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Bivariate Shrinkage Functions for Wavelet-Based
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Abstract—Most simple nonlinear thresholding rules for
wavelet-based denoising assume that the wavelet coefficients are
independent. However, wavelet coefficients of natural images
have significant dependencies. In this paper, we will only consider
the dependencies between the coefficients and their parents in
detail. For this purpose, new non-Gaussian bivariate distributions
are proposed, and corresponding nonlinear threshold functions
(shrinkage functions) are derived from the models using Bayesian
estimation theory. The new shrinkage functions do not assume
the independence of wavelet coefficients. We will show three
image denoising examples in order to show the performance of
these new bivariate shrinkage rules. In the second example, a
simple subband-dependent data-driven image denoising system
is described and compared with effective data-driven techniques
in the literature, namely VisuShrink, SureShrink, BayesShrink,
and hidden Markov models. In the third example, the same idea
is applied to the dual-tree complex wavelet coefficients.

Index Terms—Bivariate shrinkage, image denoising, statistical
modeling, wavelet transforms.

I. INTRODUCTION

M ULTISCALE decompositions have shown significant
advantages in the representation of signals, and they are

used extensively in image compression [9], [32], segmentation
[6], [25], and denoising [10], [27], [29], [30], for example. In
this paper, we will mostly deal with the modeling of the wavelet
transform coefficients of natural images and its application to
the image denoising problem. The denoising of a natural image
corrupted by Gaussian noise is a classic problem in signal
processing. The wavelet transform has become an important
tool for this problem due to its energy compaction property.
Crudely, it states that the wavelet transform yields a large
number of small coefficients and a small number of large
coefficients.

Simple denoising algorithms that use the wavelet transform
consist of three steps.

1) Calculate the wavelet transform of the
noisy signal.
2) Modify the noisy wavelet coefficients
according to some rule.
3) Compute the inverse transform using the
modified coefficients.
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One of the most well-known rules for the second step is soft
thresholding analyzed by Donoho [13]. Due to its effectiveness
and simplicity, it is frequently used in the literature. The main
idea is to subtract the threshold valuefrom all coefficients
larger than and to set all other coefficients to zero. Alternative
approaches can be found in, for example, [1], [2], [5], [7], [10],
[11], [14], [15], [17], [18], [21], [22], [27], [29], [30], [35], [36],
[38], and [39]. Generally, these methods use a threshold value
that must be estimated correctly in order to obtain good per-
formance. VisuShrink [14] uses one of the well-known thresh-
olding rules: the universal threshold. In addition, subband adap-
tive systems have superior performance, such as SureShrink
[15], which is a data-driven system. Recently, BayesShrink [4],
which is also a data-driven subband adaptive technique, is pro-
posed and outperfoms VisuShrink and SureShrink.

Recently, some research has addressed the development of
statistical models for natural images and their transform coef-
ficients [16], [19], [20], [33], [34], [36]. Hence, statistical ap-
proaches have emerged as a new tool for wavelet-based de-
noising. The basic idea is to model wavelet transform coeffi-
cients with prior probability distributions. Then, the problem
can be expressed as the estimation of clean coefficients using
this a priori information with Bayesian estimation techniques,
such as the MAP estimator.

If the MAP estimator is used for this problem, the solution
requiresa priori knowledge about the distribution of wavelet
coefficients. Therefore, two problems arise: 1) What kind of dis-
tributions represent the wavelet coefficients and 2) what is the
corresponding estimator (shrinkage function)?

Statistical models pretend wavelet coefficients are random
variables described by some probability distribution function.
For the first problem, these models mostly assume that the
coefficients are independent and try to characterize them by
using Gaussian, Laplacian, generalized Gaussian, or other dis-
tributions. For example, the classical soft threshold shrinkage
function can be obtained by a Laplacian assumption. Bayesian
methods for image denoising using other distributions have
also been proposed [17], [18], [21], [22], [37], [39]. However,
these simple distributions are weak models for wavelet coeffi-
cients of natural images because they ignore the dependencies
between coefficients. It is well known that wavelet coefficients
are statistically dependent [35] due to two properties of the
wavelet transform: 1) If a wavelet coefficient is large/small,
the adjacent coefficients are likely to be large/small, and 2)
large/small coefficients tend to propagate across the scales.

