

EE3414 Multimedia Communication Systems - I

Image Coding Standards: JPEG and JPEG2000

Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao

Outline

- Overview of image coding standards
- JPEG standard
 - Baseline:
 - Run-length coding of DCT coefficients
 - Coding results
 - JPEG for color images
 - JPEG performance
- JPEG2000
 - Scalable coding
 - Wavelet coding

Image Coding Standards

- G3,G4: facsimile standard (1980)
- JBIG/JBIG2: The next generation facsimile standard (1994 --)
- JPEG: For coding still images or video frames. (1992)
- Lossless JPEG: for medical and archiving applications.
- JPEG2000: An improvement to JPEG, yielding better images at lower bit rate, plus other features (scalability, error resilience)

What is JPEG

- The Joint Photographic Expert Group (JPEG), under both the International Standards Organization (ISO) and the International Telecommunications Union-Telecommunication Sector (ITU-T)
 - www.jpeg.org
- Has published several standards
 - JPEG: lossy coding of continuous tone still images
 - Based on DCT
 - JPEG-LS: lossless and nearlossless coding of continuous tone still images
 - Based on predictive coding and entropy coding
 - JPEG2000: scalable coding of continuous tone still images (from lossy to lossless)
 - Based on wavelet transform

The 1992 JPEG Standard

Contains several modes:

- Baseline system (what is commonly known as JPEG!): lossy
 - Can handle gray scale or color images, with 8 bits per color component
- Extended system: can handle higher precision (12 bit) images, providing progressive streams, etc.
- Lossless version

Baseline version

- Each color component is divided into 8x8 blocks
- For each 8x8 block, three steps are involved:
 - Block DCT
 - Perceptual-based quantization
 - Variable length coding: Runlength and Huffman coding

Encoder/Decoder Block Diagram

What does transform do?

 Represent an image as the linear combination of some basis images and specify the linear coefficients.

Basis Images of 8x8 DCT

Low-Low

High-Low

Low-High

High-High

DCT on a Real Image Block

```
>>imblock = lena256(128:135,128:135)-128
imblock=
54 68 71 73 75 73 71 45
  47 52 48 14 20 24 20 -8
                                             >>dctblock =dct2(imblock)
 20 -10 -5 -13 -14 -21 -20 -21
                                             dctblock=
 -13 -18 -18 -16 -23 -19 -27 -28
                                             31.0000 51.7034 1.1673 -24.5837 -12.0000 -25.7508 11.9640 23.2873
 -24 -22 -22 -26 -24 -33 -30 -23
                                              113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005
 -29 -13 3 -24 -10 -42 -41 5
                                              195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585
 -16 26 26 -21 12 -31 -40 23
                                              35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125
 17 30 50 -5 4 12 10 5
                                              40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606
                                               7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087
                                              -1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041
```

In JPEG, "imblock-128" is done before DCT to shift the mean to zero

-6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799

Quantization of DCT Coefficients

- Use uniform quantizer on each coefficient
- Different coefficient is quantized with different step-size (Q):
 - Human eye is more sensitive to low frequency components
 - Low frequency coefficients with a smaller Q
 - High frequency coefficients with a larger Q
 - Specified in a normalization matrix
 - Normalization matrix can then be scaled by a scale factor (QP),
 which is inversely proportional to a quality factor
 - Quality factor: 100% best quality -> lower quality
 - One can use either the default normalization matrix, or specify an arbitrary matrix
 - For color images, a different normalization matrix can be specified for each color component

Default Normalization Matrix in JPEG

For Luminance component

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Actual step size for C(i,j): Q(i,j) = QP*M(i,j)

Example: Quantized Indices

```
>>dctblock =dct2(imblock)
dctblock=
31,0000 51,7034 1,1673 -24,5837 -12,0000 -25,7508 11,9640 23,2873
                                                                      >>QP=1;
 113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005
                                                                      >>QM=Qmatrix*QP;
 195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585
                                                                      >>qdct=floor((dctblock+QM/2)./(QM))
 35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125
                                                                      qdct =
 40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606
                                                                        2 5 0 -2 0 -1 0 0
  7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087
                                                                           1 -1 2 0 1
 -1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041
                                                                            1 -1 0 -1 0
 -6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799
                                                                                0
                                                                                  0 \quad 0 \quad 0
```

