EE3414                                          Homework #1 Solution

1. What are the magnitude, frequency, and phase of the following sinusoidal signals?

a)  10sin (20πt+π/2)
b)  10cos (10πt+π/4)

Solution:

	
	Magnitude (A)
	Frequency (
[image: image1.wmf]0

f

)
	Phase (
[image: image2.wmf]f

)
	

	a)
	10
	10
	0
	

	b)
	10
	5
	π/4
	


Notes:

a) 10sin( 20πt+π/2) = 10cos(20πt+0)

2. What are fundamental frequency and Fourier series coefficients of the following signal (Hint: You don’t need to calculate any integral!). Illustrate the line spectrum of the signal.
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Solution:
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The fundamental frequency: 
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Fourier series coefficients (note this solution is in terms of single sided Fourier series representation):
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To obtain the two-sided Fourier series representation, we can write, using Euler formula

S(t)
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Thus the two-sided Fourier series coefficients are:
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The two-sided line spectrum of the signal is as follows (line height only indicates the magnitude):


[image: image10]
3. Determine the Fourier series expansion (i.e. all the expansion coefficients) for the following periodic triangular wave, and illustrate the line spectrum. Compared to the line spectrum of the square wave signal derived in the lecture, which signal has a wider bandwidth?

[image: image11.png]



Solution:

Fundamental period 
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, and fundamental frequency 
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Using the double-sided Fourier series transform formula, we have
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[image: image15.wmf]
The two-sided line spectrum is as follows
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On the other hand, the square wave example in the class has the following double-sided Fourier series coefficients:
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Its line spectrum is shown below
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Comparing the two figures, we can see that the square wave has a wider bandwidth. For example, if we use a magnitude threshold of 0.1

For square wave:                       
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For above triangular wave:        
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The square wave has much sharper transition than the triangular wave. This sharp transition requires many high frequency components to synthesize. Consequently, the square wave has a wider bandwidth. 

4. Determine the Fourier transform of the following signal and illustrate the magnitude spectrum of the signal. Compare to the spectrum of the pulse signal derived in the lecture, which signal has a wider bandwidth?


[image: image21]
Solution:

Recall Fourier analysis, we have
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After calculation, we get
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The magnitude spectrum of this signal is:
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The comparison of the two signal spectrums is shown as following:
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We can see that the pulse signal derived in the lecture has a wider bandwidth. For a magnitude threshold of 0.1, the triangular wave has a bandwidth less than 1 (indicated by the green line), whereas the pulse wave has a bandwidth slightly less than 3 (indicated by the orange line). The reason is the same as their periodic counter part. The pulse signal has a very sharp transition, and correspondingly higher frequency.

5.  The figure below is part of a speech waveform. As can be seen, it has a nearly periodic structure, and within each period, there exists many fine ripples. The frequency associated with the basic period is called the pitch, the shortest fine ripple determines the highest frequency in the signal. Estimate its fundamental period by determining the length of a basic cycle. Also, estimate the maximum frequency by determining the length of a shortest ripple. 

Note that this signal is a discrete time signal obtained by sampling a continuous time signal. The sampling frequency used was f_s=22050Hz. The horizontal axis of the plot indicates the sample index k. Hence the actual time interval between two indices is the sampling interval =1/f_s=1/22050 sec.
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Solution:

Looking at the waveform plot (left), the first 4 cycle occupy 300 samples. Therefore, each cycle takes about 75 samples. The fundamental period is the time corresponding to 1 cycle, therefore
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sec. The pitch frequency (i.e. fundamental frequency) is 
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       There are several very narrow ripples (see the blown-up plot on the right). For example, between 2490 and 2500, there are two narrow ripples spanning approximately 6 samples. So the shortest ripple takes about 3 samples, with time
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