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Bivariate Shrinkage Functions for Wavelet-Based
Denoising Exploiting Interscale Dependency

Levent &ndur Student Member, IEEEBNd Ivan W. SelesnickMember, IEEE

Abstract—Most simple nonlinear thresholding rules for One of the most well-known rules for the second step is soft
wavelet-based denoising assume that the wavelet coefficients arethresholding analyzed by Donoho [13]. Due to its effectiveness
Ln:vipsiréiﬁ?;an?ggfgﬁgerﬁglﬁﬁ t%?:fgglp?enrtswgfwirl]lagﬁlrslcg:;ggf and simplicity, it is frequently used in the literature. The main

. ' S : . idea is to subtract the threshold valiiefrom all coefficients
the dependencies between the coefficients and their parents in . .
detail. For this purpose, new non-Gaussian bivariate distributions larger thari” and to set all cher coefficients to zero. Alternative
are proposed, and corresponding nonlinear threshold functions approaches can be found in, for example, [1], [2], [S], [7], [10],
(shrinkage functions) are derived from the models using Bayesian [11], [14], [15], [17], [18], [21], [22], [27], [29], [30], [35], [36],
estimation theory. The new shrinkage functions do not assume [38], and [39]. Generally, these methods use a threshold value
the independence of wavelet coefficients. We will show three y i st he estimated correctly in order to obtain good per-
image denoising examples in order to show the performance of formance. VisuShrink [14] uses one of the well-known thresh-
these new bivariate shrinkage rules. In the second example, a'~" : 5 o
Simp|e Subband_dependent data-driven image denoising system 0|d|ng rules: the universal threshold. In addltlon, subband adap-
is described and compared with effective data-driven techniques tive systems have superior performance, such as SureShrink
in the literature, namely VisuShrink, SureShrink, BayesShrink, [15], which is a data-driven system. Recently, BayesShrink [4],
and hidden Markov models. In the third example, the same idea \yhjch s also a data-driven subband adaptive technique, is pro-
is applied to the dual-tree complex wavelet coefficients. posed and outperfoms VisuShrink and SureShrink
Index Terms—Bivariate shrinkage, image denoising, statistical  Recently, some research has addressed the development of
modeling, wavelet transforms. statistical models for natural images and their transform coef-
ficients [16], [19], [20], [33], [34], [36]. Hence, statistical ap-
|. INTRODUCTION proaches have emerged as a new tool for wavelet-based de-
noising. The basic idea is to model wavelet transform coeffi-

I\/I ULTISCALE decompositions have shown significantients with prior probability distributions. Then, the problem
advantages in the representation of signals, and they g, e expressed as the estimation of clean coefficients using

used extensively in image compression [9], [32], segmentatigf}s 4 priori information with Bayesian estimation techniques,
[6], [25], and denoising [10], [27], [29], [30], for example. Ing,ch as the MAP estimator.

this paper, we will mostly deal with the modeling of the wavelet |t the MAP estimator is used for this problem, the solution
transform coefficients of natural images and its application {@quiresa priori knowledge about the distribution of wavelet
the image denoising problem. The denoising of a natural imaggefficients. Therefore, two problems arise: 1) What kind of dis-
corrupted by Gaussian noise is a classic problem in sigRghutions represent the wavelet coefficients and 2) what is the
processing. The wavelet transform has become an importagtresponding estimator (shrinkage function)?

tool for this problem due to its energy compaction property. Statistical models pretend wavelet coefficients are random
Crudely, it states that the wavelet transform yields a larg@riables described by some probability distribution function.
number of small coefficients and a small number of largeor the first problem, these models mostly assume that the

coefficients. coefficients are independent and try to characterize them by
Simple denoising algorithms that use the wavelet transforing Gaussian, Laplacian, generalized Gaussian, or other dis-
consist of three steps. tributions. For example, the classical soft threshold shrinkage
function can be obtained by a Laplacian assumption. Bayesian
1) Calculate the wavelet transform of the methods for image denoising using other distributions have
noisy signal. also been proposed [17], [18], [21], [22], [37], [39]. However,
2) Modify the noisy wavelet coefficients these simple distributions are weak models for wavelet coeffi-
according to some rule. cients of natural images because they ignore the dependencies
3) Compute the inverse transform using the between coefficients. It is well known that wavelet coefficients
modified coefficients. are statistically dependent [35] due to two properties of the

wavelet transform: 1) If a wavelet coefficient is large/small,
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to capture the statistical dependencies by using wavelet-ddieren is independent Gaussian noise. We obser(@ noisy
main hidden Markov models (HMT) is developed. In [41kignal) and wish to estimate the desired signals accurately
and [42], improved local contextual hidden Markov modelas possible according to some criteria. In the wavelet domain,
are introduced. In [35] and [36], the wavelet coefficients aliéwe use an orthogonal wavelet transform, the problem can be
assumed to be Gaussian given the neighbor coefficients, anfdmnulated as

joint shrinkage function that uses neighbor wavelet coefficients

is proposed. In [30], [38], and [40], the class of Gaussian y=w+n (2
scale mixtures for modeling natural images is proposed and

applied to the image-denoising problem. A local adaptiéhere o

window-based image denoising algorithm using ML and MAP ¥  noisy wavelet coefficient;

estimates, which is a powerful low-complexity algorithm w true coefficient;

exploiting the intrascale dependencies of wavelet coefficients» ~ Noise, which is independent Gaussian.

