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Multiwavelet Bases with Extra
Approximation Properties

Ivan W. SelesnickMember, IEEE

Abstract—This paper highlights the differences between tradi- the wavelet);(¢) on R do not necessarily imply zero moments
tional wavelet and multiwavelet bases with equal approximation of the wavelet filterk;(n) on Z. Because multiwavelet bases
order. Because multiwavelet bases normally lack important prop- with approximation ordek lack those annihilation properties
erties that traditional wavelet bases (of equal approximation . o . !
order) possess, the associated discrete multiwavelet transform is@ preprocessmg step (pref'lf[e”ng) is fundamentally more im-
less useful for signal processing unless it is preceded by a pre-portant for the discrete multiwavelet transform (DMWT) than
processing step (prefiltering). This paper examines the properties is so for the traditional DWT. Accordingly, several authors
and design of orthogonal multiwavelet bases, with approximation have addressed the design of prefilters specifically suited for
order >1 that possess those properties that are normally absent. the DMWT [11], [24], [35], [36]. On the other hand, it is
For these “balanced” bases (so named by Lebrun and Vetterli), N . ' L . ’ .
prefiltering can be avoided. By reorganizing the multiwavelet @S0 natural to investigate the design of multiwavelets, with
filter bank, the development in this paper draws from results Specified approximation order, thab possess those attributes
regarding the approximation order of M -band wavelet bases. The that are normally absent. Lebrun and Vetterli addressed this
main result thereby obtained is a characterization of balanced tgpjc and, in [16] and [17], coined the term “balanced”
multiwavelet bases in terms of the divisibility of certain transfer multivavelets
functions by powers of ¢~ — 1)/(z~* — 1). For traditional : ‘ . .
wavelets ¢ = 1), this specializes to the usual factor{+ 1)~ . In this paper, we also examine such multiwavelets and

characterize them in terms of the associated scaling filter
coefficients. It is found that for an orthogonal multiwavelet
basis to be balanced, certain transfer functions must be di-
visible by powers of(z=2" — 1)/(»~! — 1). That is, certain
I. INTRODUCTION transfer functions must have zeros at roots of unity, excepting

ULTIWAVELET bases (wavelet bases based on multz = 1. The same divisibility condition arises in the case of
M ple scaling functions) have been investigated for sever{-band wavelet bases [14], [26]. In fact, the development in
years now. With this generalization, it is possible to construliiS paper uses a reorganization of the multiwavelet (vector)
orthogonal (real-valued) bases for which the scaling functiofi§er bank as a multichannel scalar filter bank. In that way, the
have compact support, approximation order greater than 1, &fyelopment draws from results regarding the approximation
symmetry, which is not possible with traditional wavelet base@rder of M-band wavelet bases.
This is demonstrated by the example given by Donoegal. The success of wavelet bases in applications often depends
[7], [9]. The important characterization of multiwavelets witin part on the short support of the scaling function in addition
specified approximation order, in terms of scaling coefficient its approximation order. Both support and approxima-
which is significantly more complicated than is so for tradiion order are important; however, there is a fundamental
tional wavelet bases (those based on a single scaling functigrgdeoff between these competing design criteria. For tradi-
has been developed and described in [2], [7], [12], [13], [19ional wavelet bases, the length of the scaling function is
[20], [22], and [28]. the only parameter with which we can manage that tradeoff.
The differences between traditional wavelet and multFhe generalization provided by bases with multiple scaling
wavelet bases, with equal approximation order (zero momdHnctions permits greater flexibility in managing this tradeoff.
properties), are highlighted in this paper. Traditional wavel#t particular, the time localization of one scaling function
bases have several attributes that multiwavelet bases, of eq@l be improved if that of other scaling function(s) are
approximation order, do not normally possess. Specificalfglaxed. A balanced multivavelet basis where some scal-
the bandpass channels of the iterated filter bank associaitegl functions have improved time localization behavior may
with a multiwavelet basis of approximation ord&r do not be advantageous for some applications, e.g., denoising via
necessarily annihilate discrete-time polynomials of degraeavelet coefficient thresholding. This paper gives examples
k < K. In other words, for multiwavelets, zero moments obf balanced orthogonal multiwavelet bases with approximation
orders 2 and 3 for which the scaling functions are of differing
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and multiwavelets and discusses the use of prefilters for over- ; ;

coming the lack of the annihilation properties of (unbalanced) . o )
multiwavelets. Section IV introduces a characterization of 2(n) =

balanced multiwavelets. With this characterization, Section IV ‘L

designs examples of orthogonal multiwavelets balanced up C:(1/2)  u(n)

to their approximation orde& > 1 that are distinct from
Daubechies’ wavelets.

