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Multiwavelet Bases with Extra
Approximation Properties
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Abstract—This paper highlights the differences between tradi-
tional wavelet and multiwavelet bases with equal approximation
order. Because multiwavelet bases normally lack important prop-
erties that traditional wavelet bases (of equal approximation
order) possess, the associated discrete multiwavelet transform is
less useful for signal processing unless it is preceded by a pre-
processing step (prefiltering). This paper examines the properties
and design of orthogonal multiwavelet bases, with approximation
order >1 that possess those properties that are normally absent.
For these “balanced” bases (so named by Lebrun and Vetterli),
prefiltering can be avoided. By reorganizing the multiwavelet
filter bank, the development in this paper draws from results
regarding the approximation order of M -band wavelet bases. The
main result thereby obtained is a characterization of balanced
multiwavelet bases in terms of the divisibility of certain transfer
functions by powers of (z�2r � 1)=(z�1 � 1). For traditional
wavelets (r = 1), this specializes to the usual factor (z + 1)K .

Index Terms—Multirate filter banks, multiwavelet transforms,
prefilters, time-varying filter banks, wavelet transforms.

I. INTRODUCTION

M ULTIWAVELET bases (wavelet bases based on multi-
ple scaling functions) have been investigated for several

years now. With this generalization, it is possible to construct
orthogonal (real-valued) bases for which the scaling functions
have compact support, approximation order greater than 1, and
symmetry, which is not possible with traditional wavelet bases.
This is demonstrated by the example given by Donovanet al.
[7], [9]. The important characterization of multiwavelets with
specified approximation order, in terms of scaling coefficients,
which is significantly more complicated than is so for tradi-
tional wavelet bases (those based on a single scaling function),
has been developed and described in [2], [7], [12], [13], [19],
[20], [22], and [28].

The differences between traditional wavelet and multi-
wavelet bases, with equal approximation order (zero moment
properties), are highlighted in this paper. Traditional wavelet
bases have several attributes that multiwavelet bases, of equal
approximation order, do not normally possess. Specifically,
the bandpass channels of the iterated filter bank associated
with a multiwavelet basis of approximation order do not
necessarily annihilate discrete-time polynomials of degree

In other words, for multiwavelets, zero moments of
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the wavelet on do not necessarily imply zero moments
of the wavelet filter on Because multiwavelet bases
with approximation order lack those annihilation properties,
a preprocessing step (prefiltering) is fundamentally more im-
portant for the discrete multiwavelet transform (DMWT) than
is so for the traditional DWT. Accordingly, several authors
have addressed the design of prefilters specifically suited for
the DMWT [11], [24], [35], [36]. On the other hand, it is
also natural to investigate the design of multiwavelets, with
specified approximation order, thatdo possess those attributes
that are normally absent. Lebrun and Vetterli addressed this
topic and, in [16] and [17], coined the term “balanced”
multiwavelets.

In this paper, we also examine such multiwavelets and
characterize them in terms of the associated scaling filter
coefficients. It is found that for an orthogonal multiwavelet
basis to be balanced, certain transfer functions must be di-
visible by powers of That is, certain
transfer functions must have zeros at roots of unity, excepting

The same divisibility condition arises in the case of
-band wavelet bases [14], [26]. In fact, the development in

this paper uses a reorganization of the multiwavelet (vector)
filter bank as a multichannel scalar filter bank. In that way, the
development draws from results regarding the approximation
order of -band wavelet bases.

The success of wavelet bases in applications often depends
in part on the short support of the scaling function in addition
to its approximation order. Both support and approxima-
tion order are important; however, there is a fundamental
tradeoff between these competing design criteria. For tradi-
tional wavelet bases, the length of the scaling function is
the only parameter with which we can manage that tradeoff.
The generalization provided by bases with multiple scaling
functions permits greater flexibility in managing this tradeoff.
In particular, the time localization of one scaling function
can be improved if that of other scaling function(s) are
relaxed. A balanced multiwavelet basis where some scal-
ing functions have improved time localization behavior may
be advantageous for some applications, e.g., denoising via
wavelet coefficient thresholding. This paper gives examples
of balanced orthogonal multiwavelet bases with approximation
orders 2 and 3 for which the scaling functions are of differing
support.