[29], is proposed. Interscale dependencies are consideredl Bi$ is a classical problem in estimation theory. Our aim is to
an extension of this algorithm in [3]. In addition, [28] present&stimatew from the noisy observatiop. The maximuna pos-

an information-theoretic analysis of statistical dependencit&iori (MAP) estimator will be used for this purpose. Marginal
between wavelet coefficients. In [12], a Bayesian approaéfd bivariate models will be discussed for this problem in Sec-
where the underlying signal in possibly non-Gaussian noisetigns II-A and B, and new MAP estimators are derived.
modeled using Besov norm priors is proposed. In this paper,

we use new bivariate probability distribution functions (pdfgf- Marginal Model

and derive corresponding bivariate shrinkage functions usingThe classical MAP estimator for (2) is

Bayesian estimation theory, specifically the MAP estimator. In

this paper, the aim is similar to [12]; however, a general Besov W(y) = argmax p|y(wly). 3)
norm is not used here as it is in [12], but an explicit formula ¢

for a shrinkage function is obtained. An explicit multivariatdJsing Bayes rule, one gets

shrinkage function for wavelet denoising is also presented in

[44]. The shrinkage function in [44], which was derived using (y) =argmax [pyj.(ylw) - po(w)]

a different method, is similar to Model 1, which is one of the
shinkage methods that will be presented in this paper.

The organization of this paper is as follows. In Section Iperefore, these equations allow us to write this estimation in
the basic idea of Bayesian denoising will be briefly describeg s of the pdf of the nois@,.) and the pdf of the signal coef-

Section II-A describes the marginal models and how the sgfti. ¢ (pw). From the assumption on the noigg, s zero mean
thresholding operator can be obtained using the Laplace péfaussian with variance,,, i.e.

Then, Section II-B describes the bivariate models, and new non-

Gaussian bivariate pdfs are proposed to model the joint statis- 2

tics of wavelet coefficients. These models try to capture the de- pn(n) = o or P <_E> ' ()
pendencies between a coefficient and its parent in detail. Four ’

new pdfs will be proposed, starting from the simplest model, It has been observed that wavelet coefficients of natural im-
and more complicated models are proposed in order to char@ges have highly non-Gaussian statistics [16], [33]. The pdf for
terize a larger family of pdfs. In addition, for each model, thwavelet coefficients is often modeled as a generalized (heavy-
corresponding MAP estimator will be obtained. In Section Ilfailed) Gaussian [35]

three image denoising examples based on these new models will w P

be illustrated and compared with other algorithms. In the first puw(w) = K(s,p) - exp (— ‘;‘ ) (6)
example, the new bivariate shrinkage function developed using

Model 1 and the classical soft thresholding will be compared Wyheres, p are the parameters for this model, aids, p) is the
optimizing the threshold value. In the second example, a simlarameter-dependent normalization constant. Other pdf models
subband adaptive data-driven image denoising algorithm tthetve also been proposed [17], [18], [21], [22], [39]. In practice,
uses Model 3 will be described, and the estimation of the pgenerally, two problems arise with the Bayesian approach when
rameters, which is necessary for the model, will be explaineah accurate but complicated pdf(w) is used: 1) It can be dif-
The results will be compared with the VisuShrink, SureShrinkicult to estimate the parametersaf, for a specific image, es-
BayesShrink, and HMT algorithms. In the third example, theecially from noisy data, and 2) the estimators for these models
performance of a subband-dependent system will be demomay not have simple closed form solution and can be difficult

=arg Inuz}x [pn(y — w) - puw(w)]. (4)

strated on the dual-tree complex wavelet transform. to obtain. The solution for these problems usually requires nu-
merical techniques.
Il. BAYESIAN DENOISING Fig. 1(a) illustrates the histogram of the wavelet coefficients

computed from several natural images. A Laplacian density is

In this section, the denoising of an image corrupted by whitgie to this empirical histogram. The same data is plotted in the
Gaussian noise will be considered, i.e., log domain in Fig. 1(b) in order to show the failure of Laplacian

assumption along the tail. Even though it is not the most accu-

g=xz+n (1) rate, the Laplacian is an especially convenient assumption for
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Fig. 2. (a) Laplacian pdf. (b) Corresponding shrinkage function.

Fig. 1. (a) Empirical histogram computed from several natural images (solid
line). A Laplacian pdf is fitted to the empirical histogram (dashed line). (b) Same

data is illustrated in log domain in order to emphasize the tail difference.

This operator will be often used while developing bivariate
shrinkage functions. The soft shrinkage function (12) can be

po(w) because the MAP estimator is simple to compute and Wfitten as

in fact, given by the soft threshold rule.

Let us continue developing the MAP estimator and show it for w(y) = soft <y,
Gaussian and Laplacian cases. Equation (4) is also equivalent to

w(y) = argmax [log(pn(y — w)) +log(pw(w))].  (7)

As in [21], let us definef(w) = log(p,,(w)). By using (5), (7)
becomes
y—w)?

2
20z

+ f(w)]| - (8)

w(y) = argmax | —

w
This is equivalent to solving the following equation far if
pw(w) is assumed to be strictly convex and differentiable.

