fixed step-size; (b) using an adaptive 
step-size. 
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 The algorithm for choosing the step size is 

 
   M = P > 1  if  c(n) = c(n-1) 

   M = Q < 1  if  c(n) ≠ c(n-1)   (3.21) 

Fig. 3.6(b) shows how the waveform in Fig. 3.6(a) would be quantized by an adaptive delta 
modulator of the type described by Eqs. (3.20) and (3.21). For convenience, the parameters of the 
system are set at P = 2, Q = 1/2, α = 1, and the minimum step size is shown in the figure. It can 
be seen that the region of large positive slope still causes a run of 0’s but in this case the step size 
increases exponentially so as to follow the increase in the slope of the waveform. The region of 
granularity to the right in the figure is again signaled by an alternating sequence of 0’s and 1’s but 
in this case the step size falls rapidly to the minimum (∆ min ) and remains there as long as the 
slope is small. 
 

       

Figure 3.7 shows the results of a simulation for speech signals with PQ = 1 for three 
different sampling rates. It is evident that the maximum SNR is obtained for P = 1.5; however, 
the peak of all three curves is very board with SNR being within a few dB of the maximum for 
1.25 < P < 2. Notice that for the delta modulation to work well, the signal must be sampled at a 
much higher rate than that called for by the Nyquist sampling theorem, so that the variation 
between adjacent samples is small. This phenomenon in fact reveals a fundamental trade-off 
between the sampling resolution and amplitude resolution. That is, to reduce the amplitude 
resolution (1 bit in the delta modulation) one must increase the sampling resolution. 

In this experiment, you will be asked to play with delta modulations with a fixed and 
adaptive step size. 

Fig. 3.7   Signal-to-noise ratios of an adaptive delta  modulator as functions of P. 
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II.2.3 Higher Order DPCM 

Delta modulators, as discussed in the previous section, for examples, could also be called 1-
bit DPCM systems. In general, One can use more than one previous sample to predict a present 
sample. Also, one can use a quantizer with more than two levels. For a theoretical treatment on 
how to best determine the predictor coefficients and how to design an optimal quantizer. See [1]. 
Generally, the term DPCM is reserved for differential quantization systems in which the quantizer 
has more than two levels. DPCM systems with fixed predictors can provide from 4 to 11 dB 
improvement over direct quantization (PCM). The greatest improvement occurs in going from no 
prediction to first order prediction, with somewhat smaller gains resulting from increasing the 
predictor order up to 4 or 5, beyond which little additional gain results. For speech, a predictor of 
length up to 10 is used, because the speech signal can be modeled well by a higher order system. 
The gain in SNR implies that a DPCM system can achieve a given SNR using less bits than 
would be required when using the same quantizer directly on the speech waveform. Recall that 
when quantizing a signal directly, each additional bit leads to a gain of  6 dB. Therefore, if a 
DPCM system can leads to a prediction gain of 6 dB, than it will require 1 less bit than a PCM 
system, to achieve the same signal quality. 

II.2.4 ADPCM 

There are two major schemes for adaptive DPCM or ADPCM. One is DPCM with adaptive 
quantization, and the other is DPCM with adaptive prediction.  

For DPCM with adaptive quantization, the quantizer step size is proportional to the variance 
of the input to the quantizer. However, since the difference signal d(n) will be proportional to the 
input, it is reasonable to control the step size from the input x(n) as depicted in Fig. 3.8. Several 
algorithms for adjusting the step size had been proposed in the past. And results indicate that such 
adaptation procedures can provide about 5 dB improvement in SNR over standard µ-law non-
adaptive PCM. This improvement coupled with the 6 dB that can be obtained from the 
differential configuration with fixed prediction means that ADPCM with feed-forward adaptive 
prediction should achieve a SNR that is 10 -- 11 dB greater than could be obtained with a PCM 
system with the same number of levels. 
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For DPCM with adaptive prediction, the predictor coefficients are assumed to be time 
dependent so that the predicted value is 

   ~( ) ( ) ( )x n n x n kk
k

p

= −
=

∑α )

1
     (3.23) 

In adapting the predictor coefficients αk(n) it is common to assume that the properties of the 
signal remain fixed over short time intervals. The predictor coefficients are therefore chosen to 
minimize the average squared prediction error every short time window. To learn how to derive 
the optimum predictor coefficients, you are encouraged to read [1]. 