Il. PRELIMINARIES

A multiwavelet basis (of multiplicity-) is characterized by
r scaling functions and wavelet functions. The scaling space
V; is defined by

Vi =Span {¢o(2t — k), (PR} (D)

Fig. 1. Multiwavelet filter bank, analysis bank, and synthesis bank.

be based on the vector filter bank in Fig. 1. For this reason,
' ' the filter bank is of central importance.
W; = Span{to (2t — k),-- -, 1(2t —K)}.  (2) Although it has been suggested that multiwvavelets and their
k filter banks might be well suited to multichannel data, in this
For wavelet bases based on a single scaling function (tygaper, we are primarily interested in the design and application
ditional wavelet bases), from the nesting conditidh C of multiwavelet systems for scalar discrete-time signals. For
V;+1, the dilation equation is obtained. The same is true fthhat reason, vector-valued sequences must be formed from

and the wavelet spaced/; is defined by

multiwavelets, where scalar sequences. In this paper, this is done conceptually by
B grouping adjacent sets efsamples. The notation for the vector
¢(t) = V2 Z Co(n) ¢(2t = n) ) valued sequence will be, far = 2
is the matrix dilation equation (or refinement equation), where
0= (50). =1 )ee @
o) = (W)) @ “ @
- P1(t)

This is a critically sampled scheme. Notice that the expression
z(n) denotes a vector sequence, whereas the expres&ign
denotes a scalar sequence. This notation is used throughout

for a multiplicity » = 2 multiwavelet basis. In (3)Co(n) are
r X7 matrices. The sequen€®(n) is the matrix scaling filter,
which is anr-input, r-output filter. The notation folCy(n)

. . : the paper.
used in this paper is As noted by Riedeet al.[22], [23], the two-channel vector-
[Co(n)]i; = hi(nr + ) (5) Valued filter bank in Fig. 1 can be redrawn as the four-channel
scalarvalued filter bank in Fig. 2. The scalar sequemngén)
for example, when- = 2 in Fig. 1 and the vector sequengg(n) in Fig. 2 are related
ho(0)  ho(1) through (7). In general, the two-channelector filter bank
Co(0) = <h ) & (1)> associated with a multiwavelet basis of multiplicitycan be
h1(2) ' ) reorganized as 2--channel scalar filter bank. The two-channel
0
)

Co(1) = < ho(3 >’ etc (6) r-vector multiwavelet filter bank can also be described as a

h(2) (3 time-varying two-channel scalar filter bank [34]. Xia and Suter

In this case, there are two scaling filtgrs(n) and hy (n). give a more thorough examination of vector filter banks and
In general, there are scaling filters and- wavelet filters. The Wwavelets in [37].

transfer functionsH;(z) are given by This equivalence, which is obtained by reorganizing the fil-
ters, is very useful. It follows that the orthogonality conditions
H;(z)= Z hi(n)z™". for the multiwavelet filter bank are the same as the orthogo-

n nality conditions for &r-channel scalar filter bank. Here lies

the similarity between multiplicity: multiwavelet filter banks
and 2r-channel filter banks, the later being associated with

As in the case of traditional wavelet bases, Mallat's algav/-band wavelet bases [14], [26]. The difference between
rithm associates a multiwavelet filter bank with a multiwavelg¢hese two systems lies in the way the filter bank is iterated
basis, as illustrated in Fig. 1. In Fig. 1, each component @& the lowpass branch. For four-band wavelets systems (one
an r-vector. The filter coefficients are x r matrices, which, scaling function with three wavelet functions), the filter bank
as in the traditional case, come from the dilation equatiois. applied again only to the first (lowpass) channel. In the
For traditional wavelet bases, the discrete wavelet transfomultiwvavelet case, the outputs of the first two channels are
(DWT) is based on the corresponding filter bank structurmterlaced to form a single scalar sequence, and the filter bank
Similarly, the discrete multiwavelet transform (DMWT) willis repeated on that single scalar sequence.

A. Multiwavelet Filter Bank
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DC condition
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Fig. 3. lllustration of Property 2 with Daubechies’ bagds .