Yy —w
on

+ f'(@) = 0. ©)

ﬁﬁ) . (15)

g

B. Bivariate Models

Marginal models cannot model the statistical dependencies
between wavelet coefficients. However, there are strong depen-
dencies between neighbor coefficients such as between a coffi-
cient, its parent (adjacent coarser scale locations), and their sib-
lings (adjacent spatial locations). In this section, we focus on the
dependencies only between a coefficient and its parent in detail.
In [35], it is suggested that the pdf of a coefficient, conditioned
on neighbor coefficients, is Gaussian, and a linear Bayesian es-
timator is proposed that requires the estimation of neighbor co-
efficients. This paper suggests four new jointly nhon-Gaussian
models to characterize the dependency between a coefficient

If p.,(w) is assumed to be a zero mean Gaussian density Witfid its parent and derives the corresponding bivariate MAP es-
varianceo?, then f(w) = —log(v/2no) — w?/20?, and the timators based on noisy wavelet coefficients in detail.

estimator can be written as
2

Here, we modify the Bayesian estimation problem as to take
into account the statistical dependency between a coefficient

wy) = 5—5 v (10) and its parent. Lets, represent the parent af;. (w, is the
02 4 o2 - i
n wavelet coefficient at the same position«as, but at the next
If it is Laplacian coarser scale.) Then
1 V2wl Y1 =w1 +ny
(W) = - 11
D (w) \/50_ exXp < P ) ( ) Yo =ws + no (16)
thenf(w) = — log(0v/2) — v/2|w| /o, and the estimator will be wherey; andyg are noisy observatioqs af; andws, andn,
andn. are noise samples. We can write
R . V202
w(y) = sign(y) <|y| -] (12) y=w+n 17)
+

Here,(g)+ is defined as

_J0, ifg<oO
(9)+ = {g, otherwise. (13)

wherew = (wl,IUQ), y = (yl,yg) andn = (711,712).
The standard MAP estimator fev given the corrupted ob-
servationy is

W(y) = arg max pyy (Wly). (18)

Equation (12) is the classical soft shrinkage function. The Laplasar some manipulations, this equation can be written as
cian pdf and corresponding shrinkage function are illustrated in

Fig. 2. Let us define the soft operator as w(y) =arg max [pyjw (¥|W) - pw(w)]

soft(g, ) = sign(g) - (|g| — 7)+- (14) =argmax [pn(y — w) - pw(w)] . (19)
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Fig. 3. Empirical joint parent-child histogram of wavelet coeﬁicientsF'g' 4. Joint shrinkage function derived numerically from the empirical joint

(computed from the Corel image database). parent-child histogram illustrated in Fig. 3.

From this equation, the Bayes rule allows us to write this estim
tion in terms of the probability densities of noise and the pric x10°
density of the wavelet coefficients. In order to use this equatic s
to estimate the original signal, we must know both pdfs. We &=
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The same problem as in marginal case appears. What kinc
joint pdf models the wavelet coefficients? The joint empirice
coefficient-parent histogram can be used to obsgg@v). For
this purpose, we used 200 5512 images from the Corel
image database in order to stabilize the corresponding statis
Hence, we got a very smooth histogram. We used Daubech w, (Parent) w, (Child)
length-8 filter to compute the wavelet transform. The joint his-
togram, computed using this set, is illustrated in Fig. 3. Its cohig- 5. Independent Laplacian model (22) for joint pdf of parent-child wavelet
. . . . coefficient pairs.

tour plot is also shown in this figure.

Before proposing models for this empirical histogram, let
us investigate what kind of shrinkage function the empirical Before going further with this new model, let us consider the
histogram has. Using empirical data with (19), the shrinkagase wherey; andw, are assumed to be independent Laplacian;
function can be found numerically. The numerically calculatetien, the joint pdf can be written as
shrinkage function is illustrated in Fig. 4. As this plot shows, the
shrinkage function should depend on bgthandys. 1 V2

1) Model 1: Itis hard to find a model for the empirical his- pw(W) = -exp | ——(|lwi| + [w2]) |].  (22)
togram in Fig. 3, but we propose the following pdf: 20 ¢

40

A plot of this model is illustrated in Fig. 5. If this model is

3 /3 compared with Fig. 3, the difference between them can be easily
Pw (W) = cexp | ——/w? +w3 | . (21) observed. Let us consider our new model givenin (21). The plot

T g of this pdf and its contour plot is illustrated in Fig. 6. As one can
i i i easily notice, this model is a much better approximation to the
With thls pdf,ufl andws are uncor.related but not 'ndepender,“empirical histogram illustrated in Fig. 3.
we will gall this model Model 1 in OrS’er pot to confgsg th|§ Let us continue on developing the MAP estimator given in
model with the models proposed later in this paper. Thisis a 0(5[9), which is equivalent to
cularly symmetric pdf and is related to the family of spherically
invariant random processes (SIRPs) that are used, for example,
in speech processing [31], [43]. W(y) = arg max [log(pn(y — w)) +log(pw(w))].  (23)




2748 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 11, NOVEMBER 2002

o
@

0070005

0107 sz
7777,
sy sl

=14 - <
z 2 057 1201 A
BEER 20 z° 5 ",',’;’”;lllll;?;;;lllll
510 o 9 2 744 'II;;'
B -~
'g- ¢ \\ -20 “Z 0
% ° //I ‘ \ %-z
(o}
ue_ 4 ”;'I"':‘:‘::“\\‘\ 20 40 _%_4

2 L a

N 5
w0’ KRS
s ““‘: 40
-40  -40
w,, (Parent) w, (Child) . o
¥y (Noisy Parent) Y, (Noisy Child)

Fig. 6. New bivariate pdf (21) proposed for joint pdf of parent-child wavelet
coefficient pairs (Model 1). Fig. 8. New bivariate shrinkage function derived from the Model 1 proposed

in (21) (Fig. 6).

