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1 Introduction

These notes describe the derivation of a simple algorithm for signal denoising (filtering) based on total
variation (TV). Total variation based filtering was introduced by Rudin, Osher, and Fatemi [8]. TV denoising
is an effective filtering method for recovering piecewise-constant signals. Many algorithms have been proposed
to implement total variation filtering. The one described in these notes is by Chambolle [3]. (Note: Chambolle
described another algorithm in [2]). Although the algorithm can be derived in several different ways, the
derivation presented here is based on descriptions given in [1, 10]. The derivation is based on the min-max
property and the majorization-minimization procedure.

Total variation is often used for image filtering and restoration, however, to simplify the presentation of
the TV filtering algorithm these notes concentrate on one-dimensional signal filtering only. In addition, the
algorithm described here may converge slowly for some problems. Faster algorithms for TV filtering have
recently been developed, for example [1,10]. The development of fast, robust algorithms for TV and related
non-linear filtering is an active topic of research.

2 Total Variation

The total variation (TV) of a signal measures how much the signal changes between signal values. Specifically,
the total variation of an N -point signal x(n), 1 ≤ n ≤ N is defined as

TV(x) =
N∑
n=2

|x(n)− x(n− 1)|.

The total variation of x can also be written as

TV(x) = ‖Dx‖1

where ‖·‖1 is the `1 norm and

D =


−1 1

−1 1
. . .

−1 1

 (1)

is a matrix of size (N − 1)×N .
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3 TV Denoising

We assume we observe the signal x corrupted by additive white Gaussian noise,

y = x + n, y,x,n ∈ RN .

One approach to estimate x is to find the signal x minimizing the objective function

J(x) = ‖y − x‖22 + λ ‖Dx‖1.

This approach is called TV denoising. The regularization parameter, λ, controls how much smoothing is
performed. Larger noise levels call for larger λ.

4 Algorithm for TV Denoising

We will assume a more general form of the objective function:

J(x) = ‖y − x‖22 + λ ‖Ax‖1 (2)

where A is a matrix of size M ×N . The optimal value of the objective function is denoted

J∗ = min
x
‖y − x‖22 + λ ‖Ax‖1. (3)

The minimization of this objective function is complicated by the fact that the `1 norm is not differentiable.
Therefore, an approach to minimize J(x) is to use the dual formulation.

To derive the dual formulation, note that the absolute value of a scalar x can be written in the following
circuitous form:

|x| = max
|z|≤1

z x.

The advantage of this form is that the non-differentiability of the function is transferred to the feasible set.
Likewise, note that the `1 norm of a vector x can be written as:

‖x‖1 = max
|z|≤1

ztx

where the condition |z| ≤ 1 is taken element-wise. Similarly,

‖Ax‖1 = max
|z|≤1

ztAx.

Therefore, we can write the objective function J(x) in (2) as

J(x) = ‖y − x‖22 + λ max
|z|≤1

ztAx (4)

or

J(x) = max
|z|≤1

‖y − x‖22 + λ ztAx. (5)

The optimal value of the objective function (3) is

J∗ = min
x

max
|z|≤1

‖y − x‖22 + λ ztAx.
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We want to find the minimizing vector x, but it will be convenient to find both x and the auxiliary vector z.
Defining

F (x, z) := ‖y − x‖22 + λ ztAx, (6)

we can write:

J∗ = min
x

max
|z|≤1

F (x, z).

Because F (x, z) is convex in x and concave in z, the optimal value J∗ is a saddle point of F (x, z). By the
min-max property, we can exchange the order of the maximization and minimization:

J∗ = max
|z|≤1

min
x

F (x, z)

or

J∗ = max
|z|≤1

min
x
‖y − x‖22 + λ ztAx. (7)

which is the dual formulation of the TV denoising problem. The min-max property is described in [6, Chapter
VII, Theorem 4.3.1] (cited by [10]) and in [7, Corollary 37.3.2] (cited by [1]).

The inner minimization problem in (7) can be solved as follows:

∂

∂x
F (x, z) = −2(y − x) + λAtz

so

∂

∂x
F (x, z) = 0 =⇒ x = y − λ

2
Atz (8)

Substituting (8) back into (7) gives

J∗ = max
|z|≤1

‖λ
2
Atz‖22 + λ ztA

(
y − λ

2
Atz

)
.

