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1 Introduction

Total variation denoising (TVD) is an approach for noise reduction developed so as to

preserve sharp edges in the underlying signal [14]. Unlike a conventional low-pass filter, TV

denoising is defined in terms of an optimization problem. The output of the TV denoising

‘filter’ is obtained by minimizing a particular cost function. Any algorithm that solves

the optimization problem can be used to implement TV denoising. However, it is not

trivial because the TVD cost function is non-differentiable. Numerous algorithms have

been developed to solve the TVD problem, e.g. [4–6,17,18].

Total variation is used not just for denoising, but for more general signal restoration

problems, including deconvolution, interpolation, in-painting, compressed sensing, etc. [2].

In addition, the concept of total variation has been generalized and extended in various

ways [3, 11,13].

These notes describe an algorithm1 for TV denoising derived using the majorization-

minimization (MM) approach, developed by Figueiredo et al. [9]. To keep it simple, these

notes address TV denoising of 1-D signals only (ref. [9] considers 2D TV denoising for

images). Interestingly, it is possible to obtain the exact solution to the TV denoising problem

(for the 1-D case) without optimization, but instead using a direct algorithm based on a

characterization of the solution. Recently, a fast algorithm has been developed and is also

available as C program [7].

Total variation denoising assumes that the noisy data y(n) is of the form

y(n) = x(n) + w(n), n = 0, . . . , N − 1 (1)

where x(n) is a (approximately) piecewise constant signal and w(n) is white Gaussian noise.

TV denoising estimates the signal x(n) by solving the optimization problem:

arg min
x

{
F (x) =

1

2

N−1∑
n=0

|y(n)− x(n)|2 + λ

N−1∑
n=1

|x(n)− x(n− 1)|
}
. (2)

The regularization parameter λ > 0 controls the degree of smoothing. Increasing λ gives

more weight to the second term which measures the fluctuation of the signal x(n). An

approach to set the parameter λ is described in Ref. [16], but that approach is beyond the

scope of this note.

1MATLAB software online: http://eeweb.poly.edu/iselesni/lecture_notes/TVDmm/
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1.1 Notation

The N -point signal x is represented by the vector

x = [x(0), . . . , x(N − 1)]T.

The `1 norm of a vector v is defined as

‖v‖1 =
∑
n

|v(n)|.

The `2 norm of a vector v is defined as

‖v‖2 =
[∑
n

|v(n)|2
] 1

2

.

The matrix D is defined as

D =



−1 1

−1 1
. . .

. . .

−1 1

−1 1

 . (3)

The first-order difference of an N -point signal x is given by Dx where D is of size (N−1)×N .

Note, for later, that DDT is a tridiagonal matrix of the form:

DDT =



2 −1

−1 2 −1
. . .

−1 2 −1

−1 2

 . (4)

The total variation of the N -point signal x(n) is given by

TV(x) := ‖Dx‖1 =
N−1∑
n=1

|x(n)− x(n− 1)|.

With this notation, the TV denoising problem (2) can be written compactly as

arg min
x∈RN

{
F (x) =

1

2
‖y − x‖22 + λ ‖Dx‖1

}
. (5)

2 Majorization-minimization (MM)

Majorization-minimization (MM) is an approach to solve optimization problems that are

too difficult to solve directly. Instead of minimizing the cost function F (x) directly, the

MM approach solves a sequence of optimization problems, Gk(x), k = 0, 1, 2, . . . . The idea

is that each Gk(x) is easier to solve than F (x). The MM approach produces a sequence xk,

each being obtained by minimizing Gk−1(x). To use MM, one must specify the functions

Gk(x). The trick is to choose the Gk(x) so that they are easy to solve, but they should also

each approximate F (x).
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The MM approach requires that each function Gk(x) is a majorizer of F (x), i.e.,

Gk(x) > F (x), ∀x

and that it agrees with F (x) at xk,

Gk(xk) = F (xk).

In addition, Gk(x) should be convex functions. The MM approach then obtains xk+1 by

minimizing Gk(x).

Figure 1 illustrates the MM procedure with a simple example. For clarity, the figure

illustrates the minimization of a univariate function. However, the MM procedure works in

the same way for the minimization of multivariate functions, and it is in the multivariate

case where the MM procedure is especially useful.

