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Bivariate Shrinkage With Local Variance Estimation
Levent Şendur and Ivan W. Selesnick, Member, IEEE

Abstract—The performance of image-denoising algorithms
using wavelet transforms can be improved significantly by taking
into account the statistical dependencies among wavelet coeffi-
cients as demonstrated by several algorithms presented in the
literature. In two earlier papers by the authors, a simple bivariate
shrinkage rule is described using a coefficient and its parent.
The performance can also be improved using simple models by
estimating model parameters in a local neighborhood. This letter
presents a locally adaptive denoising algorithm using the bivariate
shrinkage function. The algorithm is illustrated using both the
orthogonal and dual tree complex wavelet transforms. Some
comparisons with the best available results will be given in order
to illustrate the effectiveness of the proposed algorithm.

Index Terms—Bivariate shrinkage, image denoising, statistical
modeling, wavelet transforms.

I. INTRODUCTION

SOME RECENT research has addressed the development of
statistical models of wavelet coefficients of natural images

and application of these models to image denoising [5], [11],
[14], [15]. Recently, highly effective yet simple schemes mostly
based on soft thresholding have been developed [1], [2], [10].
In [10], the wavelet coefficients are modeled with a Gaussiana
priori density, and locally adaptive estimation is done for coef-
ficient variances. Also, prior knowledge is taken into account to
estimate coefficient variances more accurately. In [1], the inter-
scale dependencies are used to improve the performance. In [2],
the simple soft-thresholding idea is used for each of the wavelet
subbands, and the threshold value is estimated to minimize the
mean-square error.

The models that exploit the dependency between coefficients
give better results compared to the ones using an independence
assumption [5], [11], [14], [15]. However, some of these models
are complicated and result in high computational cost. In [12], a
bivariate probability density function (pdf) is proposed to model
the statistical dependence between a coefficient and its parent,
and the corresponding bivariate shrinkage function is obtained.
This new rule maintains the simplicity, efficiency, and intuition
of soft thresholding. An explicit multivariate shrinkage function
for wavelet denoising is also presented in [16].

In this letter, the local adaptive estimation of necessary pa-
rameters for the bivariate shrinkage function will be described.
Also, the performance of this system will be demonstrated on
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both the orthogonal wavelet transform and the dual-tree com-
plex wavelet transform (CWT) [7], [8], and some comparisons
with the best available wavelet-based image-denoising results
will be given in order to illustrate the effectiveness of the
system.

II. L OCAL ADAPTIVE ALGORITHM

In this letter, the denoising of an image corrupted by additive
independent white Gaussian noise with variancewill be con-
sidered. Let represent the parent of ( is the wavelet
coefficient at the same position as theth wavelet coefficient

, but at the next coarser scale.) We formulate the problem in
wavelet domain as and to
take into account the statistical dependencies between a coeffi-
cient and its parent. and are noisy observations of
and ; and , and are noise samples. We can write

no. of wavelet coefs (1)

where , , and
. From this point, the coefficient index

will be omitted from the equations in order to improve the
readability of the equations.

The standard MAP estimator for given the corrupted ob-
servation is

(2)

After some manipulations, this equation can be written as

(3)

In [12], we proposed a non-Gaussian bivariate pdf for the
coefficient and its parent as

(4)

The marginal variance is also dependent on the coefficient
index . Using (4) with (3), the MAP estimator of is derived
to be

(5)
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Fig. 1. (a) Original image. (b) Noisy image with PSNR= 20.18 dB (� = 25). (c) Denoised image using critically sampled transform PSNR= 27.16 dB.
(d) Denoised image using dual-tree CWT PSNR= 28.61 dB.

which can be interpreted as a bivariate shrinkage function. Here
is defined as

if
otherwise.

(6)

This estimator requires the prior knowledge of the noise
variance and the marginal variance for each wavelet
coefficient. In our algorithm, the marginal variance for theth

coefficient will be estimated using neighboring coefficients in
the region . Here is defined as all coefficients within
a square-shaped window that is centered at theth coefficient
as illustrated in Fig. 2.

To estimate the noise variance from the noisy wavelet co-
efficients, a robust median estimator is used from the finest scale
wavelet coefficients [6]

subband (7)
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Fig. 2. Illustration of neighborhoodN(k).

Let us assume we are trying to estimate the marginal variance
for the th wavelet coefficient. From our observation model,

one gets where is the marginal variance of
noisy observations and . Since and are modeled as
zero mean, can be found empirically by

(8)

where is the size of the neighborhood . Then, can be
estimated as

(9)

The algorithm is summarized as follows.

