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Correspondence

A Modified Algorithm for Constrained
Least Square Design of Multiband FIR

Filters Without Specified Transition Bands !
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Abstract—n a previous paper, we described a constrained least square % 045
approach to FIR filter design that does not use “don’t care” regions. In 2
that paper, we described a simple algorithm for the design of lowpass 0.2r
filters according to that approach. In this correspondence, we describe a

modification of that algorithm that makes it converge for many multiband 0
filter designs. Although no proof of convergence is given, the modified
algorithm remains simple and converges rapidly in many cases.
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In this approach, the user supplies a lower and upper bound con- Wwn
straint that is exactly satisfied by the local minima and maxima of ) ) ) ) )
the frequency response amplitude. Yet, the constraints can be made as Fig. 1. Desired amplitude of an ideal bandpass filter.

tight as desired—the transition band automatically adjusts (widens) to
accommodate the constraints.

Index Terms—Bandpass filers, Chebyshev approximation, digital filters, 1t
FIR digital filters, least squares methods, linear-phase filters.
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I. INTRODUCTION Bo.6

In a previous paper [4], we described a constrained least square %04
Lo

approach to FIR filter design that does not use “don’t care” regions
and described a simple multiple-exchange algorithm for the design
of lowpass(and highpass) linear phase FIR filters according to this
approach. Unfortunately, when applied to the desigmoftibandfil-

ters (bandpass, bandstop, etc.), the same algorithm does not converge ) )
reliably. In this correspondence, we describe a modification to that 0 0.2 0.4 0.6 0.8 1

algorithm that makes it converge for many multiband filter designs. o

Although no proof of convergence is given, the modified algorithrig. 2. Algorithm of [4] applied to bandpass filter design. Even iterations
remains simple and converges rapidly in many cases. after several iterations.

The approach taken in [4] follows the work on constrained least
square filter design by Adan&t al. [1], [2] and is motivated in part ) )
by a paper on error criteria by Weisburet, al. [5]. The algorithm “* — (_).QW andw_z :_0.4w. The ideal frequency response amphtuQe
described in this correspondence modifies the algorithm of [4] 48(«) is shown in Fig. 1. Further, suppose that at the local maxima
that it saves the constraint set of the previous iteration: a conc&fd Minima ofd (w) in the passbandi(w) is required to lie between
described previously in [2]. 0.99 and 1.01. To simplify this illustrative example, the peak errors
in the stopbands are not required to meet any ripple size constraints.
When the algorithm of [4] is applied to the design of a length 63
bandpass filter with these constraints and cut-off frequencies, it fails

As stated above, the algorithm of [4] may not converge when iy converge. After several iterations, that algorithm will cycle between
is applied tobandpasdilter design. In these cases, the failure of thehe two filters shown in Figs. 2 and 3.
algorithm to converge takes a specific form. Instead of converging to arhe algorithm of [4] employs a constraint set (a set of interpolation
§ingle filtgr, the algqrithm yvill eventuallx cycle betwgen two d!ﬁerengoints) and proceeds as follows. On each iteration, 1) the set
fllters,_nelther ofwhnlch satisfy the spec!ﬂed peak gain con_stralnts.T B interpolation points is updated and 2) the least square error
following example illustrates the way in which the algorithm of [4kje; satisfying the interpolation constraints is found. The set of
may fail when it is used to design a length 63 bandpass filter. interpolation points is updated from one iteration to the next by

setting it equal to the set of local minima and maxima where the new
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Consider the design of a bandpass filter with cut-off frequencies at
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On each iteration, the constraint set is updated so that at conver-
gence, the only frequency points at which equality constraints are
imposed are those wherg(w) touches the constraint. The equality
constrained problem is solved with Lagrange multipliers. The equality

0.8
constraints are the same as those of [4] and give rise to the same

Bo.f equations as those given in that paper.

%

Eoap A. The Modified Exchange lterations

The equality constrained optimization procedure described in [4]
is performed at each step of an iterative algorithm. The way in which
the constraint sef is updated is now described. This part of the
algorithm differs from the algorithm of [4]. To avoid the cycling that

o
o

0 02 04 06 08 1 may occur when the algorithm of [4] is applied to multiband filter
o design, two constraint sets are used. The second constraint set, which
Fig. 3. Algorithm of [4] applied to bandpass filter design. Odd iteration®e call i, is used to store the elements of the constraintSset the
after several iterations. previous iteration of the algorithm.

