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1. Introduction

These notes describe an approach for the restoration of degraded signals using sparsity. This approach,

which has become quite popular, is useful for numerous problems in signal processing: denoising, deconvo-

lution, interpolation, super-resolution, declipping, etc [6].

We assume that the observed signal y can be written as

y = Hx + n

where x is the signal of interest which we want to estimate, n is additive noise, and H is a matrix representing

the observation processes. For example, if we observe a blurred version of x then H will be a convolution

matrix.

The estimation of x from y can be viewed as a linear inverse problem. A standard approach to solve

linear inverse problems is to define a suitable objective function J(x) and to find the signal x minimizing

J(x). Generally, the chosen objective function is the sum of two terms:

J(x) = D(y,Hx) + λR(x)

where D(y,Hx) measures the discrepancy between y and x and R(x) is a regularization term (or penalty

function). The parameter λ is called the regularization parameter and is used to adjust the trade-off between

the two terms; λ should be a positive value. On one hand, we want to find a signal x so that Hx is very

similar to y; that is, we want to find a signal x which is consistent with the observed data y. For D(y,Hx),

we will use the mean square error, namely

D(y,Hx) = ‖y −Hx‖22.

The notation ‖v‖22 represents the sum of squares of the vector v,

‖v‖22 := v21 + v22 + · · ·+ v2N .

Minimizing this D(y,Hx) will give a signal x which is as consistent with y as possible according to the

square error criterion. We could try to minimize D(y,Hx) by setting x = H−1y; however, H may not be

invertible. Even if H were invertible, it may be very ill-conditioned in which case this solution amplifies the

noise, sometimes so much that the solution is useless. The role of the regularization term R(x) is exactly

to address this problem. The regularizer R(x) should be chosen so as to penalize undesirable/unwanted

behaviour in x. For example, if it is expected that x is a smooth signal, then R(x) should be chosen to

penalize non-smooth signals. For example one could set R(x) =
∑

n|x(n) − x(n − 1)|. (This R(x) is called

the ‘total variation’ of x and is zero only when x is a constant-valued signal. The more the signal x varies,

the greater is its total variation.)
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In these notes, it is assumed that the signal of interest, x, is known to be sparse. That is, x has relatively

few non-zero values. For example, x may consist of a few impulses and is otherwise zero. In this case, we

should define R(x) to be the number of non-zero values of x. Unfortunately, with R(x) defined as such, the

objective function J(x) is very difficult to minimize. First, this R(x) is not differentiable. Second, and more

importantly, this R(x) is not a convex function of x, and therefore J(x) will have many local minima. In

order to develop robust numerical algorithms for the minimization of J(x), it is best that J(x) be a convex

function of x. We would like a function that measures sparsity, but which is also convex. For this reason,

when x is known to be sparse, the regularization function R(x) is often chosen to be the `1-norm, which is

defined as

‖x‖1 := |x1|+ |x2|+ · · ·+ |xN |.

Hence, the approach is to estimate x from y by minimizing the objective function

J(x) = ‖y −Hx‖22 + λ‖x‖1. (1)

This is called an `1-norm regularized linear inverse problem.

The development of fast algorithm to minimize (1), and related functions, is an active research topic. An

early and important algorithm is the iterated soft-thresholding algorithm (ISTA), also called the thresholded-

Landweber (TL) algorithm. This algorithm was developed in [4, 9] for the purpose of wavelet-based signal

restoration, but the algorithm in a more general form appeared earlier in the optimization literature, see [1].

Since the development of ISTA, other faster algorithms have been introduced for the minimization of (1),

for example [1–3, 5, 7, 7, 8, 10–14] and others. Some of these algorithms can be used for the minimization of

more general or related objective functions as well, not just (1).

These notes describe the derivation of the iterated soft-thresholding algorithm (ISTA). ISTA is a com-

bination of the Landweber algorithm and soft-thresholding (so it is also called the thresholded-Landweber

algorithm). The derivation below is based on majorization-minimization (a concept in optimization theory)

and on `1-norm regularized denoising (which leads to soft-thresholding). The derivation uses linear algebra

(positive definite matrices) and vector derivatives.

2. Majorization-Minimization

Majoriziation-minimization (MM) replaces a difficult minimization problem by a sequence of easier min-

imization problems. The MM approach generates a sequence of vectors xk, k = 0, 1, 2, . . . which converge

to desired solution. The MM approach is useful for the minimization of (1) because J(x) can not be easily

minimized. There is no formula for the vector x that minimizes J(x).