After simplifying we have,

J∗ = max
|z|≤1

−λ
2

4
ztAAtz + λztAy

or equivalently, the minimization problem:

z∗ = argmin
|z|≤1

ztAAtz− 4
λ

ztAy. (9)

Setting the derivative with respect to z to zero gives the equation

AAtz =
2
λ
Ay
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which requires the solution to a potentially large system of linear equations and furthermore does not yield
a solution z satisfying the constraint |z| ≤ 1. To find z solving the constrained minimization problem (9),
the majorization-minimization (MM) method can be used [5]. Defining

D(z) = ztAAtz− 4
λ

ztAy

and setting z(i) as point of coincidence, we can find a separable majorizer of D(z) by adding the non-negative
function

(z− z(i))t(α I−AAt)(z− z(i))

to D(z), where α is greater than or equal to the maximum eigenvalue of AAt. So a majorizer of D(z) is
given by

D(z) + (z− z(i))t(α I−AAt)(z− z(i))

and, using the MM approach, the update equation for z is given by

z(i+1) = argmin
|z|≤1

D(z) + (z− z(i))t(α I−AAt)(z− z(i)) (10)

= argmin
|z|≤1

α ztz− 2
(
A
( 2
λ
y −Atz(i)

)
+ α z(i)

)t
z +K (11)

= argmin
|z|≤1

ztz− 2
( 1
α
A
( 2
λ
y −Atz(i)

)
+ z(i)

)t
z (12)

= argmin
|z|≤1

ztz− 2btz (13)

where

b = z(i) +
1
α
A
( 2
λ
y −Atz(i)

)
.

We need to find z ∈ RM minimizing ztz − 2btz subject to the constraint |z| ≤ 1. Consider first the scalar
case:

argmin
|z|≤1

z2 − 2bz. (14)

The minimum of z2 − 2bz is at z = b. If |b| ≤ 1, then the solution is z = b. If |b| ≥ b, then the solution is
z = sign(b). If we define the clipping function,

clip(b, T ) :=

b |b| ≤ T

T sign(b) |b| ≥ T
(15)

as illustrated in Fig. 1, then we can write the solution to (14) as z = clip(b, 1).
Note that the vector case (13) is separable — the elements of z are uncoupled so the constrained mini-

mization can be performed element-wise. Therefore, an update equation for z is given by:

z(i+1) = clip
(
z(i) +

1
α
A
( 2
λ
y −Atz(i)

)
, 1
)

(16)
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Figure 1: Clipping function (15).

where i is the iteration index. Once z(i) has converged to one’s satisfaction, the denoised signal x is given
by (8). Because the optimization problem is convex, the iteration will converge from any initialization. We
may choose, say z(0) = 0. We call this the iterative clipping algorithm.

This algorithm can also be written as

x(i+1) = y − λ

2
Atz(i) (17)

z(i+1) = clip
(
z(i) +

2
αλ

Ax(i+1), 1
)
. (18)

Scaling z by λ/2, we have the following equivalent form:

x(i+1) = y −Atz(i) (19)

z(i+1) = clip
(
z(i) +

1
α
Ax(i+1),

λ

2

)
. (20)

In summary:

The objective function

J(x) = ‖y − x‖22 + λ ‖Ax‖1

can be minimized by the iterative clipping algorithm:

x(i+1) = y −Atz(i)

z(i+1) = clip
(
z(i) +

1
α
Ax(i+1),

λ

2

)
for i ≥ 0 with z(0) = 0 and α ≥ maxeig(AAt).

For the matrix D in (1), the maximum eigenvalue of DDt is less than four regardless of N , so for TV
denoising we can set α = 4. A MATLAB program to implement the TV denoising algorithm is given in

5



function [x,J] = denoiseTV(y,lambda,Nit)

% [x,J] = denoiseTV(y,lambda,a,Nit)

% Total variation filtering (denoising) using

% iterative clipping algorithm.

% INPUT

% y - noisy signal (row vector)

% lambda - regularization parameter

% Nit - number of iterations

% OUTPUT

% x - result of denoising

% J - objective function

J = zeros(1,Nit); % objective function

N = length(y);

z = zeros(1,N-1); % initialize z

alpha = 4;

T = lambda/2;

for k = 1:Nit

x = y - [-z(1) -diff(z) z(end)]; % y - D’ z

J(k) = sum(abs(x-y).^2) + lambda * sum(abs(diff(x)));

z = z + 1/alpha * diff(x); % z + 1/alpha D z

z = max(min(z,T),-T); % clip(z,T)

end

Listing 1: MATLAB program for TV denoising using the iterative clipping algorithm (17) and (18).