Only 19 coefficients are retained out of 64

 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

 $0 \quad 0 \quad 0$

Example: Quantized Coefficients

```
%dequantized DCT block
>> iqdct=qdct.*QM
iqdct=
     32
                                             0 0
            55
                          -32
                                  0
                                         58 0 0
    108
            12
                   -14
                           38
                                             0 0
    196
                   -16
                                  -40
                          -29
                                             0 0
     42
           -17
                   -22
                                                     Original DCT block
     36
           -22
                    0
                           0
                                          0 0 0
                                                     dctblock=
                                          0 0 0
     0
             0
                                                     31,0000 51,7034 1,1673 -24,5837 -12,0000 -25,7508 11,9640 23,2873
                                          0 0 0
     0
             0
                    0
                           0
                                   0
                                                      113.5766 6.9743 -13.9045 43.2054 -6.0959 35.5931 -13.3692 -13.0005
     0
             0
                    0
                           0
                                   0
                                             0 0
                                                      195.5804 10.1395 -8.6657 -2.9380 -28.9833 -7.9396 0.8750 9.5585
                                                      35.8733 -24.3038 -15.5776 -20.7924 11.6485 -19.1072 -8.5366 0.5125
                                                      40.7500 -20.5573 -13.6629 17.0615 -14.2500 22.3828 -4.8940 -11.3606
```

7.1918 -13.5722 -7.5971 -11.9452 18.2597 -16.2618 -1.4197 -3.5087

-1.4562 -13.3225 -0.8750 1.3248 10.3817 16.0762 4.4157 1.1041

-6.7720 -2.8384 4.1187 1.1118 10.5527 -2.7348 -3.2327 1.5799

Example: Reconstructed Image

%reconstructed image block

>> qimblock=round(idct2(iqdct))

qimblock=

Original image block

imblock=

Coding of Quantized DCT Coefficients

- DC coefficient: Predictive coding
 - The DC value of the current block is predicted from that of the previous block, and the error is coded using Huffman coding
- AC Coefficients: Runlength coding
 - Many high frequency AC coefficients are zero after first few low-frequency coefficients
 - Runlength Representation:
 - Ordering coefficients in the zig-zag order
 - Specify how many zeros before a non-zero value
 - Each symbol=(length-of-zero, non-zero-value)
 - Code all possible symbols using Huffman coding
 - More frequently appearing symbols are given shorter codewords
 - For more details on the actual coding table, see Handout (Sec.8.5.3 in [Gonzalez02]
- One can use default Huffman tables or specify its own tables.
- Instead of Huffman coding, arithmetic coding can be used to achieve higher coding efficiency at an added complexity.

Zig-Zag Ordering of DCT Coefficients

Zig-Zag ordering: converting a 2D matrix into a 1D array, so that the frequency (horizontal+vertical) increases in this order, and the coefficient variance (average of magnitude square) decreases in this order.

Example

```
qdct =

2    5    0    -2    0    -1    0    0

9    1    -1    2    0    1    0    0

14    1    -1    0    -1    0    0    0

3    -1    -1    -1    0    0    0    0

2    -1    0    0    0    0    0    0

0    0    0    0    0    0    0

0    0    0    0    0    0    0

0    0    0    0    0    0    0

0    0    0    0    0    0    0
```

Run-length symbol representation:

```
\{2,(0,5),(0,9),(0,14),(0,1),(1,-2),(0,-1),(0,1),(0,3),(0,2),(0,-1),(0,-1),(0,2),(1,-1),(2,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-1),(0,-
```

EOB: End of block, one of the symbol that is assigned a short Huffman codeword

Coding of DC Symbols

Example:

- Current quantized DC index: 2
- Previous block DC index: 4
- Prediction error: -2
- The prediction error is coded in two parts:
 - Which category it belongs to (Table of JPEG Coefficient Coding Categories), and code using a Huffman code (JPEG Default DC Code)
 - DC= -2 is in category "2", with a codeword "100"
 - Which position it is in that category, using a fixed length code, length=category number
 - "-2" is the number 1 (starting from 0) in category 2, with a fixed length code of "10".
 - The overall codeword is "10010"

JPEG Tables for Coding DC

TABLE 8.17JPEG coefficient coding categories.

Range	DC Difference Category	AC Category
0	0	N/A
-1, 1	1	1
-3, -2, 2, 3	2	2
$-7, \ldots, -4, 4, \ldots, 7$	3	3
$-15, \ldots, -8, 8, \ldots, 15$	4	4
$-31, \ldots, -16, 16, \ldots, 31$	5	5
$-63, \ldots, -32, 32, \ldots, 63$	6	6
$-127, \ldots, -64, 64, \ldots, 127$	7	7
-255,, -128, 128,, 255	8	8
-511,, -256, 256,, 511	9	9
-1023,, -512, 512,, 1023	A	A
-2047,,-1024,1024,,2047	В	В
-4095,,-2048,2048,,4095	C	C
-8191,,-4096,4096,,8191	D	D
-16383,,-8192,8192,,16383	E	Е
-32767,,-16384,16384,,32767	F	N/A

TABLE 8.18JPEG default DC code (luminance).