The majoriziation-minimization idea can be described as follows. Suppose we have a vector xk, a ‘guess’

for the minimum of J(x). Based on xk, we would like to find a new vector, xk+1 which further decreases

J(x); that is, we want to find xk+1 such that

J(xk+1) < J(xk).

The MM approach asks us first to choose a new function which majorizes J(x) and, second, that we minimize

the new function to get xk+1. MM puts some requirements on this new function, call it G(x). We should

choose G(x) such that G(x) ≥ J(x) for all x (that is what it means that G(x) majorizes J(x)). In addition

G(x) should equal J(x) at xk. We find xk+1 by minimizing G(x). For this method to be useful, we should

choose G(x) to be a function we can minimize easily. The function G(x) will be different at each iteration,

so we denote it Gk(x).
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(a) Function J(x) to be minimized.
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(b) One iteration of MM.
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(c) Subsequent iteration.
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Figure 1. Illustration of majorization-minimization (MM) procedure. Plot (a) illustrates

the function to be minimized, J(x), and a ‘guess’ of the minimizer, xk. Plot (b) illustrates

the majorizing function Gk(x) which coincides with J(x) at x = xk but is otherwise greater

than J(x). The minimizer of Gk(x), shown as a green dot in (b), is taken as xk+1. Plot (c)

illustrates the subsequent iteration. In (c) the majorizer coincides with J(x) at x = xk+1.

The iterates xk converge to the minimum of J(x). The MM procedure is useful when J(x)

is difficult to minimize but each majorizer Gk(x) is easy to minimize.

Figure 1 illustrates the MM procedure with a simple example. For clarity, the figure illustrates the

minimization of a function of one variable. However, the MM procedure works in the same way for the

minimization of multivariate functions, and it is in the multivariate case where the MM procedure is especially
3



useful for the minimization of multivariate functions. (In the following sections, MM will be used for the

minimization of multivariate functions.)

To summarize, the majorization-minimization algorithm for the minimization of a function J(x) is given

by the following iteration:

(1) Set k = 0. Initialize x0.

(2) Choose Gk(x) such that

(a) Gk(x) ≥ J(x) for all x

(b) Gk(xk) = J(xk)

(3) Set xk+1 as the minimizer of Gk(x).

(4) Set k = k + 1 and go to step (2.)

More details about the MM procedure are provided in [8] and the references therein.

3. The Landweber Iteration

Although we are interested in minimizing J(x) in (1), let us consider first the minimization of the simpler

objective function

J(x) = ‖y −Hx‖22 (2)

= (y −Hx)T(y −Hx) (3)

= yTy − 2yTHx + xTHTHx. (4)

Because J(x) in (2) is differentiable and convex, we can obtain its minimizer by setting the derivative with

respect to x to zero. The derivative of J(x) is given by

∂

∂x
J(x) = −2HTy + 2HTHx.

Setting the derivative to zero gives a system of linear equations:

∂

∂x
J(x) = 0 =⇒ (HT H)x = HTy.

So the minimizer of J(x) in (2) is given by

x = (HT H)−1HTy. (5)

Therefore, J(x) in (2) can be minimized by solving a linear system of equations. However, we may not be

able to solve these equations easily. For example, if x is a very long signal, then H will be very large matrix

and solving the system of equations may require too much memory and computation time. Additionally, the

matrix HTH might not be invertible, or it may very ill-conditioned.

By using the majorization-minimization (MM) approach to minimize J(x) in (2) we can avoid solving a

system of linear equations. As described in Section 2, at each iteration k of the MM approach, we should

find a function Gk(x) that coincides with J(x) at xk but otherwise upper-bounds J(x). We should choose

a majorizer Gk(x) which can be minimized more easily (without having to solve a system of equations).

We will find a function Gk(x) that majorizes J(x) by adding a non-negative function to J(x),

Gk(x) = J(x) + non-negative function of x.

In order that Gk(x) coincides with J(x) at x = xk, the non-negative function we add to J(x) should be

equal to zero at xk. With this in mind, we choose Gk(x) to be:

Gk(x) = ‖y −Hx‖22 + (x− xk)T(α I−HTH)(x− xk)︸ ︷︷ ︸
non-negative

. (6)
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The function we have added to J(x) is clearly zero at xk so we have Gk(x) = J(xk) as desired.

To ensure the function we have added to J(x) is non-negative for all x, the scalar parameter α must be

chosen to be equal to or greater than the maximum eigenvalue of HTH,

α ≥ maxeig(HTH).

Then the matrix α I−HTH is a positive semi-definite matrix, meaning that

vT(α I−HTH)v ≥ 0 ∀v.