After each iteration, the algorithm checks the valuesAgto)
over the previous constraint set frequenciesAlfv) is within the
lower and upper boundary functions(w) and U(w) over these

The modified algorithm remains simple, and although we have néquencies, then the algorithm proceeds exactly as does the algorithm
proven its convergence, it converged for all examples with which df [4]. However, if it is found thatd(w) violates the constraints at
was tested and, for most of those examples, converged rapidly. Ligme frequency belonging to the previous constraint set, then i) that
the algorithm of [4], the new algorithm is a multiple-exchange algdrequency where the violation is greatest is appended to the current
rithm that uses Lagrange multipliers and the Kuhn—Tucker conditioggnstraint setS and ii) the same frequency is removed from the
on each iteration. It also gives the bdst filter and a continuum of record of previous constraint set frequencies
Chebyshev filters as special cases. The algorithm is similar to thatrhe algorithm begins with an empty constraintSedo that the first
described in [4]; however, it employs an additional inner loop.  filter designed is the best unconstraingg filter. Then, constraints

To describe the algorithm for multiband filter design, lekre iteratively imposed od(w) at selected frequencies until the best

Il. NEW ALGORITHM

wi, -+, wr be the cut-off frequencies anah, -+, mx be the constrainedL: filter is obtained.
magnitudes of & + 1 band filter whose desired frequency response The algorithm can be summarized in the following steps. In
amplitude is given by this description, the seR records the constraint frequencies of the
mo, for0 < w < w previous iteration. The remaining notation is the same as that of [4].
D(w) = {mk, for wp < w < Wit 1) 1) Initialization: Initialize both constraint sets to the empty set:
my, forwxg <w< . R=05=0.

2) Minimization with Equality Constraints: Calculate the La-
grange multipliers associated with the filter that minimizes
[|E(w)||2 subject to the equality constraint$(w;) = L(w;)

for w, € S and A(w;) = U(w;) for w; € S.. (Solve [4,
(32)].

Kuhn—Tucker Conditions: If there is a constraint set fre-
quency w; € S for which the Lagrange multiplien:; is

For a bandpass filter, for example, we might have = 0.2,
we = 04w, mo = 0, my = 1, andms = 0. In this case,D(w)
is shown in Fig. 1.

Let the lower and upper bound functiords(w) and U(w) be
specified by the user such that they are constant within eacht band3)
and satisfy the following.

1) L(w) < D(w). negative, then remove from the constraint Sethe frequency
2) U(w) 2 D(w). corresponding to the most negative multiplier, and go back to
3) U(w) > L(w). step 2). Otherwise, calculate the new cosine coefficients using

As in [4], we propose that the integral square error be minimized  (33) in [4], and proceed to step 4).
such that the local minima and maxima.4fw) lie within the lower 4) Check for Violation Over R: Calculatea and A(w). If

and upper bound functions(w) and U (w). A(w;) < L(w;) or A(w;) > U(w;) for somew; € R, then

The amplituded(w) of the filter minimizing theL. error subject remove fromR the frequency corresponding to the greatest
to these constraints will touch the lower and upper bound functions  violation, append t& the same frequency, and go back to step
at certain extremal frequencies df(w). [By extremal frequencies 2. Otherwise, proceed to step 5).

of A(w), we mean local minima and maxima of(w)]. If these  5) Multiple Exchange of Constraint Set: Set the constraint set
frequencies were known in advance, then the filter could be found S equal toS; U S.., wheresS, is the set of frequency points;

by minimizing || E||3 subject to equality constraints (interpolation in [0, 7] satisfying bothA’(w;) = 0 and A(w;) < L(w;), and
requirements) at these frequencies. The iterative procedure below wheresS, is the set of frequency points; in [0, 7] satisfying
determines these frequencies by updating a set of candidate frequen- both A'(w;) = 0 and A(w;) > U(w;).

cies (a constraint set). Each filter in this iterative procedure is found6) Check for Convergence:lf A(w) > L(w)—e for all frequency

by minimizing the L, error subject to interpolation requirements at points inS; and if A(w) < U(w)+e for all frequency points in
these candidate frequencies. The sets of candidate frequencies will S,, then convergence has been achieved. Otherwise, go back
be called “constraint sets” because constraints will be imposed on to step 2).