Algorithms that exploit the dependency between coefficients
can give better results compared with the ones derived using an
independence assumption [5], [7], [11], [12], [26], [30], [35],
[36], [38], [41], [42]. For example, in [11], a new framework
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to capture the statistical dependencies by using wavelet-do-
main hidden Markov models (HMT) is developed. In [41]
and [42], improved local contextual hidden Markov models
are introduced. In [35] and [36], the wavelet coefficients are
assumed to be Gaussian given the neighbor coefficients, and a
joint shrinkage function that uses neighbor wavelet coefficients
is proposed. In [30], [38], and [40], the class of Gaussian
scale mixtures for modeling natural images is proposed and
applied to the image-denoising problem. A local adaptive
window-based image denoising algorithm using ML and MAP
estimates, which is a powerful low-complexity algorithm
exploiting the intrascale dependencies of wavelet coefficients
[29], is proposed. Interscale dependencies are considered as
an extension of this algorithm in [3]. In addition, [28] presents
an information-theoretic analysis of statistical dependencies
between wavelet coefficients. In [12], a Bayesian approach
where the underlying signal in possibly non-Gaussian noise is
modeled using Besov norm priors is proposed. In this paper,
we use new bivariate probability distribution functions (pdfs)
and derive corresponding bivariate shrinkage functions using
Bayesian estimation theory, specifically the MAP estimator. In
this paper, the aim is similar to [12]; however, a general Besov
norm is not used here as it is in [12], but an explicit formula
for a shrinkage function is obtained. An explicit multivariate
shrinkage function for wavelet denoising is also presented in
[44]. The shrinkage function in [44], which was derived using
a different method, is similar to Model 1, which is one of the
shinkage methods that will be presented in this paper.

The organization of this paper is as follows. In Section II,
the basic idea of Bayesian denoising will be briefly described.
Section II-A describes the marginal models and how the soft
thresholding operator can be obtained using the Laplace pdf.
Then, Section II-B describes the bivariate models, and new non-
Gaussian bivariate pdfs are proposed to model the joint statis-
tics of wavelet coefficients. These models try to capture the de-
pendencies between a coefficient and its parent in detail. Four
new pdfs will be proposed, starting from the simplest model,
and more complicated models are proposed in order to charac-
terize a larger family of pdfs. In addition, for each model, the
corresponding MAP estimator will be obtained. In Section III,
three image denoising examples based on these new models will
be illustrated and compared with other algorithms. In the first
example, the new bivariate shrinkage function developed using
Model 1 and the classical soft thresholding will be compared by
optimizing the threshold value. In the second example, a simple
subband adaptive data-driven image denoising algorithm that
uses Model 3 will be described, and the estimation of the pa-
rameters, which is necessary for the model, will be explained.
The results will be compared with the VisuShrink, SureShrink,
BayesShrink, and HMT algorithms. In the third example, the
performance of a subband-dependent system will be demon-
strated on the dual-tree complex wavelet transform.

II. BAYESIAN DENOISING

In this section, the denoising of an image corrupted by white
Gaussian noise will be considered, i.e.,

(1)

where is independent Gaussian noise. We observe(a noisy
signal) and wish to estimate the desired signalas accurately
as possible according to some criteria. In the wavelet domain,
if we use an orthogonal wavelet transform, the problem can be
formulated as

(2)

where
noisy wavelet coefficient;
true coefficient;
noise, which is independent Gaussian.

This is a classical problem in estimation theory. Our aim is to
estimate from the noisy observation. The maximuma pos-
teriori (MAP) estimator will be used for this purpose. Marginal
and bivariate models will be discussed for this problem in Sec-
tions II-A and B, and new MAP estimators are derived.

A. Marginal Model

The classical MAP estimator for (2) is

(3)

Using Bayes rule, one gets

(4)

Therefore, these equations allow us to write this estimation in
terms of the pdf of the noise and the pdf of the signal coef-
ficient . From the assumption on the noise,is zero mean
Gaussian with variance , i.e.,

(5)

It has been observed that wavelet coefficients of natural im-
ages have highly non-Gaussian statistics [16], [33]. The pdf for
wavelet coefficients is often modeled as a generalized (heavy-
tailed) Gaussian [35]

(6)

where are the parameters for this model, and is the
parameter-dependent normalization constant. Other pdf models
have also been proposed [17], [18], [21], [22], [39]. In practice,
generally, two problems arise with the Bayesian approach when
an accurate but complicated pdf is used: 1) It can be dif-
ficult to estimate the parameters of for a specific image, es-
pecially from noisy data, and 2) the estimators for these models
may not have simple closed form solution and can be difficult
to obtain. The solution for these problems usually requires nu-
merical techniques.