bases of the same approximation order posses. Consider an
orthogonal wavelet basis based on a single scaling function.
If the basis has approximation ordéf, then the basis has
the following properties. The first property is essentially the

definition.
Fig. 2. Multiwavelet(r = 2) filter bank of Fig. 1 redrawn as a four-band Wavelet bases based on a single scaling function: Ap-
scalar filter bank with interlacing/deinterlacing. proximation order K properties
1) Zero moments—annihilation of P (R)
[ll. APPROXIMATION ORDER AND PREFILTERING The moments of the wavelet vanight¥«(¢) dt = 0
One of the important properties of a wavelet basis is its for k = 03"'7K -1

approximation order. The approximation order of a tradi- 2) Preservation of Py (R) -
tional wavelet basis is given by the number of vanishing The discrete-time monomials™ (k < K), when
moments ofy(t). The same is true for a multiwavelet basis. ~ used as expansion coefficients wittit — n) gives a
If [ t*p;(t) dt =0fori=0,---,r—1andk=0,---,K—1 polynomial of degreek.
(and not fork = K), then the multiwavelet basis is said to Z n* ¢t —n) € Py ®)

have approximation orddk. For multiwavelets, conditions on

the scaling coefficients for a specified approximation order has ) i ,

been developed in [2], [7], [12], [13], [19], [20], [22], and [28]. For e>'<ample, cons_lder 'Fhe Daubechies’ wavelet basis
Consider a multiwavelet basis with approximation oréer Dy, with K = 2. Fig. 3 illustrates (8) fork = 0 and

If f(t) is a polynomial of degree less thali, then f(t) k= L Where only a fInI'Fe sum is shown (hence, edge

lies in the base scaling spatg. That means that a wavelet behavior is nonpolynomial).

representation off(t) is sparse—it requires only scaling 3) Preservation of 7'.(Z) _

function coefficients. Whenp(t) is of short support, then Discrete-time version of previous property. Lgf(n)

the same is (almost) true for piece-wise polynomial functions ~ @ndA1(n) be the scaling and wavelet filters. The output

f(t). Similarly, for functions that aravell modeledas piece- of the associated synthesis filter bank is

wise polynomials, the v_va_lvelet_representation is efﬁ_cient, inthe  n) = ([1 2Juo(n)) * ho(n) + ([T 2us(n)) * hyi(n)

sense that many coefficients in a wavelet expansion are close

to zero. The ability of orthogonal wavelet bases to efficiently ~ Wherewo andw; are the two subband signalsad§(n) =

represent piecewise smooth functions is central to their success 7*,u1(n) = 0 andk < K, theny(n) is a polynomial

in estimation (denoising) and compression, and it depends on sequence of degrée For example, Fig. 4 illustrates this

both approximation order and the short support(f). property with D for k = 0 andk = 1, whereu(n) is
The construction of orthogonal multiwavelets having spec-  Of finite support.

ified approximation order and short support has been studied?) Zero discrete moments—annihilation ofPy(7)

n

by several authors [2], [4], [5], [7], [9], [22], [20], [21], [28], The.output of the highpass branch of the analysis filter
[30], [25]. Some of those examples are especially interesting bank is
because the functions are also symmetric, which is not possible _
o ui(n) = [l 2](hi(n) * z(n)).
for traditional (two-band) orthogonal real-valued wavelets of
compact support (except for the Haar basis). If the input is the monomialk(n) = n* with & < K,

However, multiwavelet bases possessing approximation or- then the output of the highpass analysis channel is
der K lack some of the desirable properties traditional wavelet  zero, andu;(n) = 0. This property (the annihilation
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Fig. 4. lllustration of Property 3 with Daubechies’ bagds . ) ) ) o
Fig. 6. For multiwavelets, Property 2 is not satisfied in general.

DC condition

which are illustrated in Fig. 6, are not polynomials of degree
{ * ( ‘ [ I { I | 0 and 1, respectively. This demonstrates that for multiwavelet
JH L

bases, the use of polynomial sequences as expansion coef-
ficients with the scaling functions do not yield polynomials
in general. To obtain a constant, the correct coefficients are

o5 ‘ ‘ ‘ ‘ . | up(2n) = v2,up(2n 4+ 1) = 1; to obtain a linear function,
0 5 10 15 20 25 30 35 u0(2n) _ \/i(n + %),uo(Qn + 1) —n+1 [2], [9]
s {inear condition ‘ Figs. 3-6 illustrate the differences in the meaning of approx-
‘ imation order for wavelet bases based on one and more than
10 I 1 one scaling function. Although the DGHM scaling functions
5 . ‘ ‘ were employed here to show that for multiwavelets properties,
cete ”T,H | THITHMH 1 I h 2, 3, and 4 do not follow from approximation order, other
oree 1*°° 'I multiwavelet bases that have been described illustrate the same
o s 10 15 20 2 30 35 behavior.

