Generalized Total Variation: Tying the Knots

Ivan W. Selesnick

Abstract—This paper formulates a convex generalized total variation functional for the estimation of discontinuous piecewise linear signals from corrupted data. The method is based on (1) promoting pairwise group sparsity of the second derivative signal and (2) decoupling the principle knot parameters so they can be separately weighted. The proposed method refines the recent approach by Ongie and Jacob.

I. INTRODUCTION

Algorithms for signal estimation (denoising, restoration, and reconstruction) rely on some signal model, even if the model is implicit. Algorithms based on total variation (TV) regularization assume the signal of interest is piecewise constant; i.e., its derivative is piecewise linear [30]. TV regularization is widely used in sparse signal processing. However, the piecewise constant signal model is often unrealistic; hence, several generalizations of TV have been proposed [1], [3], [4], [6], [14]–[17], [21], [25], [33], [34].

Recently, Ongie and Jacob proposed a generalization of TV for the purpose of estimating discontinuous piecewise polynomial signals [28]. In this model, the signal consists of polynomial segments partitioned by points (knots) where the signal is discontinuous. This model is of relevance because signals in various domains exhibit discontinuities; for example (1) edges of objects in images may produce discontinuities in pixel values and (2) arrivals of particles in biosensors may produce discontinuities in measured signals [7].

Following Ongie and Jacob, we propose a generalized TV (GTV) functional for the purpose of estimating discontinuous piecewise linear signals. The GTV functional, proposed by Ongie and Jacob, is based on group sparsity of the second derivative [28]. Our approach builds upon this approach, but differs in two ways. First, we apply a linear transform to each group in the group-sparse representation of the second derivative. This linear transform serves to separate the two principle knot parameters so they can be separately weighted. Second, we promote group sparsity using a synthesis formulation rather than an analysis formulation of group sparsity.

Ongie and Jacob describe both convex and non-convex forms of their proposed GTV functional, but emphasize the non-convex form. Experiments show that the convex form of their proposed GTV functional tends to miss signal discontinuities. The two refinements we propose lead to a new convex GTV functional that more accurately recovers discontinuities.

A. Tying the Knots

Figure 1 illustrates the difficulty in accurately recovering discontinuities of piecewise linear signals by convex regularization. Figures 1(a) and 1(b) illustrate a representative discontinuous signal (with and without noise). The signal obtained by TV denoising, i.e.,

\[
\hat{x} = \arg \min_x \left\{ \frac{1}{2} \sum_n (y_n - x_n)^2 + \lambda \sum_n |x_n - x_{n-1}| \right\} \tag{1}
\]

where \(y\) is the noisy data, accurately recovers the discontinuity but not the linear behavior of the signal (c.f., staircase artifacts, Fig. 1(c)). On the other hand, the signal obtained by second-order TV denoising, i.e., minimizing

\[
\frac{1}{2} \sum_n (y_n - x_n)^2 + \lambda \sum_n |x_n - 2x_{n-1} + x_{n-2}| = \frac{1}{2} \|y - x\|_2^2 + \lambda \|Dx\|_1 \tag{2}
\]

where \(D\) is the second-order difference operator, accurately recovers the linear behavior of the signal but not the discontinuity (Fig. 1(d)). Instead of a single knot at the discontinuity, the denoised signal possesses two knots, identifiable as isolated negative and positive impulses in the second-order difference signal. These two impulses are separated by a gap.

To accurately recover the discontinuity, the denoised signal should possess a single knot at the discontinuity (hence, the second-order difference signal should exhibit a positive-negative impulse pair). The two knots in the second-order TV solution should be brought (tied) together. To achieve this behavior, it is reasonable to use a regularization functional that promotes pairwise group sparsity [28]. The denoised signal obtained using this approach indeed exhibits group sparsity in its second-order difference signal (Fig. 1(e)). However, the denoised signal is very similar to the one obtained using second-order TV (Fig. 1(d)). In particular, the discontinuity is not more accurately recovered.

A more accurate recovery of the discontinuity is possible using a non-convex formulation [28]; but this raises the question: can the discontinuity be more accurately recovered using some other convex functional? A positive answer is demonstrated by the denoised signal, shown in Fig. 1(f), obtained using the convex functional (20) proposed below. It accurately recovers both the discontinuity and linear behavior of the signal.