Fig. 1(a) illustrates the histogram of the wavelet coefficients
computed from several natural images. A Laplacian density is
fitted to this empirical histogram. The same data is plotted in the
log domain in Fig. 1(b) in order to show the failure of Laplacian
assumption along the tail. Even though it is not the most accu-
rate, the Laplacian is an especially convenient assumption for
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(a) (b)

Fig. 1. (a) Empirical histogram computed from several natural images (solid
line). A Laplacian pdf is fitted to the empirical histogram (dashed line). (b) Same
data is illustrated in log domain in order to emphasize the tail difference.

because the MAP estimator is simple to compute and is,
in fact, given by the soft threshold rule.

Let us continue developing the MAP estimator and show it for
Gaussian and Laplacian cases. Equation (4) is also equivalent to

(7)

As in [21], let us define . By using (5), (7)
becomes

(8)

This is equivalent to solving the following equation for if
is assumed to be strictly convex and differentiable.

(9)

If is assumed to be a zero mean Gaussian density with
variance , then , and the
estimator can be written as

(10)

If it is Laplacian

(11)

then , and the estimator will be

sign (12)

Here, is defined as

if
otherwise.

(13)

Equation (12) is the classical soft shrinkage function. The Lapla-
cian pdf and corresponding shrinkage function are illustrated in
Fig. 2. Let us define the soft operator as

soft sign (14)

(a) (b)

Fig. 2. (a) Laplacian pdf. (b) Corresponding shrinkage function.

This operator will be often used while developing bivariate
shrinkage functions. The soft shrinkage function (12) can be
written as

soft (15)

B. Bivariate Models

Marginal models cannot model the statistical dependencies
between wavelet coefficients. However, there are strong depen-
dencies between neighbor coefficients such as between a coffi-
cient, its parent (adjacent coarser scale locations), and their sib-
lings (adjacent spatial locations). In this section, we focus on the
dependencies only between a coefficient and its parent in detail.
In [35], it is suggested that the pdf of a coefficient, conditioned
on neighbor coefficients, is Gaussian, and a linear Bayesian es-
timator is proposed that requires the estimation of neighbor co-
efficients. This paper suggests four new jointly non-Gaussian
models to characterize the dependency between a coefficient
and its parent and derives the corresponding bivariate MAP es-
timators based on noisy wavelet coefficients in detail.

Here, we modify the Bayesian estimation problem as to take
into account the statistical dependency between a coefficient
and its parent. Let represent the parent of . ( is the
wavelet coefficient at the same position as, but at the next
coarser scale.) Then

(16)

where and are noisy observations of and , and
and are noise samples. We can write

(17)

where , and .
The standard MAP estimator for given the corrupted ob-

servation is

(18)

After some manipulations, this equation can be written as

(19)
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Fig. 3. Empirical joint parent-child histogram of wavelet coefficients
(computed from the Corel image database).

From this equation, the Bayes rule allows us to write this estima-
tion in terms of the probability densities of noise and the prior
density of the wavelet coefficients. In order to use this equation
to estimate the original signal, we must know both pdfs. We as-
sume the noise is i.i.d. Gaussian, and we write the noise pdf as

(20)

The same problem as in marginal case appears. What kind of
joint pdf models the wavelet coefficients? The joint empirical
coefficient-parent histogram can be used to observe . For
this purpose, we used 200 512512 images from the Corel
image database in order to stabilize the corresponding statistic.
Hence, we got a very smooth histogram. We used Daubechies
length-8 filter to compute the wavelet transform. The joint his-
togram, computed using this set, is illustrated in Fig. 3. Its con-
tour plot is also shown in this figure.

Before proposing models for this empirical histogram, let
us investigate what kind of shrinkage function the empirical
histogram has. Using empirical data with (19), the shrinkage
function can be found numerically. The numerically calculated
shrinkage function is illustrated in Fig. 4. As this plot shows, the
shrinkage function should depend on bothand .