The majorization-minimization approach to minimize the function F (x) can be summa-

rized as:

1. Set k = 0. Initialize x0.

2. Choose Gk(x) such that

(a) Gk(x) > F (x) for all x

(b) Gk(xk) = F (xk)

3. Set xk+1 as the minimizer of Gk(x).

xk+1 = arg min
x
Gk(x) (6)

4. Set k = k + 1 and go to step (2.)

When F (x) is convex, then under mild conditions, the sequence xk produced by MM

converges to the minimizer of F (x). More details about the majorization-minimization

procedure can be found in [8] and references therein.

Example majorizer. An upper bound (majorizer) of f(t) = |t| that agrees with f(t) at

t = tk is

g(t) =
1

2|tk|
t2 +

1

2
|tk| (7)

as illustrated in Fig. 2. The figure makes clear that

g(t) > f(t), ∀t

g(tk) = f(tk)

The derivation of the majorizer in (7) is left as exercise 5.

It is convenient to use second-order polynomials as majorizers because they are easy to

minimize. Setting the derivatives to zero gives linear equations. A higher order polynomial

could be used to give a closer fit to the function f(t) to be minimized, however, then the

minimization will be more difficult (involving polynomial root finding, etc.)
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(a) Function F (x) to be minimized. MM is initialized with x0.
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(b) Iteration 1.
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(c) Iteration 2.
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Figure 1: Illustration of majorization-minimization (MM) procedure.

(a) Cost function F (x) to be minimized; and initialization, x0.

(b) Iteration 1. Majorizor G0(x) coincides with F (x) at x0. Minimize G0(x) to get x1.

(c) Iteration 2. Majorizor G1(x) coincides with F (x) at x1. Minimize G1(x) to get x2.

The sequence, xk, converges to the minimizer of F (x).
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Figure 2: Majorization of f(t) = |t| by g(t) = at2 + b.

3 A TV denoising algorithm

One way to apply MM to TV denoising is to majorize TV(x) by a quadratic function of x,

as described in ref. [9]. Then the TVD cost function F (x) can be majorized by a quadratic

function, which can in turn be minimized by solving a system of linear equations.

To that end, using (7), we can write

1

2|tk|
t2 +

1

2
|tk| > |t| ∀ t ∈ R

Using v(n) for t and summing over n gives∑
n

[
1

2|vk(n)|
v2(n) +

1

2
|vk(n)|

]
>
∑
n

|v(n)|

which can be written compactly as

1

2
vTΛ−1k v +

1

2
‖vk‖1 > ‖v‖1

where Λk is the diagonal matrix

Λk :=


|vk(1)|

|vk(2)|
. . .

|vk(N)|

 = diag(|vk|).

In the notation, diag(|v|), the absolute value is applied element-wise to the vector v.

Using Dx for v, we can write

1

2
xTDTΛ−1k Dx +

1

2
‖Dxk‖1 > ‖Dx‖1 (8)

where

Λk := diag(|Dxk|).
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Note in (8) that the majorizer of ‖Dx‖1 is a quadratic function of x. Also note that the

term ‖Dxk‖1 in (8) should be considered a constant — it is fixed as xk is the value of x at

the previous iteration. Similarly, Λk in (8) is also not a function of x.

A majorizer of the TV cost function, F (x) in (5), can be obtained from (8) by adding
1
2‖y − x‖22 to both sides,

1

2
‖y − x‖22 + λ

1

2
xTDTΛ−1k Dx + λ

1

2
‖Dxk‖1 >

1

2
‖y − x‖22 + λ ‖Dx‖1.

Therefore a majorizer Gk(x) for the TV cost function is given by

Gk(x) =
1

2
‖y − x‖22 + λ

1

2
xTDTΛ−1k Dx + λ

1

2
‖Dxk‖1, Λk = diag(|Dxk|)

which satisfies Gk(xk) = F (xk) by design. Using MM, we obtain xk by minimizing Gk(x),

xk+1 = arg min
x

Gk(x) (9)

xk+1 = arg min
x

1

2
‖y − x‖22 + λ

1

2
xTDTΛ−1k Dx + λ

1

2
‖Dxk‖1. (10)

An explicit solution to (10) is given by

xk+1 =
(
I + λDTΛ−1k D

)−1
y. (11)

A problem with update (11) is that as the iterations progress, some values of Dxk will

generally go to zero, and therefore some entries of Λ−1k in (11) will go to infinity. This issue

is addressed in Ref. [9] by rewriting the equation using the matrix inverse lemma. By the

matrix inverse lemma (see Appendix 7), we can write(
I + λDTΛ−1k D

)−1
= I−DT

( 1

λ
Λk + DDT

)−1
D

where

Λk = diag(|Dxk|).