Section II gives preliminary notation and discusses the filter
bank associated with a multiwavelet basis and its reorga-
nization into a scalar filter bank. Section III outlines the
differences in the meaning of approximation order for scalar
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and multiwavelets and discusses the use of prefilters for over-
coming the lack of the annihilation properties of (unbalanced)
multiwavelets. Section IV introduces a characterization of
balanced multiwavelets. With this characterization, Section IV
designs examples of orthogonal multiwavelets balanced up
to their approximation order that are distinct from
Daubechies’ wavelets.

II. PRELIMINARIES

A multiwavelet basis (of multiplicity ) is characterized by
scaling functions and wavelet functions. The scaling space

is defined by

(1)

and the wavelet space is defined by

(2)

For wavelet bases based on a single scaling function (tra-
ditional wavelet bases), from the nesting condition

, the dilation equation is obtained. The same is true for
multiwavelets, where

(3)

is the matrix dilation equation (or refinement equation), where

(4)

for a multiplicity multiwavelet basis. In (3), are
matrices. The sequence is the matrix scaling filter,

which is an -input, -output filter. The notation for
used in this paper is

(5)

for example, when

etc (6)

In this case, there are two scaling filters and
In general, there are scaling filters and wavelet filters. The
transfer functions are given by

A. Multiwavelet Filter Bank

As in the case of traditional wavelet bases, Mallat’s algo-
rithm associates a multiwavelet filter bank with a multiwavelet
basis, as illustrated in Fig. 1. In Fig. 1, each component is
an -vector. The filter coefficients are matrices, which,
as in the traditional case, come from the dilation equation.
For traditional wavelet bases, the discrete wavelet transform
(DWT) is based on the corresponding filter bank structure.
Similarly, the discrete multiwavelet transform (DMWT) will

Fig. 1. Multiwavelet filter bank, analysis bank, and synthesis bank.

be based on the vector filter bank in Fig. 1. For this reason,
the filter bank is of central importance.

Although it has been suggested that multiwavelets and their
filter banks might be well suited to multichannel data, in this
paper, we are primarily interested in the design and application
of multiwavelet systems for scalar discrete-time signals. For
that reason, vector-valued sequences must be formed from
scalar sequences. In this paper, this is done conceptually by
grouping adjacent sets ofsamples. The notation for the vector
valued sequence will be, for

etc (7)

This is a critically sampled scheme. Notice that the expression
denotes a vector sequence, whereas the expression

denotes a scalar sequence. This notation is used throughout
the paper.

As noted by Riederet al. [22], [23], the two-channel vector-
valued filter bank in Fig. 1 can be redrawn as the four-channel
scalar-valued filter bank in Fig. 2. The scalar sequence
in Fig. 1 and the vector sequence in Fig. 2 are related
through (7). In general, the two-channel-vector filter bank
associated with a multiwavelet basis of multiplicitycan be
reorganized as a -channel scalar filter bank. The two-channel
-vector multiwavelet filter bank can also be described as a

time-varying two-channel scalar filter bank [34]. Xia and Suter
give a more thorough examination of vector filter banks and
wavelets in [37].

This equivalence, which is obtained by reorganizing the fil-
ters, is very useful. It follows that the orthogonality conditions
for the multiwavelet filter bank are the same as the orthogo-
nality conditions for a -channel scalar filter bank. Here lies
the similarity between multiplicity multiwavelet filter banks
and -channel filter banks, the later being associated with

-band wavelet bases [14], [26]. The difference between
these two systems lies in the way the filter bank is iterated
on the lowpass branch. For four-band wavelets systems (one
scaling function with three wavelet functions), the filter bank
is applied again only to the first (lowpass) channel. In the
multiwavelet case, the outputs of the first two channels are
interlaced to form a single scalar sequence, and the filter bank
is repeated on that single scalar sequence.
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Fig. 2. Multiwavelet(r = 2) filter bank of Fig. 1 redrawn as a four-band
scalar filter bank with interlacing/deinterlacing.

III. A PPROXIMATION ORDER AND PREFILTERING

One of the important properties of a wavelet basis is its
approximation order. The approximation order of a tradi-
tional wavelet basis is given by the number of vanishing
moments of The same is true for a multiwavelet basis.
If for and
(and not for ), then the multiwavelet basis is said to
have approximation order For multiwavelets, conditions on
the scaling coefficients for a specified approximation order has
been developed in [2], [7], [12], [13], [19], [20], [22], and [28].