II.3 Speech Coding Standards 

There are many international standards that have been developed for coding speech signals. 
A partial list is given below. Except G.711 standard, essentially they all use some form of 
ADPCM. The coders the achieve much lower rate than conventional ADPCM is by coding a 
group of prediction error samples together as an excitation pattern. 

1) CCITT G. 711 (A-LAW and µ-LAW) 

2) CCITT G. 721 (ADPCM at 32 kbits/ sec) 

3) CCITT G. 723 (CELP Based 5.3 and 6.3 kbits/sec) 

4) GSM 06.10 is speech encoding used in Europe (13 kbits/sec)  

5) U.S. Federal Standard :  

Fig. 3.8  ADPCM system with feed-forward adaptive quantization; (a) encoder, (b) decoder. 
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(a) 1016 (Code excited linear prediction (CELP),4800 bits/s) 

(b) 1015 (LPC-10E, 2400 bits/s). 

6) MPEG Audio (refer to appendix MPEG-1 Audio) 

 

III Experiment 
 

1) The Matlab program given in Appendix “demo_quant.m” performs uniform quantization on a 
sound signal. Read through the given program to understand how it works. Run the program on a 
speech file recorded at 8 bits/sample and on a music file at 16 bits/sample. For each case, compare 
the distortion in waveform as well as sound quality obtained with different choices of the number 
of quantization levels, N. For each case (speech and music), what is the necessary N to obtain a 
good sound quality? Print the plots generated with several different choices.  

2) Modify the above sample program, to replace uniform quantization by µ-law quantization. You 
should be able to enter the parameter µ in addition to the number of quantization levels N. 
Compare the results obtained with different µ and N. With a properly chosen µ, what is the 
minimum number of bits you have to use to retain sufficient quality for the speech and music files, 
respectively? How do they compare with the required bits by uniform quantization? 

Hint: you should apply  µ-law to the original sample value, quantize the transformed value using a 
uniform quantizer, then apply inverse µ-law to the quantized value to obtain the quantized value in 
the original domain. To derive the inverse µ-law, you need to determine, from Eq. (3.14), how to 
determine x(n) from y(n). 

3) The Matlab programs given in Appendix  “sindm.m” and “sinadm.m” implement DM and ADM, 
for a sinusoidal signal. Read through the given programs to understand how they work. Compare 
the results (the plots generated) obtained with different choices of Q, P, xmean, dmin, dmax. 
Comment on the effect when Q is too small or too large. Similarly, what is the effect when P is too 
small or too large? What parameter setting gives you the best result in each case? Print the plots 
generated with different choices.  

4) Modify “sindm.m” to process sound signals. The program should be able to  

a) read an input .wav file,  

b) apply Delta Modulation to each sample,  

c) reconstruct the sample after quantization,  

d) plot the waveforms of the original and quantized signals, to allow to you  see any changes 
in sample amplitudes. You should take a small portion of the waveform when plotting, so 
that you can see individual samples. 

e) save the reconstructed file as another .wav file, 
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f) playback the original and reconstructed .wav file, to allow you to compare their sound 
quality.  

5) (Optional): Apply the program to speech signals sampled at 11 KHz, 22 KHz and 44 KHz, 
quantized to 8 bits originally. For each input file, apply DM using the above Matlab program. You 
must adjust the step-size to try to achieve the best possible quality in each case. Try to use the 
histogram of sample differences to determine appropriate step-size. Observe the sound quality and 
changes in amplitude in each case. At what sampling frequency, the DM compressed signal 
provides comparable quality as the original 8 bit signal sampled at 11 KHz ? What are the original 
data rates and rates after DM, for each sampling rate? 