A(w) at these frequencies. According to the Kuhn-Tucker conditions, becayse> 0 is
LIt is not necessary thdt(w) andU(w) be constant in each band, but theyensured for each set of computed cosine coeflicientsach filter

should be smooth. It is assumed that they are constant within each bandfdpimizes theL error subject to the inequality constraints (19), (20)
simplicity. in [4] over some set of frequencies. At convergence, the constraint set
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Input: ¥, D(w), U(w), L(w)

R—0, 5S¢

Calculate p (Eq. 32 in [4])

minp <07 S — S/w;

N

Calculate a, A(w) (Eq. 33 in [4])

Constraint violated on R ? R — Rfw;, § — SUw;

R «— S, update S

Notes:
R, S are sets of frequencies.
p is calculated using S as a constraint set.

? . .
Convergence ? S is updated by a multiple exchange.

# denotes the empty set.
S/w denotes set difference.

End

Fig. 4. Flowgraph for the exchange algorithm for the constrained least square design of multiband filters.

frequencies are exactly those extremaddtv), where A(w) touches
the lower and upper bound functioa.in step 4) is a small number
(like 10~°) indicating the numerical accuracy desired.

A flowgraph is shown in Fig. 4. Comparing this flowgraph with the
flowgraph given in [4], it can be seen that the two algorithms are very
similar. The only modification of the earlier algorithm is the test for
constraint violation over the previous constraint BefThis approach
was first discussed in [2]. Note, however, that when a frequengy in
is appended td&, it is also removed fronR. ThereforeR diminishes
in size. This is important because it ensures that eventually, the inner
loop will terminate. In some cases, many of the frequenciek afe
transferred taS, in which case, the new constraint set is essentially

o
@©

o
o

<
S

Amplitude

<
)

(=)

replaced by the previous one. If the frequencies transferred feom 0 0.2 04 . 08 08 1
to S were not deleted froni?, then there are cases where the inner
loop will not terminate. Fig. 5. Modified algorithm applied to bandpass filter design. The filter length

- . . L is 63.
Notice that the algorithm begins by initializing the sdtsand S S

to the empty set. Therefore, on the first iteration of the algorithifhe yse of “don’t care” regions if their use is desired—appropriate
steps 2)-4) are trivial: the set of Lagrange multipliers in step 2) is, weighting functions can be incorporated if desired.
the null set. The algorithm essentially begins by calculating the bestyhen implementing the algorithm described herein, the frequency
unconstrained least square solution in step 5). response can be calculated over a grid of frequency values. However,
This approach does not exclude from the integral square measurg @ advised that the location of the extremal frequencies be refined
approximation error any region around the cut-off frequencies; theligy Newton’s method; otherwise, a rather dense grid is sometimes
fore, it does not implicitly assume that input signals have no energgquired for convergence. The use of Newton's method is easily
in those regions. At the same time, the algorithm does not precluideorporated.
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Fig. 6. First four (outer) iterations of the modified algorithm for the example.

IV. EXAMPLE

When the modified algorithm is applied to the design problem it
described in the example above, the filter illustrated in Fig. 5 is
obtained. The behavior of the algorithm is illustrated in Fig. 6, which
shows the filter response for the first few (outer) iterations of the
algorithm. The subfigures of Fig. 6 show the frequency response
amplitude at the point in the algorithm at which convergence is tested.
The circular marks in the figure indicate the interpolation points in
the setS used to obtain the filter. Each amplitude shown in Fig. 5 is 0.2}
calculated after severainerloop iterations. The algorithm converges
after several more iterations. 01

Notice that the middle local maximum on the third outer iteration ) ) )
shown in Fig. 6 is flanked by two interpolation points. The simpler 0 0.2 0.4 0.6 0.8 1
algorithm of [4] cannot achieve this behavior. It is the ability of the wn
modified algorithm to arrive at this type of constraint set that allowSg. 7. Modified algorithm applied to bandpass filter design. Constraints in
it to solve the multiband case. both passband and stopband. The filter length is 63.

An additional example illustrates a constrained least square filter

where constralnts_ have been imposed in t.he stopbands as well &?ﬁ as desired—the transition band automatically adjusts (widens)
Fig. 7. _The same ideal response as above_ is used ano_l again, the fi &l ccommodate the constraints.
Iength is 63. The lOCE_"I minima and ‘maxima of the filter response The algorithm of this correspondence gives a design approach that
amplitude are constrained to lie within0.01 and 0.01. is a hybrid of the Parks—McClellan algorithm [3] and the method
of least squares. Accordingly, the algorithm of this correspondence
produces both least square filters and equiripple filters as special
V. CONCLUSIONS cases. A Matlab program is available on the World Wide Web at