Now, following the MM procedure, we need to minimize Gk(x) to obtain xk+1. Expanding Gk(x) in (6)

gives

Gk(x) = yTy − 2yTHx + xTHTHx + (x− xk)T(α I−HTH)(x− xk) (7)

= yTy + xT
k (α I−HTH)xk − 2 (yTH + xT

k (α I−HTH))x + αxTx. (8)

Note that the quadratic term in (8) is simply αxTx instead of xTHTHx as it was in (4). Therefore we can

minimize Gk(x) more easily:

∂

∂x
Gk(x) = −2HTy − 2 (α I−HTH)xk + 2αx

∂

∂x
Gk(x) = 0 =⇒ x = xk +

1

α
HT(y −Hxk)

Hence, we obtain through the MM procedure, the update equation

xk+1 = xk +
1

α
HT(y −Hxk) (9)

which is known as the ‘Landweber’ iteration. It is guaranteed that J(x) in (2) is decreased with each

iteration, due to the properties of the MM procedure. Note that the (9) does not require the solution to a

linear system of equations. It only requires multiplying by H and by HT.

To emphasize the functional dependence of Gk(x) on x we can write Gk(x) in (8) as

Gk(x) = α (−2bTx + xTx) + c (10)

where

b =
1

α

[
HTy + (α I−HTH)xk

]
(11)

= xk +
1

α
HT(y −Hxk) (12)

and where c consists of the first two terms of (8) which do not depend on x. Note that for any vectors b

and x,

bTb− 2bTx + xTx = ‖b− x‖22,

hence from (10) we can write Gk(x) as

Gk(x) = α‖b− x‖22 − αbTb + c.

That is, using (12), the majorizer Gk(x) can be written as

Gk(x) = α
∥∥∥xk +

1

α
HT(y −Hxk)− x

∥∥∥2
2

+K (13)

where K does not depend on x. This shows that Gk(x) is shaped like a bowl with circular level sets.
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4. Soft-Thresholding

As in Section 3, let us consider the minimization of an objective function simpler than (1). Namely, let

us consider the minimization of the function

J(x) = ‖y − x‖22 + λ‖x‖1. (14)

This is a special simple case of (1) with H = I.

The function J(x) in (14) is convex, but not differentiable (because ‖x‖1 is not differentiable). Neverthe-

less, the minimizer of this J(x) is given by a simple formula.

Expanding J(x) in (14) gives

J(x) = (y1 − x1)2 + λ|x1|+ (y2 − x2)2 + λ|x2|+ · · ·+ (yN − xN )2 + λ|xN |.

Note that the variables, xi, are uncoupled. That is, the function J(x) can be minimized by minimizing each

term (yi − xi)2 + λ|xi| individually to get xi, for 1 ≤ i ≤ N . Therefore we need only consider the scalar

minimization of the function

f(x) = (y − x)2 + λ|x|. (15)

Taking the derivative,

f ′(x) = −2(y − x) + λ sign(x),

setting f ′(x) = 0 gives

y = x+
λ

2
sign(x).

Solving for x gives the graph shown in Fig. 2 with threshold λ/2. That is, the minimizer of f(x) is obtained

by applying the soft-threshold rule to y with threshold λ/2.

The soft-threshold rule is the the non-linear function defined as

soft(x, T ) :=


x+ T x ≤ −T

0 |x| ≤ T

x− T x ≥ T

or more compactly, as

soft(x, T ) := sign(x) max(0, |x| − T ). (16)

The soft-threshold rule is illustrated in Fig. 2. In terms of the soft-threshold rule, the minimization of (15)

is given by

x = soft(y, λ/2).

Because the variables in the function J(x) in (14) are uncoupled and the solution is obtained by minimizing

with respect to each xi individually, the minimizer of J(x) is obtained by applying the soft-thresholding rule

to each element of x:

x = soft (y, λ/2) . (17)

The minimization of (14) does not require an iterative algorithm. It is minimized simply by soft-thresholding

each element of y with threshold λ/2.
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Figure 2. The soft-threshold rule (16) with threshold T = 2.

5. Iterated Soft-Thresholding Algorithm (ISTA)

In this section, we consider the minimization of the objective function J(x) in (1) which we repeat here,

J(x) = ‖y −Hx‖22 + λ‖x‖1. (18)

This J(x) can be minimized by combining the results of Sections 3 and 4.

Applying the MM approach, we wish to find a majorizer of J(x) which coincides with J(x) at xk and

which is easily minimized. We can add to J(x) the same non-negative function as in (6) in Section 3,

Gk(x) = J(x) + (x− xk)T(α I−HTH)(x− xk).