Now the update equation (11) becomes

xk+1 = y −DT
( 1

λ
diag(|Dxk|) + DDT

)−1
Dy. (12)

Observe that even if some elements of Dxk are zero, no division by zero arises in (12).

The update (12) calls for the solution to a linear system of equations. In general, it is

desirable to avoid such a computation in an iterative filtering algorithm due to the high

computational cost of solving linear systems (especially when the signal y is very long and

the system is very large). However, the matrix [ 1λdiag(|Dxk|) + DDT] in (12) is a banded

matrix; it consists of only three diagonals — the main diagonal, one upper diagonal, and

one lower diagonal. This is because DDT is tridiagonal as shown in (4). Therefore, the

linear system in (12) can be solved very efficiently [12, Sect 2.4]. Further, the whole matrix

need not be stored in memory, only the three diagonals.

The MATLAB function TVD_mm implements TV denoising based on the update (12).

The function uses the sparse matrix structure in MATLAB so as to avoid high memory

requirements and so as to invoke fast solvers for banded linear systems. MATLAB uses



7

function [x, cost] = tvd_mm(y, lam, Nit)

% [x, cost] = tvd_mm(y, lam, Nit)

% Total variation denoising using majorization-minimization

% and banded linear systems.

%

% INPUT

% y - noisy signal

% lam - regularization parameter

% Nit - number of iterations

%

% OUTPUT

% x - denoised signal

% cost - cost function history

%

% Reference

% ’On total-variation denoising: A new majorization-minimization

% algorithm and an experimental comparison with wavalet denoising.’

% M. Figueiredo, J. Bioucas-Dias, J. P. Oliveira, and R. D. Nowak.

% Proc. IEEE Int. Conf. Image Processing, 2006.

% Ivan Selesnick, selesi@nyu.edu, 2011

% Revised 2017

y = y(:); % Make column vector

cost = zeros(1, Nit); % Cost function history

N = length(y);

I = speye(N);

D = I(2:N, :) - I(1:N-1, :);

DDT = D * D’;

x = y; % Initialization

Dx = D*x;

Dy = D*y;

for k = 1:Nit

F = sparse(1:N-1, 1:N-1, abs(Dx)/lam) + DDT; % F : Sparse banded matrix

x = y - D’*(F\Dy); % Solve banded linear system

Dx = D*x;

cost(k) = 0.5*sum(abs(x-y).^2) + lam*sum(abs(Dx)); % cost function value

end

Figure 3: MATLAB program for TV denoising using majorization-minimization. The pro-

gram is based on the update equation (12).
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Figure 4: TV denoising example.
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Figure 5: Comparison of convergence behavior of two TV denoising algorithms.
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LAPACK [1] to solve the banded system in the program TVD_mm. The algorithm used

by MATLAB to solve the banded linear system can be monitored using the command

spparms(’spumoni’,3).

An example of TV denoising is shown in Fig. 4. The history of the cost function through

the progression of the algorithm is shown in the figure. It can be seen that after 20 iterations

the cost function has leveled out, suggesting that the algorithm has practically converged.

Another algorithm for 1-D TV denoising is Chambolle’s algorithm [5], a variant of which

is the ‘iterative clipping’ algorithm [15]. This algorithm is computationally simpler than

the MM algorithm because it does not call for the solution to a linear system at each

iteration. However, it may converge slowly. For the denoising problem illustrated in Fig. 4,

the convergence of both the iterative clipping and MM algorithms are shown in Fig. 5. It

can be seen that the MM algorithm converges in fewer iterations.

4 Optimality condition

It turns out that the solution to the TV denoising problem can be concisely characterized [7].

Suppose the noisy data is y and the regularization parameter is λ. If x is the solution to

the TV denoising problem, then it must satisfy

|s(n)|/λ 6 1, n = 0, . . . , N − 1 (13)

where s(n) is the ‘cumulative sum’ of the residual, i.e.

s(n) :=

n∑
k=0

(y(k)− x(k)) .

The condition (13) is illustrated in Fig. 6(a) for the TV denoising example of Fig. 4.