Let us find the MAP estimator corresponding to our new
model given in (21)f(w) can be written as

o

i) [ 3 V3
@: f(w) =log <2 02) - w? 4+ w3, 27)
z .
B From this
L.
©
E. V3w
a flw) = - —F—— (28)
-6 o\ wy + w3
V3ws
wW)=— ——. 29
f2( ) a\/m ( )
Solving (25) and (26) by using (28) and (29), the MAP estimator
. 0 10 (or “the joint shrinkage function”) can be written as
¥, (Noisy Parent) y, (Noisy Child)

5 5 V302 )
+ — YT n
( VUL T Y3 s ).
Vi +u3

Letus definef(w) = log(pw (W)). By using (20), (23) becomes The derivation can be found in Appendix A. Fig. 8 shows the
plot of this bivariate shrinkage function. As this plot illustrates,

2 2
W(y) = arg max | — (v — ;”1) N ;”2) + f(w)|. thereis acircular deadzone (the deadzone is the region where
w 205, 2075 20) the estimated value is zero), i.e.,

This is equivalent to solving the following equations together, if V302
pw(w) is assumed to be strictly convex and differentible: deadzone= < (y1,y2): \/¥? + 43 < T"

Fig. 7. Jointshrinkage function derived from the Laplacian independent model

(Fig. 5). "Y1 (30)

Wy =

o2 + f1(W) =0 (25) Denoising methods derived using the independence assumption
o _an A disregard the parent valgg, ) when estimating each coefficient
P + f2(W) =0 (26) (y,). For example, in scalar soft thresholding, for all coeffi-
" cients, the threshold value is fixed and independent from other
where f1 and f> represent the derivative ¢f(w) with respect coefficients—if the coefficient is below the threshold value, we
to wy andwsy, respectively. make it zero. However, our results clearly show that the esti-

The MAP estimator for the Laplacian independent model imated value should depend on the parent value. The smaller the
(22) is illustrated in Fig. 7. This rule applies the soft thresholdarent value, the greater the shrinkage. This result is very inter-
function toy; to estimataw; . It is the usual soft shrinkage func-esting because it illustrates the effect of taking into account the
tion. parent-child dependency.
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Fig. 9. New bivariate pdf (31) proposed for joint pdf of parent-child wavelet
coefficient pairs (Model 2). Fig. 10. New bivariate shrinkage function derived from the Model 2 proposed
in (31) (Fig. 9).

Note that when the parent is zero, the MAP estimateois

obtained by the soft threshold function. If parest= 0, then 1€ derivation can be found in Appendix B. A plot of the
Wy, = soft(yr, V302 /o). bivariate shrinkage function using this model is illustrated in

2) Model 2: Although Model 1 given in (21) is a better ap_Fig. 10. As can be easily observed, there is a circular-like dead-

proximation to the empirical histogram than the independe‘?ﬁ.’ne 'around the origin as in .Model 1, but the deadzone alsp
Laplacian model, it is not possible to represent independ t_alns a stripe corre;pondlng to large pare_nt valuesj as in
distributions with it. To characterize a larger group of probe{— € md_ependent Laplacian model. One can adjust th_e W'dth.Of
bility distributions for the wavelet pairs, we need a more flexne ztrlpe-shgﬁeg deadzt())lne and the rad(ljus ofhthi.cwc.ular-hke
ible model. For this purpose, we propose a pdf that can va‘ii adzone wit t € tung e parameterandb. T € variate
between Model 1 and the independent Laplacian model givef nkage function derived from Model 2 specializes both to
in (22) with tunable parameters. The proposed joint pdf, Ca”éﬁandard soft shrinkage function (Fig. 7) and to circular bivariate
shr

Model 2 in this paper, can be written as inkage function (Fig. 8).
hap Note that wherm: = 0, we recover the scalar soft thresholding

rule; whenb = 0, we recover the (30).
pw(w) = K -exp <— [a\/w%) + w3 + b(|wi| + |w2|)D It should be noted that the selection of the model parameters
(31) @ andb via maximum likelihood for Model 2 turns out to be
whereK is the normalization constant. A plot of this model igsnore complicated than Model 1 because obtaining an expres-
illustrated in Fig. 9. Let us develop the MAP estimator for thision for the parameters requires integrals that we cannot eval-
model. From (31) uate in closed form.
3) Model 3: In practice, the variance of the wavelet coeffi-
Flw) = — {a /w% + w2 + b(|w | + |w2|)} (32) cients of nqtural images are quite different from scalg to sca.le.
We would like to generalize Model 1 since the marginal vari-
ances are the same. For this purpose, we propose Model 3, which

and this gives has adjustable marginal variances, i.e.,

a - wip . 2 2
fiw) =~ | —==—= + b sign(w:) (33) 3 wy wa
VWi +ws; Pw(W) = roi0s cexp | —V3- <0—1> + <0—2>
a - wa .
faw) = — | ——=2— 1 b-signuwy) | . (34) (37)
(W) Vwl+ w3 "(w2) Let us develop the MAP estimator for this model. From the pdf
Solving (25) and (26) using (33) and (34), the bivariate wi\2 w2
shrinkage function for this model can be obtained as flw)=—-V3- <O_—1> + <O_—2> (38)
1 2
p— 2 .
Wy = W -soft(y1, 02 - b) (35) and this gives
where soft is defined in (14) and filw) =— @ . w1 - (39)

R = \/s0f(y., 02 - )2 + SOft(yz, 02 - 0)2.  (36) o (?—)QJF(?—)
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for Model 2. Therefore, we would like to generalize Model 2.
The proposed joint pdf is