Category	Base Code	Length	Category	Base Code	Length
0	010	3	6	1110	10
1	011	4	7	11110	12
2	100	5	8	111110	14
3	00	5	9	1111110	16
4	101	7	A	11111110	18
5	110	8	В	111111110	20

Coding of AC Coefficients

Example:

- First symbol (0,5)
 - The value '5' is represented in two parts:
 - Which category it belongs to (Table of JPEG Coefficient Coding Categories), and code the "(runlength,category)" using a Huffman code (JPEG Default AC Code)
 - AC=5 is in category "3",
 - Symbol (0,3) has codeword "100"
 - Which position it is in that category, using a fixed length code, length=category number
 - "5" is the number 5 (starting from 0) in category 3, with a fixed length code of "101".
 - The overall codeword for (0,5) is "100101"
- Second symbol (0,9)
 - '9' in category '4', (0,4) has codeword '1011','9' is number 9 in category 4 with codeword '1001' -> overall codeword for (0,9) is '10111001'
- ETC

JPEG Tables for Coding AC (Run, Category) Symbols

Run/			Run/		
Category	Base Code	Length	Category	Base Code	Length
0/0	1010 (= EOB)	4			
0/1	00	3	8/1	11111010	9
0/2	01	4	8/2	1111111111000000	17
0/3	100	6	8/3	11111111110110111	19
0/4	1011	8	8/4	11111111110111000	20
0/5	11010	10	8/5	11111111110111001	21
0/6	111000	12	8/6	11111111110111010	22
0/7	1111000	14	8/7	11111111110111011	23
0/8		18	8/8	111111111101111100	24
0/9	11111111110000010	25	8/9	11111111110111101	25
0/A	11111111110000011	26	8/A		26
1/1	1100	5	9/1	111111000	10
1/2	111001	8	9/2	11111111110111111	18
1/3	1111001	10	9/3	11111111111000000	19
1/4	111110110	13	9/4	11111111111000001	20
1/5	11111110110	16	9/5	11111111111000010	21
1/6	11111111110000100	22	9/6	11111111111000011	22
1/7	11111111110000101	23	9/7	11111111111000100	23
1/8		24	9/8	11111111111000101	24
1/9	111111111100001111	25	9/9	11111111111000110	25
1/A	11111111110001000	26	9/A		26
2/1	11011	6	A/1	111111001	10
2/2	11111000	10	A/2	11111111111001000	18
2/3	1111110111	13	A/3	11111111111001001	19
2/4	11111111110001001		A/4	1111111111001010	20
2/5	11111111110001010	21	A/5	11111111111001011	21
2/6	11111111110001011	22	A/6	11111111111001100	22
2/7	11111111110001100	23	A/7	11111111111001101	23

TABLE 8.19JPEG default AC code (luminance) (continues on next page).

JPEG Performance for B/W images

65536 Bytes 8 bpp

4839 Bytes 0.59 bpp CR=13.6

3037 Bytes 0.37 bpp CR=21.6

1818 Bytes 0.22 bpp CR=36.4

EE3414: Image Coding Standards

JPEG for Color Images

- Color images are typically stored in (R,G,B) format
- JPEG standard can be applied to each component separately
 - Does not make use of the correlation between color components
 - Does not make use of the lower sensitivity of the human eye to chrominance samples
- Alternate approach
 - Convert (R,G,B) representation to a YCbCr representation
 - Y: luminance, Cb, Cr: chrominance
 - Down-sample the two chrominance components
 - Because the peak response of the eye to the luminance component occurs at a higher frequency (3-10 cpd) than to the chrominance components (0.1-0.5 cpd).
- JPEG standard can handle an image consisting of many (up to 100) components

RGB <-> YCbCr Conversion

$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1.000 & -0.001 & 1.402 \\ 1.000 & -0.344 & -0.714 \\ 1.000 & 1.772 & 0.001 \end{bmatrix} \begin{bmatrix} Y \\ C_b - 128 \\ C_r - 128 \end{bmatrix}$$

Note: Cb ~ Y-B, Cr ~ Y-R, are known as color difference signals.

Example

 What is the (Y,Cb,Cr) value for (R,G,B)=(255,128,64)?

What is the (R,G,B) value for (Y,Cb,Cr)=(128,25,43)?