This correspondence shows that there exists a simple and effect{RL http://www-dsp.rice.edu
multiple-exchange algorithm for the design of multiband linear phase
FIR filters according to a constrained least square approach that does
not use Speuflgd trans.ltlon l?arlds. The user SUpP“_es alower and up ?Jr J. W. Adams, “FIR digital filters with least squares stop bands subject to
bound constraint that is satisfied by the local minima and maxima of * peak-gain constraints|EEE Trans. Circuits Systvol. 39, pp. 376388,
the frequency response amplitude. The constraints can be made as Apr. 1991.

o o
[*>] o

o
>

Amplitude
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' T ' is only O(NN), where NV is the data length. The algorithm can be
extended to evaluate CWT without decimation. A review of fast
CWT algorithms is in [7].
In some signal processing tasks, such as EEG analysis, dyadic
sampling in scale is too coarse, and linear scale sampling is desired.

Fast CWT Computation at Integer Scales In [9], a noniterative algorithm to compute linear-scale CWT without
by the Generalized MRA Structure decimation was proposed. The required computation per scale is only
O(N). The method assumes that the input signal and the wavelet are
K. C. Ho splines of certain degrees.

This correspondence proposes another fast algorithm to compute
. . . linear-scale CWT without decimation. It is based on a generalized
Abstract—This correspondence proposes a fast algorithm for continu- MRA structure that computes the transform coefficients iterativel
ous wavelet transform (CWT) at linear scale without decimation by using - p . _y'
the generalized multiresolution analysis (MRA) structure. The constraints 1he structure is highly regular and can be implemented by recursion.
required on the lowpass and bandpass filters in the generalized MRA No assumption on the input and the wavelet is required, although
structure are derived. A possible solution for the lowpass filters and a ggome approximation is necessary to find the bandpass filters in
least-squares design of the bandpass filters are given. The computationalthe generalized structure. Section Il will introduce the proposed
complexity of the algorithm is O(N') per scale, where!\ is the data length. . ’ ;.
The fast algorithm is verified by computer simulations. generahzgd MRA structure. The set of cgndltlons on .the structure
such that it evaluates decimated CWT at linear scale will be derived.
In the special case of dyadic sampling, the conditions reduce to those
. . found in literature. The structure is then extended to compute linear-
~The wavelet transform (WT) is a useful tool for nonstationarycale CWT without decimation. A method is proposed to further
signal analysis. Unlike the short-time Fourier transform (STFTyecrease the computation. Section Iil provides a possible solution to
which uglllzes sine and cosine functions as basis to expand a sigffd lowpass filters and gives a least-squares design of the bandpass
in the L°(R) space, WT uses basis functions that are dilations afflers when a mother wavelet function is given. Section IV studies
translations of a single function known as the mother wavel@}.  the computational complexity of the proposed algorithm. Section V
Constant®) analysis is a major advantage of WT. It has a highyresents simulation results to verify the computational structure and

frequency resolution at low frequency and a high time resolution @kamine the accuracy. Section VI concludes the correspondence.
high frequency. This is in contrast with STFT, in which the time and

frequency resolutions are fixed. WT has found wide applications in I

time-frequency analysis [1], transient detection [2], image processing_ ) )
[3] and speech processing [4]. This study uses a frequency domain approach. Any continuous-

|. INTRODUCTION

RELATING THE GENERALIZED MRA AND CWT

The continuous WT (CWT) of a signal#) is defined as time signal is assumed to be bandlimited to 0.5. Dedfofe} as the
) continuous time Fourier transform ¢}, and letf be a continuous
CWT(a,7) = L / s(t)e” <t — T) dt (1) frequency variable that takes values froapo to oc. Derivation
Va a for the conditions relating the generalized MRA and CWT requires
where only three basic identities in digital signal processing. They are
* complex conjugate: summarized below for clarity [10]:
a scale: 11) If F{y(t)} =Y (f), samplingy(t) att =1 gives
T  translation. ] o
Direct evaluation of (1) is very computationally intensive. When Fly(} = Z Y(f+k).

k=—oco

dyadic sampling the scale at = 2™ and downsampling- such
that~ = 2"n, Shensa [5] has shown that under some conditions thej2) If F{y(1)} = Y (f), downsamplingy(!) by an integera
multiresolution analysis (MRA) structure from Mallat [6] computes yields
CWT(2™,2™n). The conditions are 1) a proper initialization of the -
. . ) [ 1 N r
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