2%
52
555
55555
00095.:90,%,
G555
004072, .
55 ,
0y %0, ,
277775 — _ 2 2
s, w) =K -ex c1-wideyw
i I p 1wy + 2wy
944044
o

o"o' 50
’ "."2::3'}: S i
<% 2% 4 7
= S
b e i i s A +c3 - |wi] + cq - w2 (44)
° e
Sy . . . .
-%-1 . Z where K is the normalization constant. Let us call it Model 4
7% . .
-2 and try to develop the MAP estimator for this model. From the
-3 pdf
-4
fw)=— [\/cl cwi4 e wd+ezlwi| e |w2|} (45)
and it gives
-4 _4
¥, (Noisy Parent) ¥, (Noisy Child) c1 - Wi )
fl(W) = — 5 5 +c3 - Slgl'(wl) (46)
Fig. 11. Plot of the new bivariate shrinkage function derived from the Model V€L Wi+ C2 - wh
3 proposed in (37).
Co - W2 .
fQ(W) = — 5 5 + ¢4 - Slgl'(UJQ) . (47)
\e1-wi H+co - wy
fawy =~ V3. o (40)
2 o3 o \2 " 2’ Substituting (46) and (47) into the (25) and (26) gives
aal Y2
() +(2) )
N €195, 2
o ) . w1+ =soft (yl, c:»,an) (48)
Substituting (39) and (40) into the (25) and (26) gives T
2
R Co0
o W - <1 + n) :SOft(yg,C4er) (49)
. 30
W |14+ =57 | =0 (41)
o1t where
. \/30% ~2 ~2
w2 | 14+ — =ys (42) T =4/C1 W] +co- W5 (50)
o5T
These two equations also do not have a simple closed-form so-
where lution. This means there is no simple expression for the bivariate
shrinkage function. Like Model 3, iterative numerical methods
~ 2 ~ 2 . . . .
. Wi\ (e (43) can be used to obtain the solution. The solution using the suc-
o1 o9 ) cessive substitution method and Newton—Raphson method can

be described as follows.

These two equations do not have a simple closed-form solution  Algorithm Using the Successive Substitution Methdtie
like Model 1. This means that there is no clean expression falgorithm can be given as follows.
the bivariate shrinkage function. However, the solution can be
found using iterative numerical methods. The solution using tfi
successive substitution method and Newton—-Raphson methzq B NOR -

. . . . . wh =y and w5 =10, and k£ =0.
will be described in Section II-B4 as a special case. 2)1 Calculate 3 usin

A plot of the bivariate shrinkage function using Model 3 i$ 5 g 5
illustrated in Fig. 11. By means of the marginal varianegand r = /¢y - (w&”) +co- (wg’“l) .
o5 0f Model 3, any ellipsoidal deadzone can be obtained. It do
not restrict us to a circular deadzone in the shrinkage function,
as in Model 1. Although it is not obvious, the deadzone can be

Initialize @ and @l for example,

Find w£k+” and wg’““l using

written as ‘ soft , 302
uA][lk+1] _ (1 0230n) (51)
_ ()
deadzone= {(yl,m): \/(y1 c01) + (Y2 - 02)” < \/302} 2
[k41] _SOft (4, ca07)
wy DR (52)
Note that ifo; = o, = o, we get Model 1. (1 + 1—>
4) Model 4: Although Model 2 allows us to make a transi- -
tion from the independent model and the newly proposed d&- Find the differences, i.e., € = w£ o

ie.
pendent model (Model 1), the marginal variances are the sam%] and ¢ = wg“” — wg“]
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5) If both e; and e are small, then ter-
minate the iteration. Otherwise, set
k=k+1, go to step 2. .
3
Algorithm Using Newton Raphson Methodhe conver-
gence is only linear if the simple successive iteration method2 ;
used. To improve the rate of convergence, the Newton-RaphsE 0
method, which has quadratic convergence, can be used. g _,
general solution of this method for (48) and (49) requires tt% _,

2

solution over two variables, namely; andws. However, to

reduce the computational complexity, we describe a modific

tion that transforms the problem into one having one variable.

Appendix C, itis proven that it is guaranteed to converge. Usit

(48) and (49) with (50), one gets

soft (yl, 630'7%) 2

(r + c102)?

g(r) =1

soft (yg, 6402) 2

J _1=0,
(r + co0?)

+co (53)
Therefore, our problem reduces to finding a solutionger) =
0 using the Newton-Raphson method. Afteis obtained, the
solution can be found using (48) and (49).

Newton'’s iteration can be stated as

w9 (TM)

]
g (7,[k]) :

(54)

From (53)

soft (yl, 6302) 2

C1
(r+ 610%)3

SOft(ya, cy0?)?

+co (7’ T 6202)3

) . (55)

-3

%
920522444
(IIALTIHL
(555

244

-4
L5557 Z
Z7
""lli'l;, ;
l,,'l,,"ll

%%

-4

¥, (Noisy Parent) ¥, (Noisy Child)

Fig. 12. Plot of the new bivariate shrinkage function derived from the Model
4 proposed in (44).

rameters, any kind of ellipsoidal deadzone can be obtained, and
the width of the stripe deadzone can be adjustable. Note that if
c1 = ¢ = a? andes = ¢y = b, we get Model 2.

I1l. APPLICATION TO IMAGE DENOISING

In Section Il, we have proposed new joint statistical models
for wavelet coefficients and obtained MAP estimators for each
model (in two cases, in closed form). This section presents three
image denoising examples to show the efficiency of these new
models and compares them with other methods in the literature.
In the first example, Model 1 will be used and will be com-
pared with classical soft thresholding. In the second example,
we will develop a subband dependent data-driven image de-
noising algorithm similar to BayesShrink, which uses Model 3,

The Newton—Raphson algorithm can be given step-by-stepai the results will be compared with VisuShrink, SureShrink,

follows.