Listing 1. In the MATLAB program, D is implemented with the diff command. Also, note from (1) that

Dt =



−1
1 −1

1
. . .

1 −1
1


. (21)

Therefore, Dt z can be implemented in MATLAB as [-z(1) -diff(z) z(end)].

5 Examples

Example 1: Figure 2 illustrates an example of TV denoising. We use the ‘Blocks’ signal in the MATLAB
Wavelab toolbox [4] as a test signal. The noise-free signal, noisy signal, and signal obtained using TV
filtering are shown in Fig. 2. Note that TV filtering preserves the discontinuities in the signal quite well.
Conventional smoothing using a moving average filter has a greater tendency to blur the discontinuities.

Note that the objective function, illustrated in Fig. 2, is strictly decreasing through the progression of
the iterative clipping algorithm. This is due to the use of the majorization-minimization procedure in the
derivation of the iterative clipping algorithm. Because the majorizing function is convex, the MM procedure
guarantees that the objective function decreases at each iteration.
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Figure 2: Example 1: An illustration of TV denoising.
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Example 2: Figure 3 illustrates another example of TV denoising. This time, we use the ‘Piece-Regular’
signal in the Wavelab toolbox as a test signal. As illustrated in Fig. 3, for signals that are not piece-wise
constant, TV denoising has the tendency to introduce a staircase effect. The staircase effect refers to the
appearance of small flat regions in the denoised signal. These regions arise because the TV regularizer
promotes piecewise-constant behaviour. Therefore, while TV denoising is suitable for filtering piecewise-
constant signals, it is not usually the best denoising method for more general piecewise-smooth signals. For
signals like the one in Fig. 3, a higher-order difference can be used instead of the first-order difference on
which the TV regularizer is based. (For example, TV can be replaced by a second derivative filter or a
wavelet filter [9]).

0 50 100 150 200 250 300 350 400 450 500

−20

0

20

40

TEST SIGNAL

0 50 100 150 200 250 300 350 400 450 500

−20

0

20

40

TEST SIGNAL PLUS NOISE

0 50 100 150 200 250 300 350 400 450 500

−20

0

20

40

TV DENOISING USING ITERATIVE CLIPPING ALGORITHM ( λ = 4.500)

 

Figure 3: Example 2: TV denoising of a piecewise-smooth function. The presence of small flat regions in
the denoised signal is known as the staircase effect.
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6 Acceleration

It turns out that the convergence of the iterative clipping algorithm can be accelerated by using a smaller
value for α. The condition α ≥ maxeig(AAt) ensures that the objective function decreases from one iteration
to the next. However, a smaller value of α can lead to faster convergence (although the objective function
may increase on some iterations). The derivation is based on the contraction mapping principle.

The iterative clipping algorithm derived above, is given by:

z(i+1) = clip
(
z(i) +

1
α
A(y −Atz(i)),

λ

2

)
. (22)

Note that 1/α can be viewed as a step size parameter. Larger step sizes may lead to faster convergence, but
if the step size is too large then the algorithm may diverge or fail to converge. We would like to find what
values of α ensure convergence. To that end, we will find the values of α that make (22) a contraction. Note
that the clipping function is a contraction, so let us just consider the mapping

T (z) = z +
1
α
A(y −Atz).

The mapping T (z) is a contraction if

I− 1
α
AAt

is a contraction (if all its eigenvalues are less than one in absolute value). Because this is a real symmetric
matrix, all its eigenvalues are real; so it is a contraction if its eigenvalues are between −1 and 1.

If em (with 1 ≤ m ≤M) denote the eigenvalues of AAt, then the eigenvalues of I− 1
αAAt are given by

1−em/α. We assume α > 0, as it represents a step-size. We also assume that all eigenvalues em are positive.
Then, in order that all 1− em/α lie between −1 and 1, it is required that α > em/2 for 1 ≤ m ≤ M . That
is, α must be greater than half the maximum eigenvalue of AAt:

α > 0.5 maxeig(AAt)

Recall that the MM procedure led to α ≥ maxeig(AAt). Therefore, the contraction mapping principle
allows us to basically halve the value of α while still ensuring convergence (but the objective function may
increase on some iterations instead of being always decreasing).

