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Correspondence

A Modified Algorithm for Constrained
Least Square Design of Multiband FIR

Filters Without Specified Transition Bands

Ivan W. Selesnick, Markus Lang, and C. Sidney Burrus

Abstract—In a previous paper, we described a constrained least square
approach to FIR filter design that does not use “don’t care” regions. In
that paper, we described a simple algorithm for the design of lowpass
filters according to that approach. In this correspondence, we describe a
modification of that algorithm that makes it converge for many multiband
filter designs. Although no proof of convergence is given, the modified
algorithm remains simple and converges rapidly in many cases.

In this approach, the user supplies a lower and upper bound con-
straint that is exactly satisfied by the local minima and maxima of
the frequency response amplitude. Yet, the constraints can be made as
tight as desired—the transition band automatically adjusts (widens) to
accommodate the constraints.

Index Terms—Bandpass filers, Chebyshev approximation, digital filters,
FIR digital filters, least squares methods, linear-phase filters.

I. INTRODUCTION

In a previous paper [4], we described a constrained least square
approach to FIR filter design that does not use “don’t care” regions
and described a simple multiple-exchange algorithm for the design
of lowpass(and highpass) linear phase FIR filters according to this
approach. Unfortunately, when applied to the design ofmultibandfil-
ters (bandpass, bandstop, etc.), the same algorithm does not converge
reliably. In this correspondence, we describe a modification to that
algorithm that makes it converge for many multiband filter designs.
Although no proof of convergence is given, the modified algorithm
remains simple and converges rapidly in many cases.

The approach taken in [4] follows the work on constrained least
square filter design by Adamset al. [1], [2] and is motivated in part
by a paper on error criteria by Weisburn,et al. [5]. The algorithm
described in this correspondence modifies the algorithm of [4] so
that it saves the constraint set of the previous iteration: a concept
described previously in [2].

II. DISCUSSION

As stated above, the algorithm of [4] may not converge when it
is applied tobandpassfilter design. In these cases, the failure of the
algorithm to converge takes a specific form. Instead of converging to a
single filter, the algorithm will eventually cycle between two different
filters, neither of which satisfy the specified peak gain constraints. The
following example illustrates the way in which the algorithm of [4]
may fail when it is used to design a length 63 bandpass filter.
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Fig. 1. Desired amplitude of an ideal bandpass filter.

Fig. 2. Algorithm of [4] applied to bandpass filter design. Even iterations
after several iterations.

Consider the design of a bandpass filter with cut-off frequencies at
!1 = 0:2� and!2 = 0:4�. The ideal frequency response amplitude
D(!) is shown in Fig. 1. Further, suppose that at the local maxima
and minima ofA(!) in the passband,A(!) is required to lie between
0.99 and 1.01. To simplify this illustrative example, the peak errors
in the stopbands are not required to meet any ripple size constraints.
When the algorithm of [4] is applied to the design of a length 63
bandpass filter with these constraints and cut-off frequencies, it fails
to converge. After several iterations, that algorithm will cycle between
the two filters shown in Figs. 2 and 3.

The algorithm of [4] employs a constraint set (a set of interpolation
points) and proceeds as follows. On each iteration, 1) the set
of interpolation points is updated and 2) the least square error
filter satisfying the interpolation constraints is found. The set of
interpolation points is updated from one iteration to the next by
setting it equal to the set of local minima and maxima where the new
frequency response amplitude violates the lower and upper bound
constraints.

In this example, the exchange algorithm of [4] fails to converge
because on some iteration, the new set of interpolation points is the
same as a previous set. This is made clear in Figs. 2 and 3, where it
can be seen that the extremal points in one figure are the interpolation
points in the other figure.
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Fig. 3. Algorithm of [4] applied to bandpass filter design. Odd iterations
after several iterations.

III. N EW ALGORITHM

The modified algorithm remains simple, and although we have not
proven its convergence, it converged for all examples with which it
was tested and, for most of those examples, converged rapidly. Like
the algorithm of [4], the new algorithm is a multiple-exchange algo-
rithm that uses Lagrange multipliers and the Kuhn–Tucker conditions
on each iteration. It also gives the bestL2 filter and a continuum of
Chebyshev filters as special cases. The algorithm is similar to that
described in [4]; however, it employs an additional inner loop.