1) Initiliaze O, for example, o = e +
coy3 and k= 0.

2) Calculate g(T[k]? using (53).

3) Calculate ¢ (v} using (55).

4) Calculate  r[*+1 using (54).

5) Find the difference between rl*+1 and

PRl e = plt1]
6) If ¢ is small, go step 8. Otherwise,
k=k+1, and o to step 2.

7) Using the  7#**1 calculated after this

iterartion, w; can be obtained as
soft ,c302
ay = 2 L 05) (56)
1+ €104

Y

BayesShrink, and the hidden Markov tree model, which are also
data-driven systems. In our numerical experiments, it was found
that Model 2 and 4 give negligible improvement in image de-
noising. (In those experiments, the optimal parameter values
were found using a search.) Therefore, the selection of the tun-
able parameters in Model 2 and 4 was not developed. In addi-
tion, Model 3 gave marginal improvement over Model 1, but for
Model 3, the parameters ando, can be found in the way de-
scribed in Section IlI-A. In the third example, the performance
of a subband-dependent system using Model 1 will be demon-
strated on the dual-tree complex wavelet transform.

A. Example 1

In this experiment, a critically sampled orthogonal discrete
wavelet transform, with Daubechies length-8 filter, is used. We
have compared our bivariate shrinkage function (30) with the
classical soft thresholding estimator given in (12) for image de-
noising. The 51 512 Lena image is used for this purpose.

A plot of a bivariate shrinkage function using Model 4 is illusZero mean white Gaussian noise is added to the original image

trated in Fig. 12. By means of the tunable parametgrs;, cs,

(0, = 25.5). The PSNR value of the noisy image is 20.02

andc,, the Model 4 does not restrict us to a circular deadzonedB. Part of the original and the noisy images are illustrated in
the shrinkage function as in the Models 1 and 2. Using the gaig. 13(a) and (b).
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Fig. 13. (a) Original image. (b) Noisy image with PSNR 20.02 dB. (c) Denoised image using soft thresholding; PSNR27.73 dB. (d) Denoised image
using new bivariate shrinkage function given in (30); PSNR28.83 dB.

The denoised image obtained using the soft threshold hamathods. In addition, the solution requires theriori knowl-
PSNR of 27.73 dB [Fig. 13(c)]. The denoised image obtaineige of the noise varianeg’ and the marginal variances’
using the new bivariate shrinkage function has a PSNR of 28.88d o3 for a data-driven system. In our system, the marginal
dB (Fig. 13(d)). In addition, scalar hard thresholding results wariances are calculated separately for each subband in order to
a PSNR of 27.54 dB (not shown). The threshold value in eabave subband adaptivity.

case was chosen to maximize the PSNR. Fig. 14 illustrates the subband regions of the two-dimensional
(2-D) critically sampled wavelet transform. For convenience, let
B. Example 2 us label the subbandd H;,, HL;, and LH;,, wherek is the

In this examp|e, a subband adaptive data-driven imaggale, and’ is the coarsest scale. The smallas, the finer the
denoising system that uses Model 3 given will be describe¥tale is. Let us also define subbaH(s). P(.5) is the subband
and some comparison to VisuShrink [14], SureShrink [15T,fthe parents of the coefficients of the subbahdor example,
BayesShrink [4], and the hidden Markov tree model [11] will b S is HHy, thenP(S) is H Hy, or if S'is HL,, thenP(S) is
given. Our system exploits only the parent-child dependenci€d-s-
as opposed to the ones exploiting intra-scale dependencie30 estimate the noise varianag from the noisy wavelet co-
[29], [30], [36], [40]. efficients, a robust median estimator is used from the finest scale

In this system, the wavelet pairs in each subband are assu@yelet coefficients H, subband) [14].
to be realizations from Model 3 to create a system that is adap-
tive to different subband characteristics. As described in Sec- mediar(|y:|)

2 Somas 0 Vi€ subbanddH;.  (57)

tion 1I-B3, the solution for the MAP estimator needs iterative o, =
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we obtained better PSNR values with our model if we use the

- HL, Laplacian assumption. Therefore, in our system, we use (62)
HH and (63).

3 ﬁ HL Using (58) and (59)71 ando» can be estimated as

LH, wz o1 =¢/(62, —2)+ (64)

. 62 =63, — 2)+. (65)

Now, everything that is necessary in order to apply a

MAP estimator corresponding to Model @1,03,0,) is
estimated. Either the successive substitution method or the

LH, HH, Newton—Raphson method described in Section 11-B3 can be
used to estimate wavelet coefficients. This algorithm results in
coefficient and parent estimates. We only use coefficient esti-
mates. For simplicity, we did not exploit the double estimation
of coefficients above the finest scale.

Let us summarize the algorithm.

LL HL
3
N
v

3

LH

Fig. 14. Subband regions of critically sampled wavelet transform.

