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Abstract This chapter takes up the design of discrete wavelet transforms based on
oversampled filter banks. In this case the wavelets form an overcomplete
basis, or frame. In particular, we consider the design of systems that are
analogous to Daubechies’ orthonormal wavelets — that is, the design of
minimal length wavelet filters satisfying certain polynomial properties,
but now in the oversampled case. The wavelets are constructed using
maximally flat FIR filters in conjunction with extension methods for
paraunitary matrices. Because there are more degrees of freedom in
the design problem, the wavelets described in this chapter are much
smoother than orthonormal wavelets of the same support.

The oversampled dyadic DWT considered in this chapter is based
on a single scaling function and two distinct wavelets. Having more
wavelets than necessary gives a closer spacing between adjacent wavelets
within the same scale. Like the dual-tree DWT, the oversampled DWT
presented here is redundant by a factor of 2, independent of the number
of levels. In comparison, the redundancy of the undecimated DWT
grows with the number of levels.

Keywords: wavelet transform, tight frame, oversampled filter bank.

1. Introduction
Frames, or overcomplete expansions, have several applications, for

example, denoising and signal coding [3, 8, 12, 15, 20, 22, 40]. This
chapter introduces new wavelet frames based on iterated oversampled
FIR filter banks. In particular, we take up the design of systems that are
analogous to Daubechies orthonormal wavelets [11] — that is, the design
of minimal length wavelet filters satisfying certain polynomial properties,
but now in the oversampled case. The wavelets are constructed using
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maximally flat FIR filters in conjunction with spectral factorization and
extension methods for paraunitary matrices. Originally Gröbner bases
were used to obtain these wavelets in [31, 33], but the paper by Chui and
He [6] on the design of wavelet frames of similar character since made
clear how to apply the paraunitary method which greatly simplifies the
design procedure. An alternative simplified procedure is also described
by Petukhov [25]. A simple Matlab program to construct the wavelet
tight frames described in this chapter is available from the author.

The oversampled DWT (discrete wavelet transform) presented in this
chapter differs from the undecimated DWT. The undecimated DWT is a
shift-invariant discrete transform, however, it has an expansion-factor of
logN : it expands an N -sample data vector to N logN samples. Kings-
bury showed, however, that the shift-sensitivity of the DWT can be
dramatically improved by using a dual-tree DWT, an overcomplete ex-
pansion that is redundant by a factor of 2 only [18]. In addition, Si-
moncelli et al introduced the concept of shiftable multiscale transforms,
developed examples, and illustrated their advantages [35]. So motivated,
this chapter considers the design of wavelet tight frames based on iter-
ated oversampled filter banks, as in [6, 25, 26, 28, 29]. (A tight frame
is one where the signal reconstruction can be performed with the trans-
pose of the forward transform.) Like the examples by Chui and He [6],
Ron and Shen [28], and Petukhov [26], the wavelets presented below are
much smoother than what can be achieved in the critically sampled case.
For the wavelets developed in this chapter the number of zero moments
of the wavelets are explicitly prescribed. For a given number of wavelet
moments and a given number of zeros at z = −1 of the scaling filter
H0(z), the wavelets presented below are of minimal length.

The DWT presented in this chapter expands an N -sample data vector
to 2N samples — independent of the number of scales over which the
signal decomposition is performed. While it does not yield an exactly
shift-invariant discrete transform, like the dual-tree DWT, it is more
nearly shift-invariant than the critically sampled DWT can be.

Because the frames described in this chapter are based on iterated FIR
filter banks, a fast discrete frame transform is simple to implement. This
chapter considers exclusively tight frames. The transfer function Hi(z)
is given by

∑
n hi(n)z−n. Note that through out the chapter, t ∈ R,

i, j, k, l,m, n ∈ Z. For in-depth analysis of oversampled filter banks and
frames, see [1, 4, 7, 10, 11, 16, 28, 29, 23].
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2. Oversampling the Time-frequency Plane
The sampling of the the time-frequency plane provided by the critically
sampled DWT is illustrated by the (idealized) diagram in the first panel
of Figure 2.1. The distance between adjacent points increases by a fac-
tor of two when moving from one scale to the next coarser scale. The
corresponding diagram for the undecimated DWT is shown in the third
panel of Figure 2.1; in this case the distance between points is constant
regardless of scale. On the other hand, the diagram corresponding to
the double density DWT is shown in the middle panel of the figure. For
the double density DWT, each scale is represented by twice as many
points as in the critically sampled DWT and the octave spacing between
points characteristic of the DWT is preserved. Figure 2.1 also indicates
that both the double density and undecimated DWT approximate the
continuous wavelet transform more closely than the critically sampled
DWT does.

The number of points in the diagrams indicates the redundancy in-
curred by each of the transforms. The undecimated DWT is the most
redundant, with a redundancy factor that depends on the number of
scales over which the transform is computed. On the other hand, the
double density DWT is redundant by a factor of two regardless of the
number of scales used.

An attractive feature of the undecimated DWT is that it is exactly