The condition (13) by itself is not sufficient for x(n) to be the solution to the TV denoising

problem. It is further necessary that x(n) satisfy

d(n) > 0, s(n) = λ

d(n) < 0, s(n) = −λ

d(n) = 0, |s(n)| < λ

(14)

where d(n) is the first-order difference function of x(n), i.e.

d(n) = x(n+ 1)− x(n).

The condition (14) is illustrated in Fig. 6b. The figure shows (d(n), s(n)) as a scatter plot.

It can be seen that this condition requires the points to lie on the graph of the sign function.

Notice in the figure that d(n) is mostly zero, reflecting the sparsity of the derivative of x(n).

4.1 Derivation

The vector x̂ is minimizer of F if and only if

0 ∈ ∂F (x̂) (15)

where ∂F is the subgradient of F [10]. The subgradient of F ,

F (x) =
1

2
‖y − x‖22 + λ ‖Dx‖1, (16)
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is given by

∂F (x) = x− y + λDT sign{Dx}. (17)

So, the optimality condition (15) can be written as

y − x ∈ λDT sign{Dx}. (18)

It is now useful to define the matrix S as follows: a lower triangular matrix of all ones,

with zeros on the main diagonal,

S =



0

1

1 1

1 1 1
...

. . .

1 1 1 1 1


. (19)

Then Dv represents the cumulative sum of the signal v(n). If D is of size (N − 1)×N , and

S is of size N × (N − 1), then

DS = I (20)

where I is an identity matrix of size (N − 1). That is, S is the discrete anti-derivative.

Multiplying (18) on the left by ST and using STDT = I, gives

1

λ
ST(y − x) ∈ sign{Dx}. (21)

The condition (21) is essentially the same as (14), but expressed in a more compact form.

5 Conclusion

Total variation (TV) denoising is a method to smooth signals based on a sparse-deriviative

signal model. TV denoising is formulated as the minimization of a non-differentiable cost

function. Unlike a conventional low-pass filter, the output of the TV denoising ‘filter’

can only be obtained through a numerical algorithm. Total variation denoising is most

appropriate for piecewise constant signals, however, it has been modified and extended so

as to be effective for more general signals.

6 Exercises

1. Reproduce figures like those of the example (using a ‘blocky’ signal). Try different

values of λ. How does the solution change as λ is increased or decreased?

2. Compare TV denoising with low-pass filtering (e.g. a Butterworth or FIR filter, etc).

Apply each method to the same signal. Plot the denoised/filtered signals using each

method and discuss the differences you observe.

3. Perform TV denoising on a signal that is not ‘blocky’ (which has slopes or oscillatory

behavior). You should see ‘stair-case’ artifacts in the denoised signal. Show these

artifacts in a figure and explain why they arise.
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4. Is TV denoising linear? (Conventional low-pass filters are linear, e.g. Butterworth

filter.) Illustrate that TV denoising satisfies (or does not) the superposition property

by performing TV denoising on each of two signals and their sum.

5. Find a majorizer of the function f(t) = |t| of the form

g(t) = a t2 + b t+ c,

that coincides with f(t) at t = tk. As illustrated in Fig. 2, the function g(t) should

satisfy

g(t) > f(t) ∀ t ∈ R,

g(tk) = f(tk).

6. Show the solution to (10) is given by (11).

7. For denoising a noisy signal using TV denoising, devise a method or formula to set

the regularization parameter λ. You can assume that the variance σ2 of the noise is

known. Show examples of your method.

8. Explain why DT can be implemented in MATLAB by the command

DT = @(x) [-x(1); -diff(x); x(end)];

9. Modify the TV denoising MATLAB program so that the matrix F is not sparse by

using instead the line

F = diag(abs(Dx)/lam) + DDT;

Measure the run-times of the original and modified programs. Is the sparse version

faster? Use a long signal and many iterations to see the difference more clearly.

10. Second-order TV denoising is based the second-order difference instead of the first-

order difference. Modify the algorithm and MATLAB program so that it performs

second-order TV denoising. Compare first and second order TV denoising using

‘blocky’ and non-‘blocky’ signals, and comment on your observations.

7 Appendix: Matrix inverse lemma

The matrix inverse lemma has several forms. A common form is

(A + BCD)−1 = A−1 −A−1B (C−1 + DA−1B)−1DA−1. (22)
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