Consider a multiwavelet basis with approximation order
If is a polynomial of degree less than, then
lies in the base scaling space That means that a wavelet
representation of is sparse—it requires only scaling
function coefficients. When is of short support, then
the same is (almost) true for piece-wise polynomial functions

Similarly, for functions that arewell modeledas piece-
wise polynomials, the wavelet representation is efficient, in the
sense that many coefficients in a wavelet expansion are close
to zero. The ability of orthogonal wavelet bases to efficiently
represent piecewise smooth functions is central to their success
in estimation (denoising) and compression, and it depends on
both approximation order and the short support of

The construction of orthogonal multiwavelets having spec-
ified approximation order and short support has been studied
by several authors [2], [4], [5], [7], [9], [22], [20], [21], [28],
[30], [25]. Some of those examples are especially interesting
because the functions are also symmetric, which is not possible
for traditional (two-band) orthogonal real-valued wavelets of
compact support (except for the Haar basis).

However, multiwavelet bases possessing approximation or-
der lack some of the desirable properties traditional wavelet

Fig. 3. Illustration of Property 2 with Daubechies’ basisD2:

bases of the same approximation order posses. Consider an
orthogonal wavelet basis based on a single scaling function.
If the basis has approximation order, then the basis has
the following properties. The first property is essentially the
definition.

Wavelet bases based on a single scaling function: Ap-
proximation order properties

1) Zero moments—annihilation of
The moments of the wavelet vanish

for
2) Preservation of

The discrete-time monomials when
used as expansion coefficients with gives a
polynomial of degree

(8)

For example, consider the Daubechies’ wavelet basis
, with Fig. 3 illustrates (8) for and

, where only a finite sum is shown (hence, edge
behavior is nonpolynomial).

3) Preservation of
Discrete-time version of previous property. Let

and be the scaling and wavelet filters. The output
of the associated synthesis filter bank is

where and are the two subband signals. If
and , then is a polynomial

sequence of degree For example, Fig. 4 illustrates this
property with for and , where is
of finite support.

4) Zero discrete moments—annihilation of
The output of the highpass branch of the analysis filter

bank is

If the input is the monomial with ,
then the output of the highpass analysis channel is
zero, and This property (the annihilation
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Fig. 4. Illustration of Property 3 with Daubechies’ basisD2:

Fig. 5. For multiwavelets, Property 3 is not satisfied in general.

of discrete-time polynomials) is important because it
is the reason efficient representations are obtained for
piecewise smooth discrete-time functions.

For traditional wavelet bases, properties 2, 3, and 4 follow
from approximation order Unfortunately, this is not true
for multiwavelet bases in general. If a multiwavelet basis has
approximation order , then even though the moments of the
wavelets vanish, the other properties are not satisfied.

For example, the DGHM multiwavelet basis [7], [9] has
approximation order two; however, properties 2, 3, and 4
are not satisfied by the filter bank associated with that basis.
Consider Property 3, and suppose and
in Fig. 2. Then, , which is shown in Fig. 5 for and

, is not a discrete-time polynomial of degreeConsider
also Property 2. Because the DGHM basis has approximation
order two, linear polynomials can be represented in the base
scaling space However, the functions

Fig. 6. For multiwavelets, Property 2 is not satisfied in general.

which are illustrated in Fig. 6, are not polynomials of degree
0 and 1, respectively. This demonstrates that for multiwavelet
bases, the use of polynomial sequences as expansion coef-
ficients with the scaling functions do not yield polynomials
in general. To obtain a constant, the correct coefficients are

; to obtain a linear function,
[2], [9].

Figs. 3–6 illustrate the differences in the meaning of approx-
imation order for wavelet bases based on one and more than
one scaling function. Although the DGHM scaling functions
were employed here to show that for multiwavelets properties,
2, 3, and 4 do not follow from approximation order, other
multiwavelet bases that have been described illustrate the same
behavior.

Multiwavelet bases possessing properties 2, 3, and 4 are
said to be order- balanced.