To describe the algorithm for multiband filter design, let
!1; � � � ; !K be the cut-off frequencies andm0; � � � ; mK be the
magnitudes of aK+1 band filter whose desired frequency response
amplitude is given by

D(!) =

m0; for 0 � ! < !1
mk; for !k � ! < !k+1
mK ; for !K � ! < �:

(1)

For a bandpass filter, for example, we might have!1 = 0:2�,
!2 = 0:4�, m0 = 0, m1 = 1, andm2 = 0. In this case,D(!)

is shown in Fig. 1.
Let the lower and upper bound functionsL(!) and U(!) be

specified by the user such that they are constant within each band1

and satisfy the following.

1) L(!) � D(!).
2) U(!) � D(!).
3) U(!) > L(!):

As in [4], we propose that the integral square error be minimized
such that the local minima and maxima ofA(!) lie within the lower
and upper bound functionsL(!) andU(!).

The amplitudeA(!) of the filter minimizing theL2 error subject
to these constraints will touch the lower and upper bound functions
at certain extremal frequencies ofA(!). [By extremal frequencies
of A(!), we mean local minima and maxima ofA(!)]. If these
frequencies were known in advance, then the filter could be found
by minimizing kEk22 subject to equality constraints (interpolation
requirements) at these frequencies. The iterative procedure below
determines these frequencies by updating a set of candidate frequen-
cies (a constraint set). Each filter in this iterative procedure is found
by minimizing theL2 error subject to interpolation requirements at
these candidate frequencies. The sets of candidate frequencies will
be called “constraint sets” because constraints will be imposed on
A(!) at these frequencies.

1It is not necessary thatL(!) andU(!) be constant in each band, but they
should be smooth. It is assumed that they are constant within each band for
simplicity.

On each iteration, the constraint set is updated so that at conver-
gence, the only frequency points at which equality constraints are
imposed are those whereA(!) touches the constraint. The equality
constrained problem is solved with Lagrange multipliers. The equality
constraints are the same as those of [4] and give rise to the same
equations as those given in that paper.

A. The Modified Exchange Iterations

The equality constrained optimization procedure described in [4]
is performed at each step of an iterative algorithm. The way in which
the constraint setS is updated is now described. This part of the
algorithm differs from the algorithm of [4]. To avoid the cycling that
may occur when the algorithm of [4] is applied to multiband filter
design, two constraint sets are used. The second constraint set, which
we callR, is used to store the elements of the constraint setS of the
previous iteration of the algorithm.

After each iteration, the algorithm checks the values ofA(!)

over the previous constraint set frequencies. IfA(!) is within the
lower and upper boundary functionsL(!) and U(!) over these
frequencies, then the algorithm proceeds exactly as does the algorithm
of [4]. However, if it is found thatA(!) violates the constraints at
some frequency belonging to the previous constraint set, then i) that
frequency where the violation is greatest is appended to the current
constraint setS and ii) the same frequency is removed from the
record of previous constraint set frequenciesR.

The algorithm begins with an empty constraint setS so that the first
filter designed is the best unconstrainedL2 filter. Then, constraints
are iteratively imposed onA(!) at selected frequencies until the best
constrainedL2 filter is obtained.

The algorithm can be summarized in the following steps. In
this description, the setR records the constraint frequencies of the
previous iteration. The remaining notation is the same as that of [4].

1) Initialization: Initialize both constraint sets to the empty set:
R = ;, S = ;.

2) Minimization with Equality Constraints: Calculate the La-
grange multipliers associated with the filter that minimizes
kE(!)k2 subject to the equality constraintsA(!i) = L(!i)

for !i 2 Sl and A(!i) = U(!i) for !i 2 Su. (Solve [4,
(32)]).

3) Kuhn–Tucker Conditions: If there is a constraint set fre-
quency !i 2 S for which the Lagrange multiplier�i is
negative, then remove from the constraint setS the frequency
corresponding to the most negative multiplier, and go back to
step 2). Otherwise, calculate the new cosine coefficients using
(33) in [4], and proceed to step 4).

4) Check for Violation Over RRR: Calculate a and A(!). If
A(!i) < L(!i) or A(!i) > U(!i) for some!i 2 R, then
remove fromR the frequency corresponding to the greatest
violation, append toS the same frequency, and go back to step
2. Otherwise, proceed to step 5).