II. KNOT PARAMETERS

To introduce the approach, consider the discrete-time signal

\[
x_n = \begin{cases}
a_1 n + a_0, & n < 0 \\
b_1 n + b_0, & n \geq 0
\end{cases}
\]

where

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The author is with the Department of Electrical and Computer Engineering, School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY 11201, USA. Email: selesni@nyu.edu. MATLAB software available at http://eeweb.poly.edu/selesni/GTVknots

Fig. 1: Illustration of a representative discontinuous signal (with and without noise). The signal obtained using TV denoising, i.e., minimizing

\[
\frac{1}{2} \sum_n (y_n - x_n)^2 + \lambda \sum_n |x_n - x_{n-1}| \tag{1}
\]

where \(y\) is the noisy data, accurately recovers the discontinuity but not the linear behavior of the signal (c.f., staircase artifacts, Fig. 1(c)). On the other hand, the signal obtained by second-order TV denoising, i.e., minimizing

\[
\frac{1}{2} \sum_n (y_n - x_n)^2 + \lambda \sum_n |x_n - 2x_{n-1} + x_{n-2}| = \frac{1}{2} \|y - x\|_2^2 + \lambda \|Dx\|_1 \tag{2}
\]

where \(D\) is the second-order difference operator, accurately recovers the linear behavior of the signal but not the discontinuity (Fig. 1(d)). Instead of a single knot at the discontinuity, the denoised signal possesses two knots, identifiable as isolated negative and positive impulses in the second-order difference signal. These two impulses are separated by a gap.

A. Tying the Knots

To accurately recover the discontinuity, the denoised signal should possess a single knot at the discontinuity (hence, the second-order difference signal should exhibit a positive-negative impulse pair). The two knots in the second-order TV solution should be brought (tied) together. To achieve this behavior, it is reasonable to use a regularization functional that promotes pairwise group sparsity [28]. The denoised signal obtained using this approach indeed exhibits group sparsity in its second-order difference signal (Fig. 1(e)). However, the denoised signal is very similar to the one obtained using second-order TV (Fig. 1(d)). In particular, the discontinuity is not more accurately recovered.

A more accurate recovery of the discontinuity is possible using a non-convex formulation [28]; but this raises the question: can the discontinuity be more accurately recovered using some other convex functional? A positive answer is demonstrated by the denoised signal, shown in Fig. 1(f), obtained using the convex functional (20) proposed below. It accurately recovers both the discontinuity and linear behavior of the signal.
The elements of the discrete-time signal $x \in \ell^2(Z)$ are denoted x_n or $[x]_n$. We define the second-order difference operator $D : \ell^2(Z) \to \ell^2(Z)$ by

$$[Dx]_n = x_n - 2x_{n-1} + x_{n-2}. \quad (13)$$

The operator D is a discrete approximation of the second derivative. We define $B_n : \ell^2(Z) \to \mathbb{R}^2$ by

$$B_n(r) = [r_{2n}, r_{2n+1}]^T. \quad (14)$$

III. DEFINITIONS
The vector \(v \) as a sum of overlapping two-point blocks. For a finite-length signal \(v \), we truncate the operator \(S \) to a finite matrix. For example, a four-point signal \(v \) can be written as a sum of three overlapping blocks (groups) as
\[
\begin{pmatrix}
v_0 \\
v_1 \\
v_2 \\
v_3
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
r_0 \\
r_1 \\
r_2 \\
r_3
\end{pmatrix},
\]
(17)
where the three groups are
\[
B_0(r) = \begin{pmatrix} r_0 \\ r_1 \end{pmatrix}, \quad B_1(r) = \begin{pmatrix} r_2 \\ r_3 \end{pmatrix}, \quad B_2(r) = \begin{pmatrix} r_4 \\ r_5 \end{pmatrix}.
\]
(18)
The vector \(r \) is the group-sparse representation of the signal \(v \). The cost function to be minimized in (16) is a mixed \(\ell_2-\ell_1 \) norm [18]; it is geared to minimize the number of non-zero groups. (Previous works on group-sparse TV use an analysis formulation of group sparsity [22], [28], [31].)