Note that with the matlab program, although the prediction error is quantized to 1 bit/sample,  the 
reconstructed signal  is represented using double precision, and when converted to a .wav file, each 
sample takes 8 or 16 bits. So the size of the .wav file you created is not a correct indication of the 
actual compressed file size. A “real” compression program would save the prediction error using 1 
bit/sample. 

6) Repeat 4) and 5) using ADM. In this case, you must choose parameters P, xmean, dmin, dmax 
properly. Try to use the histogram of sample differences to help you determine these parameters. 
Compare the quality of ADM with DM, and with uniform quantization. 

7) (Optional): Write a Matlab script to perform “ADM + µ−law” compression for a given input 
signal. Apply it to the music signal you used before. Do you need fewer bits to reach the same 
sound quality? 

Hint: you need to generate prediction error at each sample, apply µ−law to transform the error 
value, quantize the transformed value using the stepsize determined by the ADM algorithm, then 
convert the quantized value back by applying inverse µ−law, and finally add this reconstructed 
error value to the predicted value. 

 

IV Report 

Submit the matlab programs and plots you created. Explain any phenomena you observed, comment on 
the sound quality with different parameter settings, and answer the questions given in the experiment 
assignment. You must show your work to the instructor and get a signature on your printout of the 
programs and plots to prove that you finished the work at the lab.  

V References 

1) L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice Hall 1978. 

2) B. Smith, “Instantaneous Companding of Quantized Signals”, Bell System Tech. J., Vol. 36, No. 3, 
pp. 653-709, May 1957. 

3) N. S. Jayant, “Adaptive Quantization With a One Word Memory”, Bell System Tech. J., pp. 1119-
1144, September 1973. 

4) Guido van. Rossum (guido@cwi.nl), “FAQ: Audio File Formats”, http://www.cis.ohio-state.edu . 
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APPENDIX Sample Matlab Programs 
 
1. Flow charts for sample programs. 
2.   Matlab scripts for quantization, Delta Modulation (DM) and Adaptive Delta 

Modulation (ADM). 
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********************************************************** 
* MATLAB program for applying uniform quantization on a sound signal * 
********************************************************** 
%quantizing a sound signal  
function []=demo_quant(inname,outname, N); 
if nargin < 3 
   disp('Usage: sampl_quant(inname,outname, N)'); 
   disp('inname: input .wav file name'); 
   disp('outname: output .wav file name'); 
   disp('N: quantization level, N>1'); 
   return; 
end; 
 
%read in input  signal 
[x,fs,N0]=wavread(inname); 
xmin=min(x); xmax=max(x); 
Q=(xmax-xmin)/N; 
disp('N0,xmin,xmax,N,Q'); 
disp([N0,xmin,xmax,N,Q]); 
 
%apply uniform quantization on each sample 
xq=sign(x).*(floor((abs(x)+Q/2)/Q)*Q); 
 
%compare sound quality 
wavwrite(xq,fs,N0,outname); 
sound(x,fs); 
pause; 
sound(xq,fs); 
 
%plot waveforms over the entire period 
t=1:length(x); 
figure; plot(t,x,'r:'); 
hold on; plot(t,xq,'b-'); 
axis tight; grid on; 
 
%plot waveform over a selected period 
t=5000:5100; 
figure; plot(t,x(5000:5100),'r:'); 
hold on; plot(t,xq(5000:5100),'b-'); 
axis tight; grid on; 
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********************************************************** 
* MATLAB program for Delta Modulation on a sinusoidal signal* 
********************************************************** 
function [t,x,xx]=sindm(Q, xmean); 
if nargin < 1 
   disp('Usage: sindm(Q, xmean)'); 
   disp('Q: stepsize'); 
   disp('xmean: mean value of the signal'); 
   return; 
end; 
 
 
% construct a quantized sinusoid wave signal using 8-bit quantizer 
% { ranged at (0,255) } for sampling time interval t=(0,1). 
 