1) Model 1: It is hard to find a model for the empirical his-
togram in Fig. 3, but we propose the following pdf:

(21)

With this pdf, and are uncorrelated but not independent.
We will call this model Model 1 in order not to confuse this
model with the models proposed later in this paper. This is a cir-
cularly symmetric pdf and is related to the family of spherically
invariant random processes (SIRPs) that are used, for example,
in speech processing [31], [43].

Fig. 4. Joint shrinkage function derived numerically from the empirical joint
parent-child histogram illustrated in Fig. 3.

Fig. 5. Independent Laplacian model (22) for joint pdf of parent-child wavelet
coefficient pairs.

Before going further with this new model, let us consider the
case where and are assumed to be independent Laplacian;
then, the joint pdf can be written as

(22)

A plot of this model is illustrated in Fig. 5. If this model is
compared with Fig. 3, the difference between them can be easily
observed. Let us consider our new model given in (21). The plot
of this pdf and its contour plot is illustrated in Fig. 6. As one can
easily notice, this model is a much better approximation to the
empirical histogram illustrated in Fig. 3.

Let us continue on developing the MAP estimator given in
(19), which is equivalent to

(23)



2748 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 11, NOVEMBER 2002

Fig. 6. New bivariate pdf (21) proposed for joint pdf of parent-child wavelet
coefficient pairs (Model 1).

Fig. 7. Joint shrinkage function derived from the Laplacian independent model
(Fig. 5).

Let us define . By using (20), (23) becomes

(24)
This is equivalent to solving the following equations together, if

is assumed to be strictly convex and differentible:

(25)

(26)

where and represent the derivative of with respect
to and , respectively.

The MAP estimator for the Laplacian independent model in
(22) is illustrated in Fig. 7. This rule applies the soft threshold
function to to estimate . It is the usual soft shrinkage func-
tion.

Fig. 8. New bivariate shrinkage function derived from the Model 1 proposed
in (21) (Fig. 6).

Let us find the MAP estimator corresponding to our new
model given in (21). can be written as

(27)

From this

(28)

(29)

Solving (25) and (26) by using (28) and (29), the MAP estimator
(or “the joint shrinkage function”) can be written as

(30)

The derivation can be found in Appendix A. Fig. 8 shows the
plot of this bivariate shrinkage function. As this plot illustrates,
there is a circular deadzone (the deadzone is the region where
the estimated value is zero), i.e.,

deadzone

Denoising methods derived using the independence assumption
disregard the parent value when estimating each coefficient

. For example, in scalar soft thresholding, for all coeffi-
cients, the threshold value is fixed and independent from other
coefficients—if the coefficient is below the threshold value, we
make it zero. However, our results clearly show that the esti-
mated value should depend on the parent value. The smaller the
parent value, the greater the shrinkage. This result is very inter-
esting because it illustrates the effect of taking into account the
parent-child dependency.
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Fig. 9. New bivariate pdf (31) proposed for joint pdf of parent-child wavelet
coefficient pairs (Model 2).

Note that when the parent is zero, the MAP estimate ofis
obtained by the soft threshold function. If parent , then

soft .
2) Model 2: Although Model 1 given in (21) is a better ap-

proximation to the empirical histogram than the independent
Laplacian model, it is not possible to represent independent
distributions with it. To characterize a larger group of proba-
bility distributions for the wavelet pairs, we need a more flex-
ible model. For this purpose, we propose a pdf that can vary
between Model 1 and the independent Laplacian model given
in (22) with tunable parameters. The proposed joint pdf, called
Model 2 in this paper, can be written as

(31)
where is the normalization constant. A plot of this model is
illustrated in Fig. 9. Let us develop the MAP estimator for this
model. From (31)

(32)

and this gives

sign (33)

sign (34)

Solving (25) and (26) using (33) and (34), the bivariate
shrinkage function for this model can be obtained as

soft (35)

where soft is defined in (14) and

soft soft (36)

Fig. 10. New bivariate shrinkage function derived from the Model 2 proposed
in (31) (Fig. 9).