By design, Gk(x) coincides with J(x) at xk. We need to minimize Gk(x) to get xk+1. With (18), we obtain

Gk(x) = ‖y −Hx‖22 + (x− xk)T(α I−HTH)(x− xk) + λ‖x‖1

which is the same as (6) except here we have the additional term λ‖x‖1. Using (13), we can write Gk(x) as

Gk(x) = α
∥∥∥xk +

1

α
HT(y −Hxk)− x

∥∥∥2
2

+ λ‖x‖1 +K

where K is a constant with respect to x. Minimizing Gk(x) is equivalent to minimizing (1/α)Gk(x), so xk+1

is obtained by minimizing∥∥∥xk +
1

α
HT(y −Hxk)− x

∥∥∥2
2

+
λ

α
‖x‖1. (19)

We omit the additive constant term because the vector x minimizing Gk(x) is not influenced by it.

Note that (19) has exactly the same form as (14) which is minimized by the formula (17). Therefore,

minimizing (19) is achieved by the following soft-thresholding equation:

xk+1 = soft
(
xk +

1

α
HT(y −Hxk),

λ

2α

)
(20)

where α ≥ maxeig(HTH). This gives the iterated soft-thresholding algorithm (ISTA).

The MATLAB program ista in Listing 1 implements the iterated soft-thresholding algorithm.
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function [x,J] = ista(y,H,lambda,alpha,Nit)

% [x, J] = ista(y, H, lambda, alpha, Nit)

% L1-regularized signal restoration using the iterated

% soft-thresholding algorithm (ISTA)

% Minimizes J(x) = norm2(y-H*x)^2 + lambda*norm1(x)

% INPUT

% y - observed signal

% H - matrix or operator

% lambda - regularization parameter

% alpha - need alpha >= max(eig(H’*H))

% Nit - number of iterations

% OUTPUT

% x - result of deconvolution

% J - objective function

J = zeros(1, Nit); % Objective function

x = 0*H’*y; % Initialize x

T = lambda/(2*alpha);

for k = 1:Nit

Hx = H*x;

J(k) = sum(abs(Hx(:)-y(:)).^2) + lambda*sum(abs(x(:)));

x = soft(x + (H’*(y - Hx))/alpha, T);

end

Listing 1: A MATLAB program implementing the iterated soft-thresholding algorithm (ISTA). The main

update equation is (20).

6. Example

Figures 3 and 4 illustrate an example of the `1-norm regularized signal restoration procedure.

A clean sparse signal, x(n), of 100 samples in duration is illustrated in Fig. 3. The observed signal is

obtained by convolving x(n) by the impulse response

h = [1, 2, 3, 4, 3, 2, 1]/16

and adding white Gaussian noise with standard deviation 0.05.

The result of 500 iterations of ISTA is illustrated in Fig. 4. The decay of the objective function J(x) is

also illustrated. The restored signal is not exactly the same as the original signal, however, it is quite close.

To implement this example in MATLAB, we used the following commands:

h = [1 2 3 4 3 2 1]/16;

N = 100;

H = convmtx(h’,N);

lambda = 0.1;

alpha = 1;

Nit = 500;

[x, J] = ista(y, H, lambda, alpha, Nit);
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Figure 3. Example 1: The sparse signal x and the observed signal y = h ∗ x+ noise.
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function f = convt(h,g);

% f = convt(h,g);

% Transpose convolution: f = H’ g

Nh = length(h);

Ng = length(g);

f = conv(h(Nh:-1:1), g);

f = f(Nh:Ng);

Listing 2: A MATLAB program for transpose convolution as in (22).

7. Convolution and its transpose

Convolution can be represented by matrix-vector multiplication:

Hx =



h0

h1 h0

h2 h1 h0

h2 h1 h0

h2 h1 h0

h2 h1

h2




x0

x1

x2

x3

x4

 . (21)

In MATLAB, we can use conv(h,x) to implement (21). We do not need to perform matrix-vector multipli-

cation. Using conv instead of the matrix H is preferable in a computer program so as to avoid storing the

matrix (the matrix H will be very large when the signal x is long).

The matrix HT is similar but not identical:

HTg =


h0 h1 h2

h0 h1 h2

h0 h1 h2

h0 h1 h2

h0 h1 h2





g0

g1

g2

g3

g4

g5

g6


. (22)

This is a truncation of convolution with a reversed version of h:

h2

h1 h2

h0 h1 h2

h0 h1 h2

h0 h1 h2

h0 h1 h2

h0 h1 h2

h0 h1

h0





g0

g1

g2

g3

g4

g5

g6


. (23)

So we can implement f = HT g in MATLAB using the program convt in Listing 2.