To achieve the goals of this work, we generalize the group-sparse regularizer (16) to include an invertible matrix \(P \),
\[
R(v; P) = \min_{r} \sum_{n} \|PB_n(r)\|_2 \\
\text{such that } v = Sr.
\]
(19)
Note that \(R(v; aP) = aR(v; P) \) for \(a > 0 \).

Also, if \(K \) is a banded matrix, then \(SKS^T \) is also banded. This fact contributes to the computational efficiency of the algorithm developed in Sec. V.

IV. PROBLEM FORMULATION

We formulate the denoising of a discontinuous piecewise linear signal as the strictly convex optimization problem,
\[
\hat{x} = \arg\min_x \left\{ \frac{1}{2} \|y - x\|_2^2 + \lambda R(Dx; P) \right\}
\]
(20)
where \(R \) is defined by (19), \(\lambda > 0 \), and
\[
P = \begin{pmatrix}
\rho_1 & 1 \\
\rho_2 & -1
\end{pmatrix} = \begin{pmatrix}
\rho_1 & \rho_1 \\
\rho_2 & -\rho_2
\end{pmatrix}
\]
(21)
where \(\rho_1 > 0 \). The formulation promotes pairwise group sparsity of the second-order difference signal. The parameters \(\rho_1 \) and \(\rho_2 \) weight the parameters \(\Delta_{\text{slope}} \) and \(\Delta_{\text{value}} \) respectively; hence, they influence the knot behavior.

Three parameters \((\lambda, \rho_1, \rho_2) \) appear in problem (20), but the problem really has only two independent parameters. Without loss of generality, we may set \(\lambda = 1 \), because \(\lambda R(Dx; P) = R(Dx; \lambda P) \) for \(\lambda > 0 \).

V. ALGORITHM

In this section, we derive an algorithm to solve (20). The function (19) can be written as
\[
R(v; P) = \min_{r,u} \sum_n \|B_n(u)\|_2 \\
\text{such that } v = Sr \quad \left(B_n(u) = PB_n(r) \text{ for all } n. \right)
\]
(22)
The constraint \(B_n(u) = PB_n(r) \) for all \(n \) can be written as \(u = (I \otimes P)r \), where \(\otimes \) is the Kronecker product. Hence, \(r = (I \otimes P^{-1})u \) and we may write (22) as
\[
R(v; P) = \min_{u} \sum_n \|B_n(u)\|_2 \\
\text{such that } v = S(I \otimes P^{-1})u.
\]
(23)
Therefore, problem (20) can be expressed as
\[
\min_{x,u} \left\{ F(x, u) = \frac{1}{2} \|y - x\|_2^2 + \lambda \sum_n \|B_n(u)\|_2 \right\} \\
\text{such that } Dx = S(I \otimes P^{-1})u.
\]
(24)
To find the solution of problem (24) (and thereby of (20)), we use the majorization-minimization (MM) approach [11], [20]. This leads to the iteration
\[
\{x^{(i)}, u^{(i)}\} = \arg\min_{x,u} F^M(x, u; u^{(i-1)}) \\
\text{such that } Dx = S(I \otimes P^{-1})u.
\]
(25)
where \(i \) is the iteration index and \(F^M \) is a majorizer of \(F \), i.e.,
\[
F^M(x, u; z) \geq F(x, u), \quad F^M(x, u; u) = F(x, u).
\]
(26)
To obtain a majorizer of \(F \), we use the inequality
\[
\frac{1}{2} \|u\|_2^2 + \frac{1}{2} \|z\|_2 \geq \|u\|_2, \quad z \neq 0.
\]
(27)
A key point is that the left-hand side is quadratic in \(u \). Using (27), a majorizer \(F^M \) is given by
\[
F^M(x, u; z) = \frac{1}{2} \|y - x\|_2^2 + \frac{1}{2} \sum_n \|B_n(u)\|_2^2 + C
\]
(28)
where \(C \) depends on neither \(x \) nor \(u \). Using this majorizer, the iteration (25) is given by
\[
\{x^{(i)}, u^{(i)}\} = \arg\min_{x,u} \left\{ \frac{1}{2} \|y - x\|_2^2 + \lambda u^T(W^{(i-1)} \otimes I_2)u \right\} \\
\text{such that } Dx = S(I \otimes P^{-1})u
\]
where \(W \) is a diagonal matrix with elements
\[
W_{i,i}^{(i)} = \frac{1}{\|B_n(u^{(i)})\|_2^2}.
\]
(29)
This is a least squares problem and its explicit solution is obtained straightforwardly as
\[
\Gamma^{(i-1)} = \left[W^{(i-1)} \right]^{-1},
\]
(30)
\[
\mu^{(i)} = \left(\lambda DD^T + A \left(\Gamma^{(i-1)} \otimes I_2 \right) A^T \right)^{-1} Dy,
\]
(31)
\[
x^{(i)} = y - \frac{1}{\lambda} D^T \mu^{(i)},
\]
(32)
\[
u^{(i)} = \left(\Gamma^{(i-1)} \otimes I_2 \right) A^T \mu^{(i)},
\]
(33)
where \(A = S (I \otimes P^{-1}) \). Using (29) and (14), \(\Gamma^{(i)} \) is a diagonal matrix with elements

