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Bivariate Shrinkage With Local Variance Estimation

Levent &ndur and Ivan W. Selesnicklember, IEEE

Abstract—The performance of image-denoising algorithms both the orthogonal wavelet transform and the dual-tree com-
using wavelet transforms can be improved significantly by taking plex wavelet transform (CWT) [7], [8], and some comparisons
into account the statistical dependencies among wavelet Coeffi-\ i, the pest available wavelet-based image-denoising results
cients as demonstrated by several algorithms presented in the . . . . .
literature. In two earlier papers by the authors, a simple bivariate Wil be given in order to illustrate the effectiveness of the

shrinkage rule is described using a coefficient and its parent. system.
The performance can also be improved using simple models by
estimating model parameters in a local neighborhood. This letter
presents a locally adaptive denoising algorithm using the bivariate

shrinkage function. The algorithm is illustrated using both the In this letter, the denoising of an image corrupted by additive

orthogonal and dual tree complex wavelet transforms. Some . . . . . . .
comparisons with the best available results will be given in order independent white Gaussian noise with variangevill be con-

to illustrate the effectiveness of the proposed algorithm. sidered. Letvy, represent the parent of; .. (w2, is the wavelet
coefficient at the same position as thth wavelet coefficient

w1y, but at the next coarser scale.) We formulate the problem in
wavelet domain agi, = wir + n1k andysr = way + no 10
take into account the statistical dependencies between a coeffi-
cient and its parent;;, andys;, are noisy observations af,
OME RECENT research has addressed the developmen@dflwsy; andniy, andn,;, are noise samples. We can write
tatistical models of wavelet coefficients of natural images
and application of these models to image denoising [5], [11],

Il. LOCAL ADAPTIVE ALGORITHM

Index Terms—Bivariate shrinkage, image denoising, statistical
modeling, wavelet transforms.

|I. INTRODUCTION

; ; 5 Yr = Wi + 1y, k = 1..no. of wavelet coefs (1)
[14], [15]. Recently, highly effective yet simple schemes mostly
based on soft thresholding have been developed [1], [2], [10].
In [10], the wavelet coefficients are modeled with a Gausgianvhere wx = (wik,war), yx = (yuk,y2x), and
priori density, and locally adaptive estimation is done for coeRk = (n1k,n2k). From this point, the coefficient indek

ficient variances. Also, prior knowledge is taken into account ¥ill be omitted from the equations in order to improve the
estimate coefficient variances more accurately. In [1], the intdadability of the equations.
scale dependencies are used to improve the performance. In [2]h€ standard MAP estimator fav given the corrupted ob-
the simple soft-thresholding idea is used for each of the waveR&fvationy Is
subbands, and the threshold value is estimated to minimize the
mean-square error. _ N W(y) = arg max pyy (W]y). )
The models that exploit the dependency between coefficients w
give better results compared to the ones using an independence
assumption [5], [11], [14], [15]. However, some of these modeffter some manipulations, this equation can be written as
are complicated and result in high computational cost. In [12], a
bivariatt_e probability density function (pdf) is pr_oposed tp model w(y) = arg max [pa(y — W) - pw(w)] . ©)
the statistical dependence between a coefficient and its parent, w
and the corresponding bivariate shrinkage function is obtained. _ o
This new rule maintains the simplicity, efficiency, and intuition !N [12], we proposed a non-Gaussian bivariate pdf for the
of soft thresholding. An explicit multivariate shrinkage functiorg0efficient and its parent as
for wavelet denoising is also presented in [16].
In this letter, the local adaptive estimation of necessary pa- 3 V3
rameters for the bivariate shrinkage function will be described. pw(W) = omg2 P\ T wi +w3 | . (4)
Also, the performance of this system will be demonstrated on
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Fig. 1. (a) Original image. (b) Noisy image with PSNR 20.18 dB ¢,, = 25). (c) Denoised image using critically sampled transform PSNR7.16 dB.
(d) Denoised image using dual-tree CWT PSNR28.61 dB.