A. Prefiltering

Because approximation order for multiwavelets is not ac-
companied by the additional properties discussed above, a
preprocessing step is necessary to obtain an efficient signal
representation, which is important for compression and de-
noising. Methods for preprocessing the discrete data, which
is also called prefiltering or wavelet initialization, have been
put forth for both traditional wavelet transforms [1], [27] and
multiwavelet transforms [11], [24], [35], [36]. For example,
Downie and Silverman have investigated the performance of
several prefilters for multiwavelets with respect to denoising
via thresholding and assess prefilters according to several
different attributes (length, degree of approximation, and fre-
quency response) [8].

For wavelet transforms based on a single scaling function,
the prefiltering step is often omitted in many applications,
without significant consequence. On the other hand, examples
are given in [1] for which it is shown that prefiltering is
needed. The importance of performing prefiltering for the
traditional DWT evidently depends on the way in which
the wavelet representation is used or interpreted. However,
because of the difference noted above between approximation
order for multiwavelet bases and traditional wavelet bases, a
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prefiltering step is fundamentally more essential when using a
multiwavelet transform.

Although prefiltering alleviates some of the problems with
multiwavelets, some reasons for wishing to avoid prefiltering
are as follows.

1) If the prefiltering step does not constitute an orthogonal
transform, then the orthogonality of the DMWT is “lost.”
The overall transformation of the original discrete-time
data, including the preprocessing step, is no longer
orthogonal. This may or may not be important depending
on the application, but for many applications, orthogo-
nality is desirable. In compression, quantization noise
can be magnified by nonorthogonal postprocessing. In
denoising, orthogonal transforms map white noise to
white noise.

2) As noted above, many examples of orthogonal multi-
wavelet bases are most interesting for their symmetry
properties. However, if the prefilter is not symmetric,
then the symmetry properties of the DMWT are “lost”
when prefiltering is included.

3) The use of prefiltering effectively increases the support
of the basis functions if the prefilter has more than
one nonzero coefficient. Single coefficient prefilters are
described in [8], [31], and [36].

In the design of prefilters, it is desired that properties of the
multiwavelet basis such as orthogonality, approximation order,
short support, and symmetry be preserved as far as possible.
For example, Hardin and Roach have constructed prefilters
that preserve orthogonality and approximation order (up to

[11], [24].
However, in light of the issues noted above, it is natural to

pursue the design of multiwavelet bases for which properties
2, 3, and 4aresatisfied (i.e., bases for which prefiltering can be
avoided for most applications). Lebrun and Vetterli designed
such multiwavelets for which they coined the term “balanced”
[16], [17]. A multiwavelet basis with approximation order
for which properties 2, 3, and 4 are satisfied is balanced in
the sense that

(9)

for In particular, for
, we have For , the

monomial must be shifted in (9) because
effectively samples at

A technique introduced in [16] and [17] applies a certain
unitary transformation to the scaling filter of an existing
multiwavelet system. That method, as described in [16] and
[17], achieves first-order balancing. The properties 2, 3, and
4 are satisfied for but, unfortunately, not for greater

, even when the approximation order of the original
multiwavelet system is greater than 1.

The following section characterizes orthogonal multi-
wavelets balanced up to their approximation order (for which
properties 2, 3, and 4 are satisfied for up to ).
Orthogonal multiwavelet bases with approximation orders 2
and 3 are given, for which the filters have differing
supports.

IV. BALANCING CONDITIONS

To obtain balanced orthogonal multiwavelet bases with
compact support, the approach taken here designs an orthog-
onal filter bank with additional discrete-time approximation
properties. By expressing the orthogonality and approximation
conditions in terms of the filters , orthogonal mul-
tiwavelets can be obtained that possess the approximation
properties 2, 3, and 4 (they are balanced up to the approxima-
tion order). Below, systems of nonlinear algebraic equations
are solved using Gröbner bases to obtain orthogonal balanced
bases having approximation orders 2 and 3.

A multiplicity multiwavelet basis, as noted above, is asso-
ciated with a -channel scalar filter bank. The orthogonality
conditions for a multichannel filter bank are well known,
giving

(10)

for Although these orthogonality equa-
tions are quadratic, the additional equations for approximation
properties are linear.

To obtain approximation order and properties 2, 3, and 4,
for an orthogonal multiwavelet basis, it is sufficient to impose,
say, Property 3. Consider Property 3 for the simplest case

Referring to Fig. 2 , suppose , and
; then, the output is periodic with period 4.