The derivation can be found in Appendix B. A plot of the
bivariate shrinkage function using this model is illustrated in
Fig. 10. As can be easily observed, there is a circular-like dead-
zone around the origin as in Model 1, but the deadzone also
contains a stripe corresponding to large parent values, as in
the independent Laplacian model. One can adjust the width of
the stripe-shaped deadzone and the radius of the circular-like
deadzone with the tunable parametersand . The bivariate
shrinkage function derived from Model 2 specializes both to
standard soft shrinkage function (Fig. 7) and to circular bivariate
shrinkage function (Fig. 8).

Note that when , we recover the scalar soft thresholding
rule; when , we recover the (30).

It should be noted that the selection of the model parameters
and via maximum likelihood for Model 2 turns out to be

more complicated than Model 1 because obtaining an expres-
sion for the parameters requires integrals that we cannot eval-
uate in closed form.

3) Model 3: In practice, the variance of the wavelet coeffi-
cients of natural images are quite different from scale to scale.
We would like to generalize Model 1 since the marginal vari-
ances are the same. For this purpose, we propose Model 3, which
has adjustable marginal variances, i.e.,

(37)
Let us develop the MAP estimator for this model. From the pdf

(38)

and this gives

(39)
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Fig. 11. Plot of the new bivariate shrinkage function derived from the Model
3 proposed in (37).

(40)

Substituting (39) and (40) into the (25) and (26) gives

(41)

(42)

where

(43)

These two equations do not have a simple closed-form solution
like Model 1. This means that there is no clean expression for
the bivariate shrinkage function. However, the solution can be
found using iterative numerical methods. The solution using the
successive substitution method and Newton–Raphson method
will be described in Section II-B4 as a special case.

A plot of the bivariate shrinkage function using Model 3 is
illustrated in Fig. 11. By means of the marginal variancesand

of Model 3, any ellipsoidal deadzone can be obtained. It does
not restrict us to a circular deadzone in the shrinkage function,
as in Model 1. Although it is not obvious, the deadzone can be
written as

deadzone

Note that if , we get Model 1.
4) Model 4: Although Model 2 allows us to make a transi-

tion from the independent model and the newly proposed de-
pendent model (Model 1), the marginal variances are the same

for Model 2. Therefore, we would like to generalize Model 2.
The proposed joint pdf is

(44)

where is the normalization constant. Let us call it Model 4
and try to develop the MAP estimator for this model. From the
pdf

(45)

and it gives

sign (46)

sign (47)

Substituting (46) and (47) into the (25) and (26) gives

soft (48)

soft (49)

where

(50)

These two equations also do not have a simple closed-form so-
lution. This means there is no simple expression for the bivariate
shrinkage function. Like Model 3, iterative numerical methods
can be used to obtain the solution. The solution using the suc-
cessive substitution method and Newton–Raphson method can
be described as follows.

Algorithm Using the Successive Substitution Method:The
algorithm can be given as follows.

1) Initialize and , for example,
and , and .

2) Calculate using

.

3) Find and using

soft
(51)

soft
(52)

4) Find the differences, i.e.,
and .
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5) If both and are small, then ter-
minate the iteration. Otherwise, set

, go to step 2.

Algorithm Using Newton Raphson Method:The conver-
gence is only linear if the simple successive iteration method is
used. To improve the rate of convergence, the Newton-Raphson
method, which has quadratic convergence, can be used. The
general solution of this method for (48) and (49) requires the
solution over two variables, namely, and . However, to
reduce the computational complexity, we describe a modifica-
tion that transforms the problem into one having one variable. In
Appendix C, it is proven that it is guaranteed to converge. Using
(48) and (49) with (50), one gets

soft

soft
(53)

Therefore, our problem reduces to finding a solution for
using the Newton-Raphson method. Afteris obtained, the

solution can be found using (48) and (49).
Newton’s iteration can be stated as

(54)

From (53)

soft

soft
(55)

The Newton–Raphson algorithm can be given step-by-step as
follows.

1) Initiliaze , for example,
and .

2) Calculate using (53).
3) Calculate using (55).
4) Calculate using (54).
5) Find the difference between and

,
6) If is small, go step 8. Otherwise,

, and o to step 2.
7) Using the calculated after this
iterartion, can be obtained as

soft
(56)

A plot of a bivariate shrinkage function using Model 4 is illus-
trated in Fig. 12. By means of the tunable parameters,
and , the Model 4 does not restrict us to a circular deadzone in
the shrinkage function as in the Models 1 and 2. Using the pa-

Fig. 12. Plot of the new bivariate shrinkage function derived from the Model
4 proposed in (44).

rameters, any kind of ellipsoidal deadzone can be obtained, and
the width of the stripe deadzone can be adjustable. Note that if

and , we get Model 2.