. . io
Let us assume that we are trying to estimate the marginal v T _7)Calculate the noise variance on USING
anceso; ando, for the subband$ and P(S). Recall our ob- 2) For each subband, (S = HHy HLi,LHii =
servation model 1 7)
Y1 =wi + 71 ( E<3';1:)’)).Calculate &y, and &, using (62) and
Y2 =w2 + N2 b) Calculate &1 and &, using(64) and
(65);

whereyy, wy, n1 € S, andya, wq, ne € P(S). Sincew; and

ny1 andwsy andns are independent of each other, one gets c) Estimate each coefficient using either

the successive substitution method or the

02, =02 + o2 (58) Newton-Raphson method described in Sec-
5 o ) tion 11-B3.
oy, =05+ 0, (59)
wheres,, ando,, are the variances af; andy,. Sincey; In this experiment we used three 52512 grayscale images,
andy» are modeled as zero mean,, ando,, can be found namely, Lena, Boat, and Barbara. This algorithm was tested
empirically by using different noise levels, =10, 20, and 30 and compared
with VisuShrink, SureShrink, BayesShrink, and HMT. Perfor-
~2 :i Z 2, (60) Mmance analysis is done using the PSNR measure, detenote
NONE et . the original and the denoisied image. The rms error is given by
y1:CS
~2 1 2
o, =—5 ; 61 1
"N yQ.ez;(s) . Y TN zk:(s’“ ~ d)? (66)

2 2 H
WhereNl andN; are the sizes of thg §ubbanﬂsandP(S), whereN? is the number of pixels. The PSNR in decibels is given
respectively. Although these are empirical, the same results ¢can

be obtained with maximum likelihood (ML) estimator @f, if

one assumeg, andy, are Gaussian and us8§ observations 256
for y; and N observations fog, in order to estimate,, and PSNR= 20log,, < B ) . (67)
oy, . However, ify; andy» are assumed to be Laplacian, the ML
estimator ofv,,, is given by Each PSNR value in the table is averaged over five runs. The
results can be seen in Table I. In this table, the highest PSNR
N _\/5 62 value among three algorithms is emphasized with a Star
Tn _N_f Z vl (62) As seen from the results, our algorithm mostly outperfoms the
yi€s others.
Gy, _ig Z 2] (63) Other i.mage denoising techniqges that explditascalede-
2 yicn(s) pendencies [26], [29], [30], [41] yield better performance than

the proposed algorithm does. We are currently investigating ex-
Either of the equation pairs (60) and (61) or (62) and (63) caensions of the proposed algorithm in order to exploit intrascale
be used as the estimatesaf, ando,,. In our experiments, dependencies.
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TABLE |
AVERAGE PSNR VALUES OF DENOISEDIMAGES OVER FIVE RUNS FORDIFFERENT TEST IMAGES AND NOISELEVELS (o, ) OF NOISY, VISUSHRINK, SURESHRINK,
BAYESSHRINK, HMT SYSTEM, AND OUR SYSTEM DESCRIBED IN SECTIONIII-B

Noisy | VisuShrink | SureShrink | BayesShrink | HMT | Our Model 3 || Dual Tree
Lena
o =10 || 28.18 28.76 33.28 3332 33.84 3394 x 34.77
=20 || 22.14 26.46 30.22 30.17 30.39 30.73 31.71
=30 || 18.62 25.14 28.38 28.48 28.35 28.94 29.85
Boat :
c=10 || 28.16 26.49 31.19 31.80 3228 % 32.25 32.85
o =20 [ 22.15 24.43 28.14 28.48 28.84 28.93 * 29.81
o=130 [| 18.62 23.33 26.52 26.60 26.83 27.11 % 27.99
Barbara
c=10 || 28.16 24.81 30.21 30.86 31.36 » 31.13 31.30
oc=20 | 22.14 22.81 2591 27.13 27.80 x 27.25 27.78
o =230 || 18.62 22.00 24.33 25.16 25.11 25.21 « 25.62
C. Example 3 noise levels, the bivariate shrinkage procedure described here

In this example, we will demonstrate the performance §A" be competitive with the CHMT.

our bivariate shrinkage function derived from Model 1 on
the dual-tree complex wavelet transform [23], [24], and the
performance will be tested with a subband adaptive denoising
system like the one described in Example 2. In this paper, first four new bivariate distributions are pro-
The dual-tree DWT is an overcomplete wavelet transforrppsed for wavelet coefficients of natural images in order to char-
which can be implemented by two wavelet filterbanks operatiragterize the dependencies between a coefficient and its parent,
in parallel. The performance gains provided by the dual-treed second, the corresponding bivariate shrinkage functions are
DWT come from designing the filters in the two filter banks apderived from them using Bayesian estimation, in particular, the
propriately. The coefficients produced by these filterbanks ak&AP estimator. Two of these new bivariate shrinkage functions
the real and imaginary parts of a complex coefficient. Assunfilodel 1 and 2) are given by simple formulas. Therefore, they
the sets of coefficients; andw; are produced by these filter- maintain the simplicity, efficiency, and intuition of the classical
banks separately, and the complex coefficients can represergefi thresholding approach. In order to characterize larger group
by ¢; = u; + v;. of distributions, Models 3 and 4 are proposed, and numerical
The properties of dual-tree DWT include the following.  solutions for the MAP estimators are given and are proven to

« It is nearly shift invariant, i.e., small signal shifts do®Onverge. _ _
not affect the magnitudes of the complex coefficients In order to show the effectiveness of these new estimators,

(I@I _ \/m) although they do affect the real anch_ree e>_<amplgs are presented and compared with effective tech-
imaginary parts. Therefore, the magnitude informatiomques in the literature. In the second example, a subband-adap-
is 4 more reliabie measure,than either the eabr the f\e data-driven system is developed and compared with the
imaginarve: barts "G HMT model [11], which exploits the interscale dependencies
ginaryv; parts. of coefficients and BayesShrink [4], which is also a subband-
1) The basis functions have directional selectivity propergdaptive data-driven system, which outperforms VisuShrink and
at+15,+45, andt-75°, which the regular critically sam- SureShrink. In our experiments, our system mostly outperforms

IV. CONCLUSION AND FUTURE WORK

pled transform does not have. the others. The performance of a subband-adaptive data-driven
2) Form-dimensional signals, it ha®™ times redundancy, system is also demonstrated on the dual-tree complex wavelet
for example, four times redundant for images. transform as another example.