Fa s F " ots. P w3 is not satisfied i | Multiwavelet bases possessing properties 2, 3, and 4 are
1g. . or multiwavelets, Property 5 IS not satistied In general. Said to be OrdeK balanCEd.
of discrete-time polynomials) is important because A. Prefiltering

is the reason efficient representations are obtained

! ) : i ) forBecause approximation order for multiwavelets is not ac-
piecewise smooth discrete-time functions.

companied by the additional properties discussed above, a
For traditional wavelet bases, properties 2, 3, and 4 follogteprocessing step is necessary to obtain an efficient signal
from approximation ordet’. Unfortunately, this is not true representation, which is important for compression and de-
for multiwavelet bases in general. If a multiwavelet basis h@ﬁ_‘)|s|ng Methods for preprocessing the discrete da_ta, which
approximation ordef(, then even though the moments of thes also called prefiltering or wavelet initialization, have been
wavelets vanish, the other properties are not satisfied.  pyt forth for both traditional wavelet transforms [1], [27] and
For example, the DGHM multiwavelet basis [7], [9] hasnultiwavelet transforms [11], [24], [35], [36]. For example,
approximation order two; however, properties 2, 3, and Bownie and Silverman have investigated the performance of
are not satisfied by the filter bank associated with that basigveral prefilters for multiwavelets with respect to denoising
Consider Property 3, and suppasgn) = n* andu1(n) =0 via thresholding and assess prefilters according to several
in Fig. 2. Theny(n), which is shown in Fig. 5 fok: = 0 and  gjfferent attributes (length, degree of approximation, and fre-
k =1, is not a discrete-time polynomial of degreeConsider quency response) [8].
also Property 2. Because the DGHM basis has approximationFor wavelet transforms based on a single scaling function,
order two, linear polynomials can be represented in the bag@ prefiltering step is often omitted in many applications,
scaling space’. However, the functions without significant consequence. On the other hand, examples
are given in [1] for which it is shown that prefiltering is
needed. The importance of performing prefiltering for the

Z Logpo(t —n)+1-¢1(t—n) traditional DWT evidently depends on the way in which
" the wavelet representation is used or interpreted. However,
Z (2n)-Po(t—n)+ 2n+1) - Pp1(t —n) because of the difference noted above between approximation

n order for multiwavelet bases and traditional wavelet bases, a
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prefiltering step is fundamentally more essential when using a IV. BALANCING CONDITIONS

multiwavelet transform. _ To obtain balanced orthogonal multiwvavelet bases with
Although prefiltering alleviates some of the problems witQ,mnact support, the approach taken here designs an orthog-
multivavelets, some reasons for wishing to avoid prefiltering, | fiiter bank with additional discrete-time approximation
are as follows. properties. By expressing the orthogonality and approximation
1) If the prefiltering step does not constitute an orthogongbnditions in terms of the filtersh;(n), orthogonal mul-
transform, then the orthogonality of the DMWT is “lost."tiwavelets can be obtained that possess the approximation
The overall transformation of the original diSCfete-timgroperties 2,3,and 4 (they are balanced up to the approxima-
data, including the preprocessing step, is no longgbn order). Below, systems of nonlinear algebraic equations
orthogonal. This may or may not be important dependingre solved using @bner bases to obtain orthogonal balanced
on the application, but for many applications, orthogtases having approximation orders 2 and 3.
nality is desirable. In compression, quantization noise A multiplicity » multiwavelet basis, as noted above, is asso-
can be magnified by nonorthogonal postprocessing. ¢fated with a2r-channel scalar filter bank. The orthogonality
denoising, orthogonal transforms map white noise onditions for a multichannel filter bank are well known,

white noise. giving
2) As noted above, many examples of orthogonal multi- o
wavelet bases are most interesting for their symmetry D hi(n) hy(n +2rl) = (i — §) 6(1) (10)

properties. However, if the prefilter is not symmetric,
then the symmetry properties of the DMWT are “lostfor ¢,5 = 0,---,7 — 1. Although these orthogonality equa-
when prefiltering is included. tions are quadratic, the additional equations for approximation
3) The use of prefiltering effectively increases the suppgptoperties are linear.
of the basis functions if the prefilter has more than To obtain approximation ordél and properties 2, 3, and 4,
one nonzero coefficient. Single coefficient prefilters arfier an orthogonal multiwavelet basis, it is sufficient to impose,
described in [8], [31], and [36]. say, Property 3. Consider Property 3 for the simplest case
In the design of prefilters, it is desired that properties of tHe = 0. Referring to Fig. 2(r = 2), supposeug(n) = 1, and
multiwavelet basis such as orthogonality, approximation ordeér, (n) = 0; then, the outputy(n) is periodic with period 4.
short support, and symmetry be preserved as far as possib. thisuo(n), the four valuegy(n) takes are
For example, Hardin and Roach have constructed prefilters
that preserve orthogonality and approximation order (up to zn: frodn) + hu(4n)
K = 3) [11], [24].