5) Multiple Exchange of Constraint Set: Set the constraint set
S equal toSl [Su, whereSl is the set of frequency points!i
in [0; �] satisfying bothA0

(!i) = 0 andA(!i) � L(!i), and
whereSu is the set of frequency points!i in [0; �] satisfying
bothA0

(!i) = 0 andA(!i) � U(!i).
6) Check for Convergence:If A(!) � L(!)�� for all frequency

points inSl and ifA(!) � U(!)+� for all frequency points in
Su, then convergence has been achieved. Otherwise, go back
to step 2).

According to the Kuhn–Tucker conditions, because��� � 0 is
ensured for each set of computed cosine coefficientsa, each filter
minimizes theL2 error subject to the inequality constraints (19), (20)
in [4] over some set of frequencies. At convergence, the constraint set
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Fig. 4. Flowgraph for the exchange algorithm for the constrained least square design of multiband filters.

frequencies are exactly those extrema ofA(!), whereA(!) touches
the lower and upper bound function.� in step 4) is a small number
(like 10�6) indicating the numerical accuracy desired.

A flowgraph is shown in Fig. 4. Comparing this flowgraph with the
flowgraph given in [4], it can be seen that the two algorithms are very
similar. The only modification of the earlier algorithm is the test for
constraint violation over the previous constraint setR. This approach
was first discussed in [2]. Note, however, that when a frequency inR

is appended toS, it is also removed fromR. ThereforeR diminishes
in size. This is important because it ensures that eventually, the inner
loop will terminate. In some cases, many of the frequencies ofR are
transferred toS, in which case, the new constraint set is essentially
replaced by the previous one. If the frequencies transferred fromR

to S were not deleted fromR, then there are cases where the inner
loop will not terminate.

Notice that the algorithm begins by initializing the setsR andS
to the empty set. Therefore, on the first iteration of the algorithm,
steps 2)–4) are trivial: the set of Lagrange multipliers in step 2) is
the null set. The algorithm essentially begins by calculating the best
unconstrained least square solution in step 5).

This approach does not exclude from the integral square measure of
approximation error any region around the cut-off frequencies; there-
fore, it does not implicitly assume that input signals have no energy
in those regions. At the same time, the algorithm does not preclude

Fig. 5. Modified algorithm applied to bandpass filter design. The filter length
is 63.

the use of “don’t care” regions if their use is desired—appropriate
L2 weighting functions can be incorporated if desired.

When implementing the algorithm described herein, the frequency
response can be calculated over a grid of frequency values. However,
it is advised that the location of the extremal frequencies be refined
by Newton’s method; otherwise, a rather dense grid is sometimes
required for convergence. The use of Newton’s method is easily
incorporated.
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Fig. 6. First four (outer) iterations of the modified algorithm for the example.

IV. EXAMPLE

When the modified algorithm is applied to the design problem
described in the example above, the filter illustrated in Fig. 5 is
obtained. The behavior of the algorithm is illustrated in Fig. 6, which
shows the filter response for the first few (outer) iterations of the
algorithm. The subfigures of Fig. 6 show the frequency response
amplitude at the point in the algorithm at which convergence is tested.
The circular marks in the figure indicate the interpolation points in
the setS used to obtain the filter. Each amplitude shown in Fig. 5 is
calculated after severalinner loop iterations. The algorithm converges
after several more iterations.

Notice that the middle local maximum on the third outer iteration
shown in Fig. 6 is flanked by two interpolation points. The simpler
algorithm of [4] cannot achieve this behavior. It is the ability of the
modified algorithm to arrive at this type of constraint set that allows
it to solve the multiband case.

An additional example illustrates a constrained least square filter
where constraints have been imposed in the stopbands as well; see
Fig. 7. The same ideal response as above is used and again, the filter
length is 63. The local minima and maxima of the filter response
amplitude are constrained to lie within�0.01 and 0.01.

V. CONCLUSIONS

This correspondence shows that there exists a simple and effective
multiple-exchange algorithm for the design of multiband linear phase
FIR filters according to a constrained least square approach that does
not use specified transition bands. The user supplies a lower and upper
bound constraint that is satisfied by the local minima and maxima of
the frequency response amplitude. The constraints can be made as

Fig. 7. Modified algorithm applied to bandpass filter design. Constraints in
both passband and stopband. The filter length is 63.

tight as desired—the transition band automatically adjusts (widens)
to accommodate the constraints.