The new bivariate shrinkage function will be applied to the It should be emphasized that in this paper, we investigate
magnitude of the dual-tree DWT coefficients since it is morenly how the classical soft thresholding approach of Donoho
shift invariant than the real or imaginary parts. We assume thad Johnstone [14] should be modified to take into account
that magnitudes of the coefficients are corrupted by additiparent-child statistics. State-of-the-art denoising algorithms [3],
Gaussian noise, even though they are not. [8], [29], [30] generally use local adaptive methods or in other

The performance of this system is tested with the same exays exploit dependencies between larger numbers of coeffi-
periment in Example 2. The PSNR values are illustrated in tieents. Using local adaptive methods in combination with bi-
last column of Table I. From this table, it is evident that usingariate shrinkage may further improve the denoising results re-
our bivariate shrinkage function with the dual-tree DWT proported in Section Ill. Our experiments showed that the use of our
vides better performance than using it with the critically sanmodels 2, 3, and 4 resulted in negligible improvement on image
pled DWT. In [8], the HMT modeling is also extended to th&lenoising performance over our Model 1. Therefore, in practice
dual-tree DWT (CHMT). Our experiments suggest that for higlve suggest Model 1 due to its simplicity and efficiency. Other
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simple bivariate shrinkage functions can also be developed, fahereR = \/soft(y1, bo2)? + soft(y», bo2 )2. Substituting- in
example, a bivariate hard threshold with a circular or ellipsoid@él1) gives

deadzone, or a bivariate generalization of the semi-soft rule of

[17] and [18]. o (R-0%-a),

! . . = - soft -b 74
We obtained these results by observing the dependencies be- e R (Ul’ 7n ) (74)
tween only coefficients and their parents. It is expected that the
results can be further improved if the other dependencies be-
g . . . APPENDIX C
tween a coefficient and its other neighbors are exploited. Hence,
. S L . . PROOF OFCONVERGENCE
we are currently investigating multivariate extensions of this
new bivariate shrinkage rule. In this section, we will prove that Newton’s methods de-
scribed in Sections 11-B3 and 4 for Model 3 and Model 4 are
APPENDIX A convergent for all initial conditions. Since Model 3 is special

DERIVATION OF THE SHRINKAGE FUNCTION FORMODEL 1 case of Model 4, we will examine Model 4. Our problem is to

find the r value where
Substituting (28) and (29) into the (25) and (26) gives rvalew
SOft(yl,c;),a,%)Q

302 302 glr)=c - ————5—
wy- | 1+ @ =y, wz-|1l+ Vi, =y2 (68) (r+c102)?
ar ar ft( c 0_2)2
soft(y2, cs0?
Tl i S O )
wherer = \/%? + 3. Using (68) (r+ c202)
2 2 Sincer is defined as
P2 = Yi S+ Y3 .
( +\/_U”) (1+\/§;72) r=1/c1 w4+ ey wh (76)
2
R AN r is always greater than zero, and> 0, i.e., g(r) is defined
Tt =Yty only onr > 0. If we take the derivative of(r), we get

\/30’2 SOft(yl 6302 )2 SOft(yQ 6402 )2
- — 2 2 n () — —92 B ’ n . ) n )
T <\/ Yi Ty o N . (69  g'(r) 1 (r + c102)? +c2 0 + c202)?

(77)
Substitutingr in (68) gives Note thaty’(r) < 0 for all r values since; > 0, ¢, > 0, and
r > 0. Thereforeg(r) is a decreasing function, which means
(\/ﬁ _ ﬁ) thatg(r) has a maximum at = 0. Then, ifg(r) is positive, it
yi T+ Y p . . . o .
iy = oy (70) has a zero, and the zero is unique. Besideg(if is negative,
Vi +y3 g(r) does not have a zero, which means Newton'’s iteration does
not have a solution, but = 0 maximizes the MAP estimator.
Therefore, one can assume that= 0 is the solution for the
APPENDIX B Newton’s iteration, i.e., set = 0 as a zero fog(r) = 0 if
DERIVATION OF THE SHRINKAGE FUNCTION FORMODEL 2 g(0) < 0.
Substituting (33) and (34) into (25) and (26) gives Let us consider the caggr) > 0. The second derivative of
g(r) can be written as
. ac?
wy - <1 + 7—> = (|y1| - ba )+ Slgr(yl g”(T) -6 <61 ) SOﬁ(yl,Cgaz)Q Y- SOfT(yQ, 640'7%)2>
=soft (1, bo?) (71) (r+cof)? (7 + c202)* 79)
iy - < a02> (Iua] — bo2) . - sign(ys) From this, it can be concluded thgt(r) > 0 for all » values,
r s which means thaf(r) is a convex function. Therefore, if a func-
=S0ft (42, bo2) (72) tionis convex and has a unique zero, the Newton iteration will
converge to it from any starting point. In our case, we need a
wherer — \/m Using (71) and (72) small modification since the function is defined only fop> 0

values. If an iteration gives < 0 values, then set = 0.

2 2
o soft(yy,bo,)”  soft(ys, boy)
= 3 )2 REFERENCES
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(1+2) (14
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