However, in light of the issues noted above, it is natural to Z ho(4n +1) + hi(4n +1) (11)
pursue the design of multiwavelet bases for which properties ”
2, 3, and 4are satisfied (i.e., bases for which prefiltering can be Z ho(d4n +2) + hi(dn +2)
avoided for most applications). Lebrun and Vetterli designed n
such multiwavelets for which they coined the term “balanced” Z ho(4n + 3) + hi(4n + 3). (12)
[16], [17]. A multiwavelet basis with approximation ordéf n

for which properties 2, 3, and 4 are satisfied is balanced ipwever, Property 3 requires thatr) be constant. Requiring
the sense that the equality of these four sums is equivalent to requiring that

' NK 4 _ N the sumHy(2) + Hy(z) has zeros at = —1,4, —i (see [14]
/(t —i/r)" ¢ilt) dt = / (#=3/r)" (%) dt ) and [26]). That is, the condition for first-order balancing for
fork=0,---,K —1;i,j = 0,---,7 — 1. In particular, for

r=2Is
k = 0, we have/ ¢;(t)dt = [ ¢;(t)dt. Fork > 0, the  (27°+272+27"'+1) divides Ho(z)+ Hi(z). (13)
monomial t* must be shifted in (9) becausk f(t) ¢;(t) dt
effectively samplesf(¢) att = i/r + c+ Z.

A technique introduced in [16] and [17] applies a certal
unitary transformation to the x » scaling filter of an existing
multiwavelet system. That method, as described in [16] and L2 r—t

< ) divides H;(z).

For general, y(n) takes or2r valuesy, ¥I_; hi(2rn + k)
ifor k=0,---,2r — 1. The equality of thes@r values gives
the condition for first-order balancing

[17], achieves first-order balancing. The properties 2, 3, and 11

4 are satisfied fols = 0 but, unfortunately, not for greater =0

k, even when the approximation ordéf of the original This property also arises in the caseMfband wavelet bases

multiwavelet system is greater than 1. based on a single scaling function [14], [26]. In that case, the
The following section characterizes orthogonal multiscaling filter must satisfy the same divisibility requirement.

wavelets balanced up to their approximation order (for which The analysis of Property 3 fér > 0 is less simple; however,

properties 2, 3, and 4 are satisfied forup to K — 1). it is facilitated by examining the filter bank structure. For

Orthogonal multiwavelet bases with approximation orders 2 = 1, it will be again shown that divisibility of a certain

and 3 are given, for which the filters;(n) have differing transfer function by a power dt:=2" — 1)/(>»=* — 1) is key

supports. (as in [14] and [26]).
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TABLE |
CONDITIONS ON SCALING FILTERS ho(n) AND

vg(n) hi(n) FOR ORDER-K BALANCING FOR r = 2

For order-1 balancing:

34247 1) divides  Ho(z) + Iy (2).

‘ For order 2 balancing:
' — 4 - z) (3“5“4) z S . Y . W s
vo(n) [ o £ (e ) ) vin) (s e e P divides Hyl2) + (B57) (),
Fig. 7. Filters for second-order balancing condition. For order-3 balancing:

(z3 427242704 DY divides Hy(z) + (M'——%H—:E) Hi(z).
Referring to Fig. 2, fork = 1 andr» = 2, Property 3
requires that wheny(n) = n and u1(n) = 0, theny(n)
must be a linear discrete-time polynomial (ramp function). Lef=""+:7*+ 71 + 1) divides  Hy(z) + (—
vo(n) = up(2n) andv1(n) = uoe(2n + 1). Note thatV; (z)
can be written (formally) ad;(z) = (3 — 2=1/2)Vy(2). For
k = 1,r = 2, it follows that if Property 3 is to be satisfied, Following exactly the same procedure, we find the condition
then the output of the first system shown in Fig. 7 mué@r order& balancing

For order-4 balancing:

Hy(z).

be a linear discrete-time polynomial. Using basic multirate . K Pl
operations [33], the first system in the figure can be redrawn <71__1> divides Z i(z2’) Hi(2) (16)
as the second system shown. For the second system shown to \ # = — =0 Vo(277)

map discrete-time linear polynomials (ramps) to themselves

. — { ANK—1 T H _
the transfer function shown in the figure must have doubfé'€revi(n) = (rn +)*~". With assistance from the com
roots on the unit circle at = —1,4, —i. In other words, the PUter algebra systeriMaple we obtained a closed-form ex-

condition for second-order balancing for= 2 is pression forQ;(z) = Vi(z)/Vo(z), which is described in the
following characterization so obtained.
(z 2+ 272+ 27 +1)? divides For order& balancing of multiplicity» orthogonal multi-