For the TV denoising example in Fig. 2 we used α = 4 in accordance with the MM derivation above.
However, according to the contraction mapping principle, it is sufficient to use α > 2. Fig. 4 illustrates the
objective function when we use α = 2.3. The faster convergence of objective function to its minimum is
visible in the figure.

6.1 Fixed point

We showed that α can be reduced down to 0.5 maxeig(AAt) without losing the contraction mapping property
of (22). However, we should check that reducing α down to this value does not change the fixed point of the
iteration; otherwise, the iteration will converge but to a signal different from the desired TV-filtered signal.

In the following we show that the fixed point of (22) is the same for the smaller value of α. Let us
consider the scaler case first. Given A, y, α, T ∈ R with α > 0 and T > 0, suppose z ∈ R is a fixed point of
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Figure 4: Improvement in convergence using a smaller α.

the iteration:

z(i+1) = clip
(
z(i) +

1
α
A(y −Atz(i)), T

)
. (23)

Due to the clipping function z can not be larger than T in absolute value. Let us consider separately the
three cases: z = T , −T < z < T , and z = −T .

Case 1: z = T

Suppose z = T is a fixed point of (23). Then the input of the clipping function must be greater than or
equal to T . Accordingly, we can write the following:

z +
1
α
A(y − z) ≥ T (24)

T +
1
α
A(y − z) ≥ T because z = T (25)

1
α
A(y − z) ≥ 0 (26)

A(y − z) ≥ 0 because α > 0 (27)
1
α′
A(y − z) ≥ 0 for all α′ > 0 (28)

T +
1
α′
A(y − z) ≥ T for all α′ > 0 (29)

clip
(
z +

1
α′
A(y − z), T

)
= T for all α′ > 0 because z = T . (30)

Therefore, if z = T is a fixed point of (23) for some α > 0, then it is a fixed point for any α > 0.

Case 2: −T < z < T

Suppose −T < z < T is a fixed point of (23). If the output of the clipping function is between −T and T

then the clipping function in not affecting its input. In this case the output of the clipping function equals
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its input. Accordingly, we can write the following:

z = z +
1
α
A(y − z) (31)

0 =
1
α
A(y − z) (32)

0 =
1
α′
A(y − z) for all α′ > 0 (33)

z = z +
1
α′
A(y − z) for all α′ > 0 (34)

z = clip
(
z +

1
α′
A(y − z), T

)
for all α′ > 0 because −T < z < T . (35)

Therefore, if −T < z < T is a fixed point of (23) for some α > 0, then it is a fixed point for any α > 0.

Case 3: z = −T
The case z = −T is similar to the case z = T .

• Therefore, if z is a fixed point of (23) for some α > 0, then it is a fixed point for any α > 0.

The derivation in the vector case is essentially the same as in the scalar case because the clipping function
is applied element-wise.
Given: x ∈ RN , y ∈ RM , A ∈ RM×N , and α, T ∈ R with α > 0 and T > 0. If z ∈ RM is a fixed point of the
iteration

z(i+1) = clip
(
z(i) +

1
α
A(y −Atz(i)), T

)
(36)

then it is a fixed point for any α > 0.

References

[1] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising
and deblurring problems. Preprint, retrieved from http://iew3.technion.ac.il/Home/Users/becka.html,
2009.

[2] A. Chambolle. An algorithm for total variation minimization and applications. J. of Math. Imaging
and Vision, 20:89–97, 2004.

[3] A. Chambolle. Total variation minimization and a class of binary MRF models. In Energy Minimization
Methods in Computer Vision and Pattern Recognition, volume 3757 of Lecture Notes in Computer
Sciences, pages 136–152. Springer, 2005.

[4] D. Donoho, A. Maleki, and M. Shahram. Wavelab 850. http://www-stat.stanford.edu/~wavelab/.

[5] M. Figueiredo, J. Bioucas-Dias, and R. Nowak. Majorization-minimization algorithms for wavelet-based
image restoration. IEEE Trans. on Image Processing, 16(12):2980–2991, December 2007.
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