For this , the four values takes are

(11)

(12)

However, Property 3 requires that be constant. Requiring
the equality of these four sums is equivalent to requiring that
the sum has zeros at (see [14]
and [26]). That is, the condition for first-order balancing for

is

divides (13)

For general takes on values
for The equality of these values gives
the condition for first-order balancing

divides

This property also arises in the case of-band wavelet bases
based on a single scaling function [14], [26]. In that case, the
scaling filter must satisfy the same divisibility requirement.

The analysis of Property 3 for is less simple; however,
it is facilitated by examining the filter bank structure. For

, it will be again shown that divisibility of a certain
transfer function by a power of is key
(as in [14] and [26]).
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Fig. 7. Filters for second-order balancing condition.

Referring to Fig. 2, for and , Property 3
requires that when and , then
must be a linear discrete-time polynomial (ramp function). Let

and Note that
can be written (formally) as For

, it follows that if Property 3 is to be satisfied,
then the output of the first system shown in Fig. 7 must
be a linear discrete-time polynomial. Using basic multirate
operations [33], the first system in the figure can be redrawn
as the second system shown. For the second system shown to
map discrete-time linear polynomials (ramps) to themselves,
the transfer function shown in the figure must have double
roots on the unit circle at In other words, the
condition for second-order balancing for is

divides

(14)

Note that when , the term equals
1. Therefore, if this condition for second-order balancing is
satisfied, then it follows that (13) is also satisfied, i.e., second-
order balancing implies first-order balancing, as we would
hope. To obtain second-order balancing, it is necessary to
ensure only (14) and not both (14) and (13).

For general , the same procedure can be employed. We
have for and

This gives the condition for
second-order balancing as

divides

V. HIGHER ORDER BALANCING

For third-order balancing, the same approach used above
can be employed again. This time, in Fig. 2 is taken to
be , and Again, define

for In this case, it was found that
, where

The condition for third-order balancing is therefore

(15)

TABLE I
CONDITIONS ON SCALING FILTERS h0(n) AND

h1(n) FOR ORDER-K BALANCING FOR r = 2

Following exactly the same procedure, we find the condition
for order- balancing

divides (16)

where With assistance from the com-
puter algebra systemMaple, we obtained a closed-form ex-
pression for , which is described in the
following characterization so obtained.

For order- balancing of multiplicity- orthogonal multi-
wavelets, we finally obtain the condition

divides (17)

where

(18)
and

(19)

An orthogonal multiplicity- multiwavelet system, with the
scaling filters , for , balanced up to
its approximation order must satisfy this condition. Of
course, it must also satisfy the usual orthogonality conditions
required for the -channel filter bank in Fig. 2. In Table I,
we enumerate the condition for the first few for the special
case of scaling functions. Note that in the special case

, we retrieve the usual moment condition:
divides

VI. EXAMPLES

The preceding approach has been used to obtain a balanced
orthogonal multiwavelet basis with approximation order 2.
Certainly Daubechies’ basis provides such a solution.
In that case, , and

It is interesting to see that Daubechies’
basis is a special case. For that solution, the length of
and are the both 4. However, there exists a balanced
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TABLE II
BALANCED MULTIWAVELET BASIS (r = 12 WITH

APPROXIMATION ORDER K = 2: h0 AND h1 ARE THE

SCALING FILTERS, NORMALIZED SO THAT THEY SUM TO 1

solution for which the length of is less than 4 when the
length of is allowed to exceed 4. With supported
on , the shortest length for which a solution
was obtained was of length 8 supported on
For this length, two distinct real solutions were obtained
(not counting negation of the scaling filters and ).
The solutions were obtained by first forming the quadratic
orthogonality constraints on and the additional discrete-
time approximation conditions of Property 3. The solutions to
this system of nonlinear equations were then obtained using
a lexical Gröbner basis [6] (for the computation of which the
softwareSingular was employed [10]).