4 X . 2
Ho(#) + <3 2;: ) Hi(2). (14) wavelets, we finally obtain the condition
2_27, _1 K o r—1 .
Note that when: = —1,4, —i, the term(3 — z=*/2) equals <ﬁ) divides Z Qi(z") Hi(z) (A7)
1. Therefore, if this condition for second-order balancing is =0
satisfied, then it follows that (13) is also satisfied, i.e., secondhere
order balancing implies first-order balancing, as we would p K-1 (-1 (K1
hope. To obtain second-order balancing, it is necessary ta;(») = — Z k < - ) !
ensure only (14) and not both (14) and (13). r(=D (K — 1) g (i+lr) l
For generalr, the same procedure can be employed. We (18)
have v;(n) = uo(rn +14) for i = 0,---,r — 1 and V;(z) = and
((r +i/r) — (i/r)z1)Vo(z). This gives the condition for Pe=i-(i4r)-(i4+2r) i+ (K —1)-7). (19)

second-order balancing as
o 9 1 o An orthogonal multiplicitys multiwavelet system, with the
<7__1> divides Z <T+'L _ EZ%) H;(z).  scaling filtersh;(n), for i = 0,---,7 — 1, balanced up to
27t =1 i=0 r r its approximation orderK’ must satisfy this condition. Of
course, it must also satisfy the usual orthogonality conditions
V. HIGHER ORDER BALANCING required for the2r-channel filter bank in Fig. 2. In Table I,
For third-order balancing, the same approach used abd¥@ enumerate the condition for the first féifor the special
can be employed again. This timey(n) in Fig. 2 is taken to Case ofr = 2 scaling functions. Note that in the special case
ben?, andwuy(n) = 0. Again, definev;(n) = uo(rn +i) = 7 = 1, We retrieve the usual moment conditiox~t + 1)
(rn+i)2 fori=0,---,7 — 1. In this case, it was found thatdivides Ho(z).
Vi(z) = Q:(2)Vo(z), where

VI. EXAMPLES

Qi(z) = 92 ((i+2r) i +7) = 24 +2r)27" The preceding approach has been used to obtain a balanced
+i(i+7)272). orthogonal multiwavelet basis with approximation order 2.
» ] o Certainly Daubechies’ basi#), provides such a solution.
The condition for third-order balancing is therefore In that casehi(n) = ho(n — 2),¢0(t) = ép2(2t), and

2=2r _1\3 r—1 P1(t) = dp2(2t — 1). It is interesting to see that Daubechies’
<T1> divides > Q;(2°")H;(z). (15) basis is a special case. For that solution, the lengthy(f)
i i=0 and h1(n) are the both 4. However, there exists a balanced
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TABLE I 15
BALANCED MULTIWAVELET BAsIs (r = 12 wITH %(t)
APPROXIMATION ORDER K = 2. hy AND h1 ARE THE 1"
ScALING FILTERS, NORMALIZED SO THAT THEY Sum 1O 1
0.5
Scaling filters hy and hy o—
A==+1/8+6V/3 0% 05 1 15 2 25 3
o 2
_A° A 15
N 1
_ _A .
ho(2) = -2 +1/3 o
A2 =
ho(3) =% +45+5% o
/ (0)*~£~1/48 0% 05 1 15 2 25 3
V) = =23
hi(l)=4-— 4 —1/48
15
9Y A 1 F t
hi(2)=—4;-+4+1/16 ! Wo®
05
oy . A° A 7 o N
]ll(‘;)__?_ﬁ+z§ 05+
_A° 25 -1r
() =27+ 1 s . .
0 05 1 15 2 25 3
A" A 13
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solution for which the length of(n) is less than 4 when the
length ofh;(n) is allowed to exceed 4. With(n) supported Fig. 8. Scaling and wavelet functions for which= —J/—8 +6 v/3 in
on {1,2,3}, the shortest lengtth,(n) for which a solution Table Il. The support ofy and o is [0, 2]. The support of¢; and ¢y is

was obtained was of length 8 supported gh1,2,---,7}.

For this length, two distinct real solutions were obtained
(not counting negation of the scaling filtedsy, and h;).
The solutions were obtained by first forming the quadratic
orthogonality constraints oh;(n) and the additional discrete-
time approximation conditions of Property 3. The solutions to
this system of nonlinear equations were then obtained using
a lexical Gobner basis [6] (for the computation of which the

softwareSingularwas employed [10]).
The two solutions are given in Table I, where the filters

ho(n) and hi(n) have been normalized so that they sum
to 1. The wavelet filterdi2(n) and h3(n) are supported on

{0,---,3} and{0,---, 7}, respectively. The scaling functions '8
for which A = —11/—8+6+/3 is illustrated in Fig. 8. For ‘
that solution, a pair of wavelets (which are not uniquely  °s
determined byp,(t) [29]) is also shown. The supports ¢§(t) o}

’

L 1 L L
1 1.5 2 25

3

Hy()l

H, )]

w/n

T

Ho(@)+H, (@)]

and ¢ (¢) are [0,2] and [0, 3]. The supports of;(n) do not

indicate the exact supports ¢ (t).
It is interesting to view the frequency responses of the filteféh Fig. 8.