Chrominance Subsampling

4:4:4 For every 2x2 Y Pixels 4 Cb & 4 Cr Pixel (No subsampling)

4:2:2
For every 2x2 Y Pixels
2 Cb & 2 Cr Pixel
(Subsampling by 2:1
horizontally only)

4:1:1
For every 4x1 Y Pixels
1 Cb & 1 Cr Pixel
(Subsampling by 4:1
horizontally only)

4:2:0
For every 2x2 Y Pixels
1 Cb & 1 Cr Pixel
(Subsampling by 2:1 both
horizontally and vertically)

Y Pixel

▲ Cb and Cr Pixel

4:2:0 is the most common format

Coding Unit in JPEG

Each basic coding unit (called a data unit) is a 8x8 block in any color component. In the interleaved mode, 4 Y blocks and 1 Cb and 1 Cr blocks are processed as a group (called a minimum coding unit or MCU) for a 4:2:0 image.

Default Quantization Table

For luminance

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

For chrominance

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

The encoder can specify the quantization tables different from the default ones as part of the header information

Performance of JPEG

- For color images at 24 bits/pixel (bpp)
 - 0.25-0.5 bpp: moderate to good
 - 0.5-0.75 bpp: good to very good
 - 0.75-1.5 bpp: excellent, sufficient for most applications
 - 1.5-2 bpp: indistinguishable from original
 - From: G. K. Wallace: The JPEG Still picture compression standard, <u>Communications of ACM</u>, April 1991.
- For grayscale images at 8 bpp
 - 0.5 bpp: excellent quality

JPEG Performance

487x414 pixels, Uncompressed, 600471 Bytes,24 bpp 85502 Bytes, 3.39 bpp, CR=7

487x414 pixels 41174 Bytes, 1.63 bpp, CR=14.7

JPEG Pros and Cons

Pros

- Low complexity
- Memory efficient
- Reasonable coding efficiency

Cons

- Single resolution
- Single quality
- No target bit rate
- Blocking artifacts at low bit rate
- No lossless capability
- Poor error resilience
- No tiling
- No regions of interest

JPEG2000

- Improved coding efficiency
- Full quality scalability
 - From lossless to lossy at different bit rate
- Spatial scalability
- Improved error resilience
- Tiling
- Region of interests

JPEG2000 Features

- Improved coding efficiency
- Full quality scalability
 - From lossless to lossy at different bit rate
- Spatial scalability
- Improved error resilience
- Tiling
- Region of interests
- More demanding in memory and computation time

JPEG2000 vs. JPEG: Coding Efficiency

▲ 19. PSNR results for the lossy compression of a natural image by means of different compression standards. From [skodras01]

J2K R: Using reversible wavelet filters; J2K NR: Using non-reversible filter; VTC: Visual texture coding for MPEG-4 video

Example Image

▲ 20. Image "watch" of size 512 × 512 (courtesy of Kevin Odhner): (a) original, and reconstructed after compression at 0.2 b/p by means of (b) JPEG and (c) JPEG 2000.

From [skodras01]

Another Example

▲ 21. Reconstructed image "ski" after compression at 0.25 b/p by means of (a) JPEG and (b) JPEG 2000.

From [skodras01]

What is Scalability?

Figure 11.7 $N \times M$ layers of combined spatial/quality scalability. Reprinted from I. Sodagar, H.-J. Lee, P. Hatrack, and Y.-Q. Zhang, Scalable wavelet coding for synthetic/natural hybrid images, *IEEE Trans. Circuits Syst. for Video Technology* (March 1999), 9:244–54. Copyright 1999 IEEE.

Quality Scalability of JPEG2000

▲ 17. Example of SNR scalability. Part of the decompressed image "bike" at (a) 0.125 b/p, (b) 0.25 b/p, and (c) 0.5 b/p.

Figures in slides 34-40 are extracted from: A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG2000 Still Image Compression Standard, IEEE Signal Processing Magazine, Sept. 2001.

Spatial Scalability of JPEG2000

▲ 18. Example of the progressive-by-resolution decoding for the color image "bike."

From [skodras01]

Why do we want scalability

- The same image may be accessed by users with different access links or different display capability
 - High resolution monitor through High speed Corporate Intranet
 - Small portable device through Wireless modem
- Non-scalable:
 - Have different versions for each desirable bit rate and image size
- Scalable
 - A single bit stream that can be accessed and decoded partially

How J2K Achieves Scalability?