The two solutions are given in Table II, where the filters
and have been normalized so that they sum

to 1. The wavelet filters and are supported on
and , respectively. The scaling functions

for which is illustrated in Fig. 8. For
that solution, a pair of wavelets (which are not uniquely
determined by [29]) is also shown. The supports of
and are and The supports of do not
indicate the exact supports of

It is interesting to view the frequency responses of the filters
and , both of which are lowpass as shown in

Fig. 9. Having only three coefficients, must be a crude
lowpass filter. has a peculiar lowpass frequency response;
however, notice that the frequency response of the sum
exhibits a more typical lowpass behavior. In addition, note the

Fig. 8. Scaling and wavelet functions for whichA = � 1

2
�8 + 6

p
3 in

Table II. The support of�0 and 0 is [0; 2]: The support of�1 and 1 is
[0; 3].

Fig. 9. Frequency response magnitude of filtersh0; h1; h0+h1; associated
with Fig. 8.

zeros of the sum at and in accordance
with the preceding discussion. In Fig. 10, the zero plots of

and are shown,
illustrating the divisibility conditions for first- and second-
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Fig. 10. Zero plots ofH0(z) +H1(z) andH0(z) + (3� z�4=2)H1(z):

Fig. 11. Group delay ofh0 andh1 associated with Fig. 8.

order balancing. Note the double zeros at in
the second zero plot. (The zero at is not to be
confused with the double zero at ; it is a separate zero.)

The group delay of the filters are shown in Fig. 11. It is
interesting to note that the dc group delay of the two filters
differs by 2. DC refers to the point This makes
sense because and correspond to alternating samples.
For wavelet bases based on a single scaling function, where

, the group delay differs by 2 for all
frequencies The same is true for the DGHM basis. On
the other hand, for general (unbalanced) multiwavelets, the
difference of 2 at dc is not necessarily present.

As illustrated in Figs. 12 and 13, the approximation proper-
ties 2 and 3 are satisfied. Property 4 is also satisfied, although
that is not illustrated here.

The scaling filter from Table II for which
is a second solution; however, the behavior of

the associated scaling functions are quite different, as shown
in Fig. 14. For this solution, although the frequency response
of and are not shown here, they are hardly lowpass,
explaining the nonsmooth characteristic of and

A. Multiplicity-4 Example

Consider now a multiplicity-4 balanced orthogonal multi-
wavelet basis with approximation order 2. In this case, there
are four scaling filters and four wavelet filters

Again, Daubechies’ basis provides such a solution, with
and

In that case, each is of length 4. The previous example
provides another solution, with and

Fig. 12. Basis illustrated in Fig. 8 satisfies property 2. Illustration of dc and
linear conditions.

Fig. 13. Basis illustrated in Fig. 8 satisfies property 3. Illustration of dis-
crete-time conditions.

Fig. 14. Scaling functions for whichA = 1

2
�8 + 6

p
3 in Table II.

In that case, the filters are of length
3, 8, 3, and 8, respectively. However, there exists a solution
for which the support of is and for which
the maximum support of the scaling filters isless than 8.
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TABLE III
BALANCED MULTIWAVELET SCALING FUNCTIONS (r = 2) WITH APPROXIMATION

ORDER K = 3: h0 AND h1 ARE NORMALIZED SO THAT THEY SUM TO 1

Specifically, solutions were obtained for which the four scaling
filters have lengths 3, 6, 4, and 6, respectively.

As in the previous example, the scaling functions, although
not shown here, exhibit differing degrees of smoothness. In-
terestingly, the scaling functions resemble Daubechies’ scaling
functions more so than those shown in Fig. 8. This can
be accounted for by noting the smaller disparity between the
lengths of the scaling filters in this example, in comparison
with the previous example. It is expected that for balanced
orthogonal multiwavelets with higher multiplicity, designed
with smaller length disparity, the multiple scaling functions
will increasingly resemble Daubechies’ scaling functions.

B. Example with Approximation Order

In this example, we consider a multiwavelet basis with
approximation order with third-order balancing and

Fig. 15. Scaling functions for approximation orderK = 3 example. For the
top two scaling functionsA � 0:7357; B � �0:2235 in Table III. For the
lower two scaling functionsA � 2:5733;B � 0:6938 in Table III. For both
bases, the supports of�0(t) and�1(t) are [0; 3] and [0; 5], respectively.

multiplicity By solving a multivariate polynomial
system of equations with a lexical Gröbner basis, we obtained
solutions for which and are of length 4 and
12, respectively, supported on and
We found four real-valued solutions, which are given in
Table III. For two of those solutions, the scaling functions are
illustrated in Fig. 15. The other two solutions are not smooth.
The solution illustrated by the top half of Fig. 15 closely
resembles Daubechies’ basis The other basis is smoother.
Interestingly, the frequency responses of the scaling filters
and for that basis have a “poorer” stopband behavior than
the Daubechies-like basis (although the frequency responses
are not shown here).