ho(n) and hi(n), both of which are lowpass as shown in

Fig. 9. Having only three coefficientdy, must be a crude zeros of the sunhy+h; atw = 7/2 andw = 7 in accordance

lowpass filter.h; has a peculiar lowpass frequency responseijth the preceding discussion. In Fig. 10, the zero plots of

however, notice that the frequency response of the kgHrh

L
075 1

Fig. 9. Frequency response magnitude of filtessh, , ho 4+ k1, associated

Ho(z) + Hi(2) and Ho(z) + (3 — 2=*/2)H1(2) are shown,

exhibits a more typical lowpass behavior. In addition, note thikustrating the divisibility conditions for first- and second-
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T T T T ™ ™ DC condition

H (z)+H, (2)

05+

osh 05F

05F

H(2)+(3/2-2 Y2, @) |

(o}

1
3

"
4

linear condition

-0.5F

-1 20
) 0 T2 3 4
5 . L ‘ . . ,
Fig. 10. Zero plots ofHy(z) + H1(z) and Ho(z) + (3 — 274 /2)H1(2). 0 ! 2 3 ¢ s 6 7
Fig. 12. Basis illustrated in Fig. 8 satisfies property 2. lllustration of dc and

linear conditions.

DC condition
0.8 T T T T T ‘
L L d L]
osf 1] N ( ] ! T
TR T
O,‘ T i [ ' ' ‘ t ‘ e, .T
Fig. 11. Group delay ofy andh; associated with Fig. 8. o2
5 10 15 20 25 30 35
linear condition
order balancing. Note the double zeroszat —1,4,—i in 1 ' T ' " \
the second zero plot. (The zero at= —0.933 is not to be 1ok

confused with the double zero atl; it is a separate zero.) 1 . W
The group delay of the filters are shown in Fig. 11. It is °f .T””HHH : H ‘ ﬁ

interesting to note that the dc group delay of the two filters  creeees®®t! A ! | voved

differs by 2. DC refers to the point = 1,w = 0. This makes N ‘ ‘ ) ‘ ‘

sense becausk, and h; correspond to alternating samples. ° 5 1 1 20 % 30 3

For wavelet bases based on a single scaling function, whefg 13. Basis illustrated in Fig. 8 satisfies property 3. lllustration of dis-

hi(n) = ho(n — 2), the group delay differs by 2 for all crete-time conditions.

frequenciesw. The same is true for the DGHM basis. On

the other hand, for general (unbalanced) multiwavelets, the 3

difference of 2 at dc is not necessarily present. ol
As illustrated in Figs. 12 and 13, the approximation proper-

ties 2 and 3 are satisfied. Property 4 is also satisfied, although

that is not illustrated here. 0
The scaling filter from Table Il for whichA =

%\/ —8 + 61/3 is a second solution; however, the behavior of

the associated scaling functions are quite different, as shown

in Fig. 14. For this solution, although the frequency response

of iy and h; are not shown here, they are hardly lowpass,

explaining the nonsmooth characteristicdgf and ¢ .

T

4] 05 1 1.5 2 25 3

A. Multiplicity-4 Example

Consider now a multiplicity-4 balanced orthogonal multi- " 05 i s 2 25 3
wavelet basis with approximation order 2. In this case thereF. . . . .
. . y ig. 14. Scaling functions for whickt = 1 \/—8 4+ 6 /3 in Table Il.
are four scaling filtershg, - - -, hs, and four wavelet filters 9 g 2
h47 ) h7'

Again, Daubechies’ basiB, provides such a solution, with hs(n) = hi(n — 4). In that case, the filters are of length
hi(n) = ho(n—2), ha(n) = ho(n—4), andhz(n) = ho(n—6). 3, 8, 3, and 8, respectively. However, there exists a solution
In that case, each is of length 4. The previous examgier which the support ofhg(n) is {1,2,3} and for which
provides another solution, witth2(n) = ho(n — 4) and the maximum support of the scaling filters lisss than 8.
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TABLE I
BALANCED MULTIWAVELET SCALING FUNCTIONS (7 = 2) WITH APPROXIMATION
ORDER ' = 3. ho AND k1 ARE NORMALIZED SO THAT THEY Sum TO 1