\[
\Gamma_{n,n}^{(i)} = \| B_n(u^{(i)}) \|_2^2 \quad (34)
\]

\[
= \left(\left(u_{2n}^{(i)} \right)^2 + \left(u_{2n+1}^{(i)} \right)^2 \right)^{1/2}. \quad (35)
\]

The total algorithm to solve (20) is summarized in Table I. Each iteration has cost \(O(N) \) as all matrices are banded. In particular, the matrix to be inverted in (31) is banded; hence, it can be obtained using a fast banded system solver.

By MM principles, the value of the objective function \(F \) decreases at each iteration. However, if \(B_m(u^{(j)}) = 0 \) for some iteration \(j \) and index \(m \), then \(\Gamma_{m,m}^{(j)} = 0 \). Consequently, \(B_m(u^{(i)}) = 0 \) for all subsequent iterations, \(i > j \), by (33). In this case, convergence to the global minima is not assured. In practice, this ‘zero-locking’ phenomenon is safely avoided by initializing \(u \) to non-zero values [11], [27]. An alternate approach to solve (24) is to use proximal methods, e.g., Douglas-Rachford splitting [5].

VI. EXAMPLES

Example 1. The denoised signal obtained by applying the proposed method to the noisy data in Fig. 1(b) is shown in Fig. 1(f). We used the algorithm in Table I to minimize (20) with \(\lambda = 1, \rho_1 = 10, \) and \(\rho_2 = 0.5 \). As intended, the signal approximates the discontinuity by a single knot. The ratio \(\rho_1 / \rho_2 = 20 \) means that \(\Delta_{\text{slope}} \) is more penalized than \(\Delta_{\text{value}} \), which promotes discontinuities in the denoised signal.

To illustrate the importance of matrix \(P \) in (20), we apply the proposed method with \(P = I_2 \) (Fig. 1(g)). The second-order difference signal exhibits pairwise group sparsity; however, the signal does not accurately recover the discontinuity. The discontinuity is approximated by two isolated knots, not a single knot. With \(P = I_2 \), the method fails to tie the knots.

Similarly, we have found that analysis group sparsity with \(P \neq I_2 \) fails to accurately recover the discontinuity. Hence, we conclude that both synthesis group sparsity and weighting (i.e., \(P \neq I_2 \)) are important in the proposed GTV method.

Example 2. To further evaluate the proposed method, we simulate random discontinuous piecewise linear signals as in [28]. We simulate signals of length 300 each with 10 uniformly distributed discontinuities. The jumps and slopes are distributed as \(\mathcal{N}(0,1) \) and \(\mathcal{N}(0,0.1) \), respectively. We add white noise distributed as \(\mathcal{N}(0,0.4) \). We then denoise each signal using first-order TV, second-order TV, and GTV using the method of [28] and the proposed method. In the proposed method, we set \(\rho_1 = 10 \) and \(\rho_2 = 1 \). For each method and each realization, we set \(\lambda \) to minimize the root-mean-square-error (RMSE). Over 50 realizations, the average RMSE is 0.199 for first-order TV, 0.181 for second-order TV, 0.179 for GTV (method of [28]), and 0.151 for GTV (proposed method). An example realization is illustrated in Fig. 3.