which can be interpreted as a bivariate shrinkage function. Hemefficient will be estimated using neighboring coefficients in
(9)+ is defined as the regionVN (k). HereN (k) is defined as all coefficients within
a square-shaped window that is centered atithecoefficient
0. ifa<0 as illustrated in Fig. 2.
(9)+ = { ’ g (6) To estimate the noise variane@ from the noisy wavelet co-
g, otherwise. - . . . .
efficients, a robust median estimator is used from the finest scale

wavelet coefficients [6]
This estimator requires the prior knowledge of the noise

variancecs? and the marginal variance? for each wavelet

n

- . . . .o _ median (|y;|)
coefficient. In our algorithm, the marginal variance for #th On = " (amar

oeras 0 Y € subband HH. @)
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y,(Noisy Parent)

00 0 o, sk different shapes forN(k).) The peak signal-to-noise ratio
>'\ / coarser (PSNR) values of these systems are tabulated in Table I. The
e 00 / performance of this system is tested using the PSNR measure.
/ Let s, d denote the original and the denoised image. The rms
error is given by

€ = \/% Z (Sk - dk)2 (10)
k

whereN is the number of pixels. The PSNR in decibels is given

. by
th
N(K) : Neighbor . PXe!
coefficients

:
PSNR= 20 log;, <2°6> . (11)

Fig. 2. lllustration of neighborhoodV (k). €

The PSNR values for AdaptShrink are taken from the paper [3].
Let us assume we are trying to estimate the marginal variarige Lena, Boat, and Barbara images are used for this purpose
o? for thekth wavelet coefficient. From our observation modelwith different noise levels?2.
one getsrz = o2 + o7 whereo? is the marginal variance of  |n our examples, in addition to the orthogonal wavelet trans-
noisy observationg; andy,. Sincey; andy, are modeled as form, the dual-tree CWT will be used in order to take advan-
zero meang can be found empirically by tage of this transform (near shift-invariance and directional se-
lectivity). The new bivariate shrinkage function will be applied

1 to the magnitude of the complex coefficients since the real and
&2 — 2 (8) . . oL - X C e .
i E : Y imaginary parts are not shift invariant individually but the mag-
yi €N (k) nitudes are. (We have also applied the same algorithm to the

real and imaginary parts separately but we have observed sig-
whereM is the size of the neighborhodd(k). Then,s can be nificant performance loss.) We assume the magnitudes of the

estimated as coefficients are corrupted by additive Gaussian noise although
this is an approximation. The performance of our algorithm sug-
o= (ag — &g)+. (9) gestsitisanacceptable assumption. The PSNR values, when the
CWT is used, are listed in the last column of Table I.

The algorithm is summarized as follows. We also compared the proposed algorithm with other
1) Calculate the noise variané@ using (7). published results [3], [4], [9], [11] that use various redundant
2) For each each wavelet coefficierit & 1.. number of wavelet transforms, i.e., the undecimated wavelet transform

wavelet coefficients): in [3] and [9], the steerable pyramid in [11], and the dual-tree

CWT in [4]. The PSNR values are listed in Table Il (the values
are taken from the corresponding papers). In [11], it is noted
that the Matlab implementation for that algorithm takes 12.8
min for a 512x 512 image on 900-MHz Pentium I, although
the Matlab program for the proposed algorithm takes 25 s for a
512x 512 image on 450-MHz Pentium II.

We compared the proposed algorithm using the orthogonalOne example using a 522512 Barbara image is given
wavelet transform to other effective systems in the literaturie, Fig. 1. The original and the noisy images are illustrated
namely BayesShrink [2], AdaptShrink [3], locally adaptivén Fig. 1(a) and (b). The denoised images obtained using
window-based denoising using MAP (LAWMAP) estimatothe data-driven denoising algorithm described above with
[10], and the hidden Markov tree (HMT) model [5]. We alsdhe orthogonal wavelet transform and the dual-tree CWT are
made a comparison with our subband adaptive algorithitustrated in Fig. 1(c) and (d), respectively, and have PSNR
described in [13]. (As seen from the results in Table |, thealues of 27.23 and 28.61 dB, respectively.
locally adaptive estimation may improve the performance overin [17] and [18], very high quality image denoising algo-
the subband adaptive estimation by 1 dB for some imageshms are presented using newly developed multiscale repre-
i.e., Barbara image.) The Daubechies length-eight filter andsantation systems, namely the ridgelet and curvelet transform.
7 x 7 window size [V (k)] are used. (We have also investigatedh their experiments, the Lena image is used with the Gaussian
different window sizes. A % 5 window size can also be anoise standard deviation 20. They reported the denoised PSNR
good choice. However, using a33 window size resulted in a value is 31.95in [17] and and 32.72 in [18]. The result here lies
slight performance loss. In this letter, we have not considerbdtween these two values.

a) Calculates? using (8).
b) Calculates using (9).
c) Estimate each coefficient usingands? in (5).