1) Calculate the noise variance using (7).
2) For each each wavelet coefficient ( number of

wavelet coefficients):

a) Calculate using (8).
b) Calculate using (9).
c) Estimate each coefficient usingand in (5).

III. RESULTS

We compared the proposed algorithm using the orthogonal
wavelet transform to other effective systems in the literature,
namely BayesShrink [2], AdaptShrink [3], locally adaptive
window-based denoising using MAP (LAWMAP) estimator
[10], and the hidden Markov tree (HMT) model [5]. We also
made a comparison with our subband adaptive algorithm
described in [13]. (As seen from the results in Table I, the
locally adaptive estimation may improve the performance over
the subband adaptive estimation by 1 dB for some images.
i.e., Barbara image.) The Daubechies length-eight filter and a
7 7 window size [ ] are used. (We have also investigated
different window sizes. A 5 5 window size can also be a
good choice. However, using a 33 window size resulted in a
slight performance loss. In this letter, we have not considered

different shapes for .) The peak signal-to-noise ratio
(PSNR) values of these systems are tabulated in Table I. The
performance of this system is tested using the PSNR measure.
Let denote the original and the denoised image. The rms
error is given by

(10)

where is the number of pixels. The PSNR in decibels is given
by

PSNR (11)

The PSNR values for AdaptShrink are taken from the paper [3].
The Lena, Boat, and Barbara images are used for this purpose
with different noise levels .

In our examples, in addition to the orthogonal wavelet trans-
form, the dual-tree CWT will be used in order to take advan-
tage of this transform (near shift-invariance and directional se-
lectivity). The new bivariate shrinkage function will be applied
to the magnitude of the complex coefficients since the real and
imaginary parts are not shift invariant individually but the mag-
nitudes are. (We have also applied the same algorithm to the
real and imaginary parts separately but we have observed sig-
nificant performance loss.) We assume the magnitudes of the
coefficients are corrupted by additive Gaussian noise although
this is an approximation. The performance of our algorithm sug-
gests it is an acceptable assumption. The PSNR values, when the
CWT is used, are listed in the last column of Table I.

We also compared the proposed algorithm with other
published results [3], [4], [9], [11] that use various redundant
wavelet transforms, i.e., the undecimated wavelet transform
in [3] and [9], the steerable pyramid in [11], and the dual-tree
CWT in [4]. The PSNR values are listed in Table II (the values
are taken from the corresponding papers). In [11], it is noted
that the Matlab implementation for that algorithm takes 12.8
min for a 512 512 image on 900-MHz Pentium III, although
the Matlab program for the proposed algorithm takes 25 s for a
512 512 image on 450-MHz Pentium II.

One example using a 512512 Barbara image is given
in Fig. 1. The original and the noisy images are illustrated
in Fig. 1(a) and (b). The denoised images obtained using
the data-driven denoising algorithm described above with
the orthogonal wavelet transform and the dual-tree CWT are
illustrated in Fig. 1(c) and (d), respectively, and have PSNR
values of 27.23 and 28.61 dB, respectively.

In [17] and [18], very high quality image denoising algo-
rithms are presented using newly developed multiscale repre-
sentation systems, namely the ridgelet and curvelet transform.
In their experiments, the Lena image is used with the Gaussian
noise standard deviation 20. They reported the denoised PSNR
value is 31.95 in [17] and and 32.72 in [18]. The result here lies
between these two values.
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TABLE I
PSNR VALUES OFDENOISEDIMAGES FORDIFFERENTTEST IMAGES AND NOISELEVELS (� ) OF NOISY, BAYESSHRINK [2], ADAPTSHRINK [3], HMT SYSTEM

[5], LAWMAP [10], PROPOSEDALGORITHM IN [13], PROPOSEDSYSTEM, AND PROPOSEDSYSTEM FORDUAL-TREECOMPLEX DISCRETEWAVELET TRANSFORM

TABLE II
PSNR VALUES OF DENOISEDIMAGES FORDIFFERENTTESTIMAGES AND NOISELEVELS (� ) OF NOISY, THE SYSTEM IN [9], SI-ADAPTSHR [3], CHMT [4], THE

SYSTEM IN [11], AND PROPOSEDSYSTEM FORDUAL-TREE COMPLEX DISCRETEWAVELET TRANSFORM

IV. CONCLUSION

This letter presents an effective and low-complexity image-
denoising algorithm using the joint statistics of the wavelet
coefficients of natural images. We presented our result for both
orthogonal and dual-tree CWTs and compared it with the other
published results in order to illustrate the effectiveness of the pro-
posed algorithm. The comparison suggests the new denoising
results are competitive with the best wavelet-based results
reported in the literature.
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