ho(0) = =35 + 5 = 3 + 1

ho(l) = L_ A

ho(2) = B 4

2
ho(3) = 11% + Aﬁ - %

n(0)= 2 - TA% L A 36

32 64

3A° A | 45
h3)=-5—-"5 -5 t& 15 :
B 94 | 1TA 1 %
hi(4) = 15— S + 5 — /8
3B | 114% 34 7 oot |
M) =-S5+ -5 +35 0
hi(6) =38 _AZ L A i e
1( ) b 32 + 16 050 05 1 15 2 25 3 35 4 45 5
- B 54° A 9
h(l)=-55-"5r+3 -3 15 S — :
2 . 9,00
P8 = U 11 1 o
B _34% A 3 esr ]
() =5 -5 +5% &
0
B | A A
/“(10)* 3)+ 64 32 05 L N L L L L L L L
0 0.5 1 1.5 2 25 3 35 4 45 5
B 7A* A 5
h(11) = g6 T ’192 =%t ﬁ Fig. 15. Scaling functions for approximation order= 3 example. For the
i} top two scaling functionsd & 0.7357, B &~ —0.2235 in Table Ill. For the
lower two scaling functionst &~ 2.5733, B ~ 0.6938 in Table Ill. For both
bases, the supports ¢ (t) and ¢, (¢) are[0, 3] and[0, 5], respectively.
1=7/2— 1742 V46 oo . o .
4= 2 multiplicity » = 2. By solving a multivariate polynomial

system of equations with a lexical @ner basis, we obtained
B=A? 124 y3/54 V25 AT 710 AP 1019 AZ - TA62 A+3554 solutions for whichhg(n) and hi(n) are of length 4 and
> ° 12, respectively, supported of0,---,3} and {0,---,11}.
We found four real-valued solutions, which are given in
. _ ) ) _ Table Ill. For two of those solutions, the scaling functions are
Specifically, solutions were obtained for which the four scaling sirated in Fig. 15. The other two solutions are not smooth.
filters ho, - -, hs have lengths 3, 6, 4, and 6, respectively. 1 soiytion illustrated by the top half of Fig. 15 closely
As in the previous example, the scaling functions, althougfise mples Daubechies’ badis. The other basis is smoother.
not shown here, exhibit differing degrees of smoothness. Ifiarestingly, the frequency responses of the scaling fifigrs
terestingly, the scaling functions resemble Daubechies scallggd h, for that basis have a “poorer” stopband behavior than

functions ¢p> more so than those shown in Fig. 8. This cafhe paypechies-like basis (although the frequency responses
be accounted for by noting the smaller disparity between the. 5t shown here).

lengths of the scaling filters; in this example, in comparison

with the previous example.'lt is. expected.th.a.t for ba_lanced VIl. SUPPORTAPPROXIMATION TRADE-OFF

orthogonal multiwavelets with higher multiplicity, designed o ] ) )

with smaller length disparity, the multiple scaling functions Denoising via the nonlinear thresholding of wavelet co-
will increasingly resemble Daubechies’ scaling functions. efficients is one of the successful applications of traditional
wavelet bases and transforms. It is natural to consider the way

) . in which the generalization provided by multiwavelets may be

B. Example with Approximation Ordet = 3 used to improve wavelet denoising. First, it is useful to note the
In this example, we consider a multiwavelet basis witfollowing result regarding denoising with traditional wavelets.
approximation ordetX’ = 3 with third-order balancing and Wavelet denoising with a (shift-invariant) redundant wavelet
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transform can yield results that are superior to those obtainglthough this problem can be partly overcome by using an

with a critically sampled orthogonal wavelet transform [3]appropriate prefilter, this paper investigated the properties and
[15]. It is expected that the same will be true for balanced mudesign of multiwavelets that do possess the properties that
tiwavelet systems. It should also be noted that the redundan¢ normally absent. It was found that the characterization of
transform was developed partly as a response to the lacknadiltivavelets that are “balanced” up to their approximation

shift-invariance of wavelet filter banks and transforms. Witbrder is similar to the characterization of approximation order

such a transform, shift invariance is retrieved by effectivelpr A7-band wavelets: Certain transfer functions must possess
including all shifts of the data and comes at the expense oferos at roots of unity. These balanced multiwavelets (so
redundant signal representation. In a sense, multiwavelet syamed in [16] and [17]) are expected to simplify the usage

tems suffer from the loss of shift-invariance even more so thah multiwavelets in applications.

traditional wavelet systems (by a factor offor multiplicity Recently, Lebrun and Vetterli have also addressed the char-
7 multiwavelets). Finally, the use of a multiwavelet transformacterization of orthogonal multiwavelets balanced up to their

gives greater flexibility in managing the fundamental tradeofipproximation order [18] and have found that the characteri-
between approximation order and time localization propertieation given here is equivalent to a factorization of the matrix

of scaling functions. For these reasons, extending the usfinement mask-transform of the matrix scaling filtef'(n).

of a redundant transform to multiwavelet bases to obtain a

shift-invariant balanced multiwavelet transform (tight frame) ACKNOWLEDGMENT
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