Generally, the ratio \(\rho_1 / \rho_2 \) should depend on the average ratio of the discontinuities in the value and the slope, respectively. If \(\rho_1 / \rho_2 \) is too small or too large, then the proposed GTV method will be like second-order or first-order TV denoising, respectively. In Example 1, \(\rho_1 / \rho_2 = 1 \) (i.e., \(P = I \)) is a ‘small’ value which yields results resembling second-order TV. On the other hand, setting \(\rho_1 / \rho_2 \) much greater than 20 in Example 1 will yield a result like that of first-order TV.

VII. CONCLUSION

We have proposed a convex generalized total variation (GTV) functional for estimating discontinuous piecewise linear signals from corrupted data. The approach uses the synthesis form of group sparsity to promote pairwise group sparsity of the second derivative. Additionally, a pairwise linear transform is used to decouple the knot parameters.

Extensions to (1) discontinuous higher-order polynomial signals and (2) multidimensional signals will be of interest. It will also be of interest to develop a formulation of convex GTV denoising using a non-convex form of the proposed GTV regularizer, as has been done for standard TV denoising [32].

Finally, we remark that TV regularization is perhaps most effective when used in combination with wavelets or other transforms [2], [8]–[10], [12], [13], [19], [23], [24], [29], [35]. The proposed GTV functional may likewise be most effective when used in conjunction with other regularization methods.

Table I

ALGORITHM FOR GTV-TK DENOISING (20).

<table>
<thead>
<tr>
<th>Input:</th>
<th>(y \in \mathbb{R}^N, \lambda > 0, \rho_1 > 0, \rho_2 > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization:</td>
<td>(u = Dy) or (u = 1)</td>
</tr>
<tr>
<td>(P = \begin{bmatrix} \rho_1 & -\rho_2 \ \rho_2 & \rho_1 \end{bmatrix})</td>
<td></td>
</tr>
<tr>
<td>(A = S (I \otimes P^{-1}))</td>
<td></td>
</tr>
<tr>
<td>Repeat:</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_{n,n} = (u_{2n}^2 + u_{2n+1}^2)^{1/2})</td>
<td></td>
</tr>
<tr>
<td>(\mu = \left(\lambda DD^T + A (I \otimes I_2) A^T \right)^{-1} Dy)</td>
<td></td>
</tr>
<tr>
<td>(u = (I \otimes I_2) A^T \mu)</td>
<td></td>
</tr>
<tr>
<td>Until convergence</td>
<td></td>
</tr>
<tr>
<td>Return:</td>
<td>(x = y - (1/\lambda) D^T \mu)</td>
</tr>
</tbody>
</table>

Fig. 3. Example 2. Denoising of a random discrete piecewise linear signal.
REFERENCES

function [x, u, cost] = gtvd(y, rho1, rho2, Nit)
% [x, u, cost] = gtvd(y, rho1, rho2, Nit)
% Generalized Total Variation Denoising
% The method is based on pairwise group sparse representation of
% second derivative (using synthesis group sparsity).
% INPUT
% y - noisy signal
% rho1, rho2 - knot regularization parameters (positive)
% Nit - number of iterations
% OUTPUT
% x - denoised signal
% u - sparse representation
% cost - cost function history
% Ivan Selesnick, selesi@nyu.edu, 2015
% Reference:
% Generalized Total Variation: Tying the Knots
% IEEE Signal Processing Letters
y = y(:); % Convert to column vector
cost = zeros(1, Nit); % Cost function history
N = length(y);

e = ones(N, 1);
D = spdiags([e -2*e e], [0 1 2], N-2, N); % second order difference
DDT = D * D';
S = kron(speye(N-2), [1 1]);
S = S(:, 2:end-1);
P = [rho1 rho1; rho2 -rho2];
L = N - 3; % Number of groups = L = N-3
A = S * kron(speye(L), inv(P));
Dy = D*y;
w = ones(L,1); % Initialization
for k = 1:Nit
 G = spdiags(kron(w, [1; 1]), 0, 2*L, 2*L);
 mu = (DDT + A * G * A') \ Dy;
 x = y - D' * mu;
 u = G * A' * mu;
 w = sqrt(u(1:2:end).^2 + u(2:2:end).^2);
 cost(k) = 0.5 * sum(abs(x - y).^2) + sum(w);
end