The algorithm of this correspondence gives a design approach that
is a hybrid of the Parks–McClellan algorithm [3] and the method
of least squares. Accordingly, the algorithm of this correspondence
produces both least square filters and equiripple filters as special
cases. A Matlab program is available on the World Wide Web at
URL http://www-dsp.rice.edu.
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Fast CWT Computation at Integer Scales
by the Generalized MRA Structure

K. C. Ho

Abstract—This correspondence proposes a fast algorithm for continu-
ous wavelet transform (CWT) at linear scale without decimation by using
the generalized multiresolution analysis (MRA) structure. The constraints
required on the lowpass and bandpass filters in the generalized MRA
structure are derived. A possible solution for the lowpass filters and a
least-squares design of the bandpass filters are given. The computational
complexity of the algorithm isO(N) per scale, whereN is the data length.
The fast algorithm is verified by computer simulations.

I. INTRODUCTION

The wavelet transform (WT) is a useful tool for nonstationary
signal analysis. Unlike the short-time Fourier transform (STFT),
which utilizes sine and cosine functions as basis to expand a signal
in theLLL2(RRR) space, WT uses basis functions that are dilations and
translations of a single function known as the mother wavelet (t):
Constant-Q analysis is a major advantage of WT. It has a high-
frequency resolution at low frequency and a high time resolution at
high frequency. This is in contrast with STFT, in which the time and
frequency resolutions are fixed. WT has found wide applications in
time-frequency analysis [1], transient detection [2], image processing
[3] and speech processing [4].

The continuous WT (CWT) of a signals(t) is defined as

CWT(a; �) =
1p
a

s(t) �
t� �

a
dt (1)

where
� complex conjugate;
a scale;
� translation.

Direct evaluation of (1) is very computationally intensive. When
dyadic sampling the scale ata = 2m and downsampling� such
that � = 2mn, Shensa [5] has shown that under some conditions the
multiresolution analysis (MRA) structure from Mallat [6] computes
CWT(2m; 2mn): The conditions are 1) a proper initialization of the
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Fig. 1. Noble identity.

MRA input and 2) a satisfaction of the two-scale equations [7], [8]
in the lowpass and bandpass filters. The computational complexity
is only O(N), whereN is the data length. The algorithm can be
extended to evaluate CWT without decimation. A review of fast
CWT algorithms is in [7].

In some signal processing tasks, such as EEG analysis, dyadic
sampling in scale is too coarse, and linear scale sampling is desired.
In [9], a noniterative algorithm to compute linear-scale CWT without
decimation was proposed. The required computation per scale is only
O(N): The method assumes that the input signal and the wavelet are
splines of certain degrees.

This correspondence proposes another fast algorithm to compute
linear-scale CWT without decimation. It is based on a generalized
MRA structure that computes the transform coefficients iteratively.
The structure is highly regular and can be implemented by recursion.
No assumption on the input and the wavelet is required, although
some approximation is necessary to find the bandpass filters in
the generalized structure. Section II will introduce the proposed
generalized MRA structure. The set of conditions on the structure
such that it evaluates decimated CWT at linear scale will be derived.
In the special case of dyadic sampling, the conditions reduce to those
found in literature. The structure is then extended to compute linear-
scale CWT without decimation. A method is proposed to further
decrease the computation. Section III provides a possible solution to
the lowpass filters and gives a least-squares design of the bandpass
filters when a mother wavelet function is given. Section IV studies
the computational complexity of the proposed algorithm. Section V
presents simulation results to verify the computational structure and
examine the accuracy. Section VI concludes the correspondence.

II. RELATING THE GENERALIZED MRA AND CWT

This study uses a frequency domain approach. Any continuous-
time signal is assumed to be bandlimited to 0.5. DenoteFf�g as the
continuous time Fourier transform off�g, and letf be a continuous
frequency variable that takes values from�1 to 1: Derivation
for the conditions relating the generalized MRA and CWT requires
only three basic identities in digital signal processing. They are
summarized below for clarity [10]:

I1) If Ffy(t)g = Y (f), samplingy(t) at t = l gives

Ffy(l)g =
1

k=�1

Y (f + k):

I2) If Ffy(l)g = Ŷ (f), downsamplingy(l) by an integera
yields

Ffy(an)g = 1

a

a�1

r�0

Ŷ f +
r

a
:

.
I3) The noble identity shown in Fig. 1, where# M represents

downsampling byM andT (f) is any transfer function.
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