VII. SUPPORT/APPROXIMATION TRADE-OFF

Denoising via the nonlinear thresholding of wavelet co-
efficients is one of the successful applications of traditional
wavelet bases and transforms. It is natural to consider the way
in which the generalization provided by multiwavelets may be
used to improve wavelet denoising. First, it is useful to note the
following result regarding denoising with traditional wavelets.
Wavelet denoising with a (shift-invariant) redundant wavelet



SELESNICK: MULTIWAVELET BASES WITH EXTRA APPROXIMATION PROPERTIES 2907

transform can yield results that are superior to those obtained
with a critically sampled orthogonal wavelet transform [3],
[15]. It is expected that the same will be true for balanced mul-
tiwavelet systems. It should also be noted that the redundant
transform was developed partly as a response to the lack of
shift-invariance of wavelet filter banks and transforms. With
such a transform, shift invariance is retrieved by effectively
including all shifts of the data and comes at the expense of a
redundant signal representation. In a sense, multiwavelet sys-
tems suffer from the loss of shift-invariance even more so than
traditional wavelet systems (by a factor offor multiplicity

multiwavelets). Finally, the use of a multiwavelet transform
gives greater flexibility in managing the fundamental tradeoff
between approximation order and time localization properties
of scaling functions. For these reasons, extending the use
of a redundant transform to multiwavelet bases to obtain a
shift-invariant balanced multiwavelet transform (tight frame)
may lead to effective denoising methods. Positive results
for denoising using unbalanced multiwavelet transforms have
been reported in [8], [31], and [32].

As noted above, both approximation order and short support
are important properties of wavelet bases that make them
successful for applications such as denoising and compression.
The ideal scaling function would have short support (like the
Haar basis) and high approximation order (like Daubechies’
basis ). However, there is a fundamental tradeoff between
support length and approximation order. Approximation order
and short support are competing objectives in the design of
wavelet bases. For wavelet bases based on a single scaling
function, the length of the scaling filter is the single parameter
with which we can manage the tradeoff between the sup-
port and the approximation order. However, by employing
a wavelet basis based on more than one scaling function,
it is possible to manage the support/approximation tradeoff
with more flexibility by allowing the filters to take
on differing lengths. In particular, it is possible to construct
a balanced multiwavelet basis for which the length of one
of the filters, say , is less than the minimal length of
a scaling filter of a traditional wavelet system of the same
approximation order. This was achieved by extending the
length of the remaining filter(s) , as expected, to maintain
the approximation order.

Finally, we note that this paper did not consider the problem
of constructing balanced multiwavelet bases with symmetric
scaling functions; to see consideration of this problem, refer
to [16] and [17].

VIII. C ONCLUSION

Using filter banks and discrete-time properties, this paper
examined the differences between traditional wavelet bases
and multiwavelet bases with equal approximation order. It
was noted that multiwavelet bases lack properties traditional
wavelet bases (of equal approximation order) possess. Those
properties (preservation and annihilation of discrete-time poly-
nomials) are important for processing discrete-time signals
because without them, the transform based on the associated
filter bank gives a representation that is not necessarily sparse.

Although this problem can be partly overcome by using an
appropriate prefilter, this paper investigated the properties and
design of multiwavelets that do possess the properties that
are normally absent. It was found that the characterization of
multiwavelets that are “balanced” up to their approximation
order is similar to the characterization of approximation order
for -band wavelets: Certain transfer functions must possess
zeros at roots of unity. These balanced multiwavelets (so
named in [16] and [17]) are expected to simplify the usage
of multiwavelets in applications.

Recently, Lebrun and Vetterli have also addressed the char-
acterization of orthogonal multiwavelets balanced up to their
approximation order [18] and have found that the characteri-
zation given here is equivalent to a factorization of the matrix
refinement mask-transform of the matrix scaling filter
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