The MATLAB program ista_fns in Listing 3 uses function handles for H and HT instead of matrices,

so it is not necessary to create the matrix H in MATLAB. Instead, it is necessary to supply a function for
10



function [x,J] = ista_fns(y,H,Ht,lambda,alpha,Nit)

% [x, J] = ista_fns(y, H, lambda, alpha, Nit)

% L1-regularized signal restoration using the iterated

% soft-thresholding algorithm (ISTA)

% Minimizes J(x) = norm2(y-H*x)^2 + lambda*norm1(x)

% INPUT

% y - observed signal

% H - function handle

% Ht - function handle for H’

% lambda - regularization parameter

% alpha - need alpha >= max(eig(H’*H))

% Nit - number of iterations

% OUTPUT

% x - result of deconvolution

% J - objective function

J = zeros(1, Nit); % Objective function

x = 0*Ht(y); % Initialize x

T = lambda/(2*alpha);

for k = 1:Nit

Hx = H(x);

J(k) = sum(abs(Hx(:)-y(:)).^2) + lambda*sum(abs(x(:)));

x = soft(x + (Ht(y - Hx))/alpha, T);

end

Listing 3: A MATLAB program implementing the iterated soft-thresholding algorithm (ISTA). This program

uses functions handles for H and HT so as to avoid the use of large matrices.

each of H and HT. For example, in the Example where H represents convolution, we can specify function

handles as follows:

h = [1 2 3 4 3 2 1]/16;

H = @(x) conv(h,x);

Ht = @(y) convt(h,y);

lambda = 0.1;

alpha = 1;

Nit = 500;

[x, J] = ista_fns(y, H, Ht, lambda, alpha, Nit);

The result is exactly the same as using the ista program.

8. Conclusion

These notes describe ISTA (iterated soft-thresholding algorithm) for solving `1-norm regularized inverse

problems. ISTA has linear convergence. There are several more recently developed algorithms that have

faster convergence properties than ISTA. For example, FISTA (Fast-ISTA), described in [1] has quadratic

convergence.

In place of the `1-norm, an `p-norm with p < 1 can be used to more strongly promote sparsity in the

solution. However, in this case, the cost function J(x) will not be convex and the optimization problem is

therefore more difficult in general.
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Appendix A. Vector Derivatives

Suppose x is an N -point vector,

x =


x1

x2
...

xN

 ,
then the derivative of a function f(x) with respect to x is the vector of derivatives,

∂

∂x
f(x) =



∂f(x)

∂x1

∂f(x)

∂x2

...
∂f(x)

∂xN


.

By direct calculation, we have

∂

∂x
bTx = b.

Suppose that A is a symmetric real matrix, AT = A. Then, by direct calculation, we also have

∂

∂x
xTAx = 2Ax

and

∂

∂x
(y − x)TA(y − x) = 2A(x− y).

Appendix B. `2 Regularization

Another standard linear inverse problem formulation uses `2-norm regularization:

J(x) = ‖y −Hx‖22 + λ ‖x‖22 (24)

where λ > 0. Taking the derivative gives

∂

∂x
J(x) = 2HT(Hx− y) + 2λx.

Setting the derivative to zero,

∂

∂x
J(x) = 0 =⇒ HTHx + λx = HTy =⇒ (HTH + λI)x = HTy

So the solution is given by

x = (HTH + λI)−1HTy (25)

This is referred to as ‘diagonal loading’ because a constant, λ, is added to the diagonal elements of HTH.

The approach also avoids the problem of rank deficiency because HTH+λI is invertible even if HTH is not.

Equation (25) is to be compared with (5): if λ = 0, then (25) gives (5).
12



B.1. Landweber iteration for `2 regularized inverse problem. Make a majorizer:

Gk(x) = ‖y −Hx‖22 + λ ‖x‖22 + (x− xk)T(α I−HTH)(x− xk)︸ ︷︷ ︸
non-negative

(26)

Expanding:

Gk(x) = xTHTHx− 2yTHx + yTy + λxTx + (x− xk)T(α I−HTH)(x− xk) (27)

= (α+ λ)xTx− 2(yTH + xT
k (α I−HTH))x + yTy + xT

k (α I−HTH)xk (28)

The leading term of Gk(x) is (α+ λ)xTx so we can minimize Gk(x) easily:

∂

∂x
Gk(x) = 2(α+ λ)x− 2HTy − 2(α I−HTH)xk

∂

∂x
Gk(x) = 0 =⇒ x =

α

α+ λ
xk +

1

α+ λ
HT(y −Hxk)

so we get the iteration:

xk+1 =
α

α+ λ
xk +

1

α+ λ
HT(y −Hxk) (29)

Note that if λ = 0 then (29) becomes (9).
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