III. A PPLICATION TO IMAGE DENOISING

In Section II, we have proposed new joint statistical models
for wavelet coefficients and obtained MAP estimators for each
model (in two cases, in closed form). This section presents three
image denoising examples to show the efficiency of these new
models and compares them with other methods in the literature.
In the first example, Model 1 will be used and will be com-
pared with classical soft thresholding. In the second example,
we will develop a subband dependent data-driven image de-
noising algorithm similar to BayesShrink, which uses Model 3,
and the results will be compared with VisuShrink, SureShrink,
BayesShrink, and the hidden Markov tree model, which are also
data-driven systems. In our numerical experiments, it was found
that Model 2 and 4 give negligible improvement in image de-
noising. (In those experiments, the optimal parameter values
were found using a search.) Therefore, the selection of the tun-
able parameters in Model 2 and 4 was not developed. In addi-
tion, Model 3 gave marginal improvement over Model 1, but for
Model 3, the parameters and can be found in the way de-
scribed in Section III-A. In the third example, the performance
of a subband-dependent system using Model 1 will be demon-
strated on the dual-tree complex wavelet transform.

A. Example 1

In this experiment, a critically sampled orthogonal discrete
wavelet transform, with Daubechies length-8 filter, is used. We
have compared our bivariate shrinkage function (30) with the
classical soft thresholding estimator given in (12) for image de-
noising. The 512 512 Lena image is used for this purpose.
Zero mean white Gaussian noise is added to the original image

. The PSNR value of the noisy image is 20.02
dB. Part of the original and the noisy images are illustrated in
Fig. 13(a) and (b).
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Fig. 13. (a) Original image. (b) Noisy image with PSNR= 20:02 dB. (c) Denoised image using soft thresholding; PSNR= 27:73 dB. (d) Denoised image
using new bivariate shrinkage function given in (30); PSNR= 28:83 dB.

The denoised image obtained using the soft threshold has a
PSNR of 27.73 dB [Fig. 13(c)]. The denoised image obtained
using the new bivariate shrinkage function has a PSNR of 28.83
dB (Fig. 13(d)). In addition, scalar hard thresholding results in
a PSNR of 27.54 dB (not shown). The threshold value in each
case was chosen to maximize the PSNR.

B. Example 2

In this example, a subband adaptive data-driven image
denoising system that uses Model 3 given will be described,
and some comparison to VisuShrink [14], SureShrink [15],
BayesShrink [4], and the hidden Markov tree model [11] will be
given. Our system exploits only the parent-child dependencies
as opposed to the ones exploiting intra-scale dependencies
[29], [30], [36], [40].

In this system, the wavelet pairs in each subband are assumed
to be realizations from Model 3 to create a system that is adap-
tive to different subband characteristics. As described in Sec-
tion II-B3, the solution for the MAP estimator needs iterative

methods. In addition, the solution requires thea priori knowl-
edge of the noise variance and the marginal variances
and for a data-driven system. In our system, the marginal
variances are calculated separately for each subband in order to
have subband adaptivity.

Fig. 14 illustrates the subband regions of the two-dimensional
(2-D) critically sampled wavelet transform. For convenience, let
us label the subbands , , and , where is the
scale, and is the coarsest scale. The smalleris, the finer the
scale is. Let us also define subband . is the subband
of the parents of the coefficients of the subband. For example,
if is , then is , or if is , then is

.
To estimate the noise variance from the noisy wavelet co-

efficients, a robust median estimator is used from the finest scale
wavelet coefficients ( subband) [14].

median
subband (57)
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Fig. 14. Subband regions of critically sampled wavelet transform.