% given a sampling frequency. 
fs=33; 
t=[0:1/fs:1]; 
L=length(t); 
f=2; 
x=(sin(2*pi*f*t)+1.0)/2*255; 
x=round(x); %the round operation essentially quantizes to 8 bits, 
because the range 
         % of x is 0-255. 
 
% Delta Modulation 
D=Q*ones(L); % fixed stepsize=30 
%xmean=128; 
 
% given the initial condition. 
d(1)=x(1); %difference signal 
c(1) =0; %coded signal 
dd(1)=D(1); %quantized difference signal 
xx(1)=xmean+dd(1); %reconstructed signal 
%sindm.m 
% calculate the delta modulation. 
for i = 2:L, 
 d(i)=x(i)-xx(i-1); 
  if d(i) > 0 
   c(i) = 0; 
   dd(i)=D(i); 
  else 
   c(i) = 1; 
   dd(i)=(-1)*D(i); 
  end 
 xx(i)=xx(i-1)+dd(i); 
end 
 
figure; 
t1=[0:1/(100*fs):1]; 
x1=(sin(2*pi*f*t1)+1.0)/2*255; 
plot(t1,x1,t,x,'*',t,xx,'x',t(2:L),xx(1:(L-1)),'o'); 
title('Illustration of the linear delta modulation'); 
legend('original signal', 'original sample', ... 
    'reconstructed value','predicted value'); 
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****************************************************************** 
* MATLAB Script file for Adaptive Delta Modulation with sin as input signal * 
****************************************************************** 
function [t,x,xx]=sinadm(P,xmean,dmin,dmax) 
 
if nargin < 1 
   disp('Usage: sinadm(P,xmean,dmin,dmax)'); 
   disp('P: Adaptation Parameter, 1<=P<=3'); 
   disp('xmean: mean value of x'); 
   disp('dmin, dmax: min and max of stepsize'); 
   return; 
end; 
 
% given a sampling frequency. 
fs=33; 
 
% construct a quantized sinusoid wave signal using 8-bit quantizer 
% { ranged at (0,255) } for sampling time interval t=(0,1). 
t=[0:1/fs:1]; 
L=length(t); 
f=2; 
x=(sin(2*pi*f*t)+1.0)/2*255; 
x=round(x); 
 
% Adaptive Delta Modulation 
%P=1.8; 
%dmin=2; 
%dmax=40; 
%xmean=128; 
Q=1.0/P; 
 
% given the initial condition. 
d(1)=x(1); 
c(1) =0; 
dd(1)=(dmin+dmax)/2; 
xx(1)=xmean+dd(1); 
 
% calculate the adaptive delta modulation. 
for i = 2:L, 
 d(i)=x(i)-xx(i-1); 
  if d(i) > 0 
   c(i) = 0;  
  else 
   c(i) = 1; 
  end 
  if c(i) == c(i-1) 
   M=P; 
  else 
   M=Q; 
  end 
 dd(i)=M*dd(i-1); 
 %dd(i)=round(dd(i)); 
  if dd(i) < dmin 
   dd(i)=dmin; 
  elseif dd(i) > dmax 
   dd(i)=dmax; 
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  end 
  if c(i) == 0 
   xx(i)=xx(i-1)+dd(i); 
  elseif c(i) == 1 
     xx(i)=xx(i-1)-dd(i); 
  end 
end 
 
% graph of the fixed stepsize delta modulation of a sinusoid wave 
signal. 
figure; 
t1=[0:1/(100*fs):1]; 
x1=(sin(2*pi*f*t1)+1.0)/2*255; 
plot(t1,x1,'-',t,x,'*',t,xx,'x',t(2:L),xx(1:(L-1)),'o'); 
title('Illustration of the adaptive delta modulation'); 
legend('original signal', 'original sample', ... 
   'reconstructed value','predicted value'); 
 
 