- Core: Wavelet transform
 - Yields a multi-resolution representation of an original image
- Still a transform coder
 - Block DCT is replaced by a full frame wavelet transform
 - Also known as subband decomposition
 - Wavelet coefficients are coded bit plane by bit plane
 - Spatial scalability can be achieved by reconstructing from only low resolution wavelet coefficients
 - Quality scalability can be achieved by decoding only partial sets of bit planes, starting from the most significant bit plane

Wavelet Decomposition

▲ 6. Three-level dyadic wavelet decomposition of the image "Lena."

From [skodras01]

Wavelet Transform vs. Fourier Transform

Fourier transform:

- Basis functions cover the entire signal range, varying in frequency only
- Wavelet transform
 - Basis functions vary in frequency (called "scale") as well as spatial extend
 - High frequency basis covers a smaller area
 - Low frequency basis covers a larger area
 - Non-uniform partition of frequency range and spatial range
 - More appropriate for non-stationary signals

Temporal-Frequency Domain Partition

FIGURE 7.21 Time-frequency tilings for (a) sampled data, (b) FFT, and (c) FWT basis functions.

a b c

Two Band Subband Decomposition

1. Multirate filter bank. Two channel analysis followed by synthesis.
From [Vetterli01]

H0: Lowpass filter, y0: a blurred version of x

H1: Highpass filter, y1: edges in x

Example: haar wavelet: averaging and difference

Wavelet Transform = Subband Tree

▲ 3. Iterated filter bank. The lowpass branch gets split repeatedly to get a discrete-time wavelet transform.

From [Vetterli01]

Wavelet Transform for Images

▲ 4. The subband labeling scheme for a one-level, 2-D wavelet transform.

▲ 6. The subband labeling scheme for a three-level, 2-D wavelet transform.

From [Usevitch01]

2D wavelet transform is accomplished by applying the 1D decomposition along rows of an image first, and then columns.

Wavelet Decomposition

▲ 6. Three-level dyadic wavelet decomposition of the image "Lena."

From [skodras01]

Comparison of Different Filters

a b c d

FIGURE 8.42 Wavelet transforms of Fig. 8.23 with respect to (a) Haar wavelets, (b) Daubechies wavelets, (c) symlets, and (d) Cohen-Daubechies-Feauveau biorthogonal wavelets.

JPEG2000 Codec Block Diagram

▲ 2. General block diagram of the JPEG 2000 (a) encoder and (b) decoder.

- Quantization: Each subband may use a different step-size. Quantization can be skipped to achieve lossless coding
- Entropy coding: Bit plane coding is used, the most significant bit plane is coded first.
- Quality scalability is achieved by decoding only partial bit planes, starting from the MSB. Skipping one bit plane while decoding = Increasing quantization stepsize by a factor of 2.

What Should You Know

- JPEG Processing for a gray scale image:
 - Divide the image into data units of 8x8 blocks
 - Each 8x8 block go through 3 steps:
 - Transform (DCT), quantization, run-length+Huffman coding
 - · Know details of each step
 - Quality vs. bit rate trade-off can be controlled by setting a quality factor, which scales a predefined quantization matrix.
- How does JPEG handle color images
 - The RGB coordinate is converted to YCbCr
 - How to do the conversion?
 - The Cb and Cr components are typically down sampled by a factor of 2 in both horizontal and vertical directions
 - Why should we down-sample chrominance components?
 - Each component is divided into 8x8 blocks and coded as above
- Performance of JPEG
 - Very good quality at 1bpp for 24 bpp color images, acceptable quality at 0.5 bpp, poor quality at 0.25 bpp or below.

What Should You Know (Cnt'd)

JPEG2000

- What does quality and spatial scalability mean
 - Know the difference between wavetlet transform and DFT/DCT
 - Understand the concept of multi-resolution representation
- How to achieve spatial scalability
 - By using wavelet transform in encoding, and ordering the subband in increasing order of resolution
 - Decoder can choose to decode only a partial set of subbands
- How to achieve quality scalability
 - By using bit plane coding on wavelet coefficients

References

- Official JPEG site: www.jpeg.org
- Gonzalez and Woods, Digital image processing, 2nd edition, Prentice Hall, 2002. Sec.8.5.3.
- G. K. Wallace: The JPEG still picture compression standard,
 <u>Communications of ACM</u>, April 1991. (available at the course website)
- A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG2000 Still Image Compression Standard, IEEE Signal Processing Magazine, Sept. 2001. (available at the course website)
- This site contains an easy-to-follow tutorial on JPEG
 - http://web.usxchange.net/elmo/jpeg.htm
- A site containing relevant links on JPEG
 - http://datacompression.info/JPEG.shtml