Let us assume that we are trying to estimate the marginal vari-
ances and for the subbands and . Recall our ob-
servation model

where , , , and , , . Since and
and and are independent of each other, one gets

(58)

(59)

where and are the variances of and . Since
and are modeled as zero mean, and can be found
empirically by

(60)

(61)

where and are the sizes of the subbandsand ,
respectively. Although these are empirical, the same results can
be obtained with maximum likelihood (ML) estimator of if
one assumes and are Gaussian and uses observations
for and observations for in order to estimate and

. However, if and are assumed to be Laplacian, the ML
estimator of is given by

(62)

(63)

Either of the equation pairs (60) and (61) or (62) and (63) can
be used as the estimates of and . In our experiments,

we obtained better PSNR values with our model if we use the
Laplacian assumption. Therefore, in our system, we use (62)
and (63).

Using (58) and (59), and can be estimated as

(64)

(65)

Now, everything that is necessary in order to apply a
MAP estimator corresponding to Model 3 is
estimated. Either the successive substitution method or the
Newton–Raphson method described in Section II-B3 can be
used to estimate wavelet coefficients. This algorithm results in
coefficient and parent estimates. We only use coefficient esti-
mates. For simplicity, we did not exploit the double estimation
of coefficients above the finest scale.

Let us summarize the algorithm.

1) Calculate the noise variance using
(57).
2) For each subband,

.
a) Calculate and using (62) and

(63);
b) Calculate and using(64) and

(65);
c) Estimate each coefficient using either

the successive substitution method or the
Newton–Raphson method described in Sec-
tion II-B3.

In this experiment we used three 512512 grayscale images,
namely, Lena, Boat, and Barbara. This algorithm was tested
using different noise levels 10, 20, and 30 and compared
with VisuShrink, SureShrink, BayesShrink, and HMT. Perfor-
mance analysis is done using the PSNR measure. Letdenote
the original and the denoisied image. The rms error is given by

(66)

where is the number of pixels. The PSNR in decibels is given
by

PSNR (67)

Each PSNR value in the table is averaged over five runs. The
results can be seen in Table I. In this table, the highest PSNR
value among three algorithms is emphasized with a star.
As seen from the results, our algorithm mostly outperfoms the
others.

Other image denoising techniques that exploitintrascalede-
pendencies [26], [29], [30], [41] yield better performance than
the proposed algorithm does. We are currently investigating ex-
tensions of the proposed algorithm in order to exploit intrascale
dependencies.
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TABLE I
AVERAGE PSNR VALUES OFDENOISEDIMAGES OVER FIVE RUNS FORDIFFERENTTESTIMAGES AND NOISELEVELS (� ) OF NOISY, VISUSHRINK, SURESHRINK,

BAYESSHRINK, HMT SYSTEM, AND OUR SYSTEM DESCRIBED INSECTION III-B

C. Example 3

In this example, we will demonstrate the performance of
our bivariate shrinkage function derived from Model 1 on
the dual-tree complex wavelet transform [23], [24], and the
performance will be tested with a subband adaptive denoising
system like the one described in Example 2.

The dual-tree DWT is an overcomplete wavelet transform,
which can be implemented by two wavelet filterbanks operating
in parallel. The performance gains provided by the dual-tree
DWT come from designing the filters in the two filter banks ap-
propriately. The coefficients produced by these filterbanks are
the real and imaginary parts of a complex coefficient. Assume
the sets of coefficients and are produced by these filter-
banks separately, and the complex coefficients can represented
by .

The properties of dual-tree DWT include the following.

• It is nearly shift invariant, i.e., small signal shifts do
not affect the magnitudes of the complex coefficients

, although they do affect the real and
imaginary parts. Therefore, the magnitude information
is a more reliable measure than either the realor the
imaginary parts.

1) The basis functions have directional selectivity property
at 15, 45, and 75 , which the regular critically sam-
pled transform does not have.

2) For -dimensional signals, it has times redundancy,
for example, four times redundant for images.

The new bivariate shrinkage function will be applied to the
magnitude of the dual-tree DWT coefficients since it is more
shift invariant than the real or imaginary parts. We assume the
that magnitudes of the coefficients are corrupted by additive
Gaussian noise, even though they are not.

The performance of this system is tested with the same ex-
periment in Example 2. The PSNR values are illustrated in the
last column of Table I. From this table, it is evident that using
our bivariate shrinkage function with the dual-tree DWT pro-
vides better performance than using it with the critically sam-
pled DWT. In [8], the HMT modeling is also extended to the
dual-tree DWT (CHMT). Our experiments suggest that for high

noise levels, the bivariate shrinkage procedure described here
can be competitive with the CHMT.