Ill. RESULTS
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TABLE |
PSNR \ALUES OF DENOISEDIMAGES FORDIFFERENT TEST IMAGES AND NOISE LEVELS (0 n') OF NOISY, BAYESSHRINK [2], ADAPTSHRINK [3], HMT SYSTEM
[5], LAWMAP [10], PROPOSEDALGORITHM IN [13], PROPOSEDSYSTEM, AND PROPOSEDSYSTEM FORDUAL-TREE COMPLEX DISCRETEWAVELET TRANSFORM
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BayesShrink | AdaptShr | HMT | LAWMAP | Proposed Proposed
Noisy in [2] in [3] in [5] in [10] in[13] | Proposed | (complex)
Lena
o=10 | 28.18 3332 - 33.84 34.10 33.94 34.36 35.34
oc=15 | 24.65 31.41 32.39 31.76 32.23 32.06 32.51 33.67
o=20 | 22.14 30.17 31.07 30.39 30.89 30.73 31.19 32.40
o=25 | 20.17 29.22 30.70 29.24 29.89 29.81 30.15 31.40
o =230 | 18.62 28.48 - 28.35 29.05 28.94 29.41 30.54
Boat

o=10 | 28.16 31.80 - 32.28 32.25 32.25 32.42 33.10
o=15 | 24.65 29.87 - 30.31 30.40 30.25 30.55 31.36
=20 | 22.15 28.48 - 28.84 29.00 28.93 29.18 30.08
o=25 | 20.15 27.40 - 27.68 2791 2791 28.14 29.06
oc=230 | 18.62 26.60 - 26.83 27.06 27.11 27.29 28.31
Barbara

o =10 | 28.16 30.86 - 31.36 31.99 31.13 32.25 3335
o=15 || 24.63 28.51 29.96 29.23 29.60 28.71 29.97 31.31
o=20 | 22.14 27.13 28.36 27.80 27.94 27.25 28.36 29.80
o=25 | 20.18 26.01 27.23 25.99 26.75 25.97 27.16 28.61
o=30 || 18.62 25.16 - 25.11 25.80 25.21 26.28 27.65

TABLE I

PSNR VALUES OF DENOISEDIMAGES FORDIFFERENT TESTIMAGES AND NOISE LEVELS (0,,) OF NOISY, THE SYSTEM IN [9], SI-ADAPTSHR [3], CHMT [4], THE
SYSTEM IN [11], AND PROPOSEDSYSTEM FOR DUAL -TREE COMPLEX DISCRETEWAVELET TRANSFORM

Noisy | The system | SI-AdaptShr | CHMT | The system || Proposed
Noisy in [9] in [3] in [4] in [11] (complex)
Lena
o=10 | 28.18 34.96 - 349 3531 35.34
o=15 || 24.65 33.05 33.41 - 33.55 33.67
c=20 | 22.14 31.72 32.12 - 32.31 3240
o=25 | 20.17 30.64 31.11 29.9 31.33 31.40
Barbara
o=10 | 28.16 3335 - - 33.45 33.35
o=15 | 24.63 31.10 31.14 - 31.22 31.31
oc=20 | 22.14 29.44 29.52 - 29.71 29.80
=25 | 20.18 28.23 28.33 - 28.57 28.61
IV. CONCLUSION [71 N. G. Kingsbury, “Image processing with complex waveletBHil.

This letter presents an effective and low-complexity image- (8
denoising algorithm using the joint statistics of the wavelet

coefficients of natural images. We presented our result for bothl]

orthogonal and dual-tree CWTs and compared it with the oth

published resultsin ordertoillustrate the effectiveness of the pro-
posed algorithm. The comparison suggests the new denoisin

results are competitive with the best wavelet-based resul

reported in the literature.
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