IV. CONCLUSION AND FUTURE WORK

In this paper, first four new bivariate distributions are pro-
posed for wavelet coefficients of natural images in order to char-
acterize the dependencies between a coefficient and its parent,
and second, the corresponding bivariate shrinkage functions are
derived from them using Bayesian estimation, in particular, the
MAP estimator. Two of these new bivariate shrinkage functions
(Model 1 and 2) are given by simple formulas. Therefore, they
maintain the simplicity, efficiency, and intuition of the classical
soft thresholding approach. In order to characterize larger group
of distributions, Models 3 and 4 are proposed, and numerical
solutions for the MAP estimators are given and are proven to
converge.

In order to show the effectiveness of these new estimators,
three examples are presented and compared with effective tech-
niques in the literature. In the second example, a subband-adap-
tive data-driven system is developed and compared with the
HMT model [11], which exploits the interscale dependencies
of coefficients and BayesShrink [4], which is also a subband-
adaptive data-driven system, which outperforms VisuShrink and
SureShrink. In our experiments, our system mostly outperforms
the others. The performance of a subband-adaptive data-driven
system is also demonstrated on the dual-tree complex wavelet
transform as another example.

It should be emphasized that in this paper, we investigate
only how the classical soft thresholding approach of Donoho
and Johnstone [14] should be modified to take into account
parent-child statistics. State-of-the-art denoising algorithms [3],
[8], [29], [30] generally use local adaptive methods or in other
ways exploit dependencies between larger numbers of coeffi-
cients. Using local adaptive methods in combination with bi-
variate shrinkage may further improve the denoising results re-
ported in Section III. Our experiments showed that the use of our
models 2, 3, and 4 resulted in negligible improvement on image
denoising performance over our Model 1. Therefore, in practice
we suggest Model 1 due to its simplicity and efficiency. Other



ŞENDUR AND SELESNICK: BIVARIATE SHRINKAGE FUNCTIONS FOR WAVELET-BASED DENOISING 2755

simple bivariate shrinkage functions can also be developed, for
example, a bivariate hard threshold with a circular or ellipsoidal
deadzone, or a bivariate generalization of the semi-soft rule of
[17] and [18].

We obtained these results by observing the dependencies be-
tween only coefficients and their parents. It is expected that the
results can be further improved if the other dependencies be-
tween a coefficient and its other neighbors are exploited. Hence,
we are currently investigating multivariate extensions of this
new bivariate shrinkage rule.

APPENDIX A
DERIVATION OF THE SHRINKAGE FUNCTION FORMODEL 1

Substituting (28) and (29) into the (25) and (26) gives

(68)

where . Using (68)

(69)

Substituting in (68) gives

(70)

APPENDIX B
DERIVATION OF THE SHRINKAGE FUNCTION FORMODEL 2

Substituting (33) and (34) into (25) and (26) gives

sign

soft (71)

sign

soft (72)

where . Using (71) and (72)

soft soft

soft soft

soft soft

(73)

where soft soft . Substituting in
(71) gives

soft (74)

APPENDIX C
PROOF OFCONVERGENCE

In this section, we will prove that Newton’s methods de-
scribed in Sections II-B3 and 4 for Model 3 and Model 4 are
convergent for all initial conditions. Since Model 3 is special
case of Model 4, we will examine Model 4. Our problem is to
find the value where

soft

soft
(75)

Since is defined as

(76)

is always greater than zero, and , i.e., is defined
only on . If we take the derivative of , we get

soft soft

(77)
Note that for all values since , , and

. Therefore, is a decreasing function, which means
that has a maximum at . Then, if is positive, it
has a zero, and the zero is unique. Besides, if is negative,

does not have a zero, which means Newton’s iteration does
not have a solution, but maximizes the MAP estimator.
Therefore, one can assume that is the solution for the
Newton’s iteration, i.e., set as a zero for if

.
Let us consider the case . The second derivative of

can be written as

soft soft

(78)
From this, it can be concluded that for all values,
which means that is a convex function. Therefore, if a func-
tion is convex and has a unique zero, the Newton iteration will
converge to it from any starting point. In our case, we need a
small modification since the function is defined only for
values. If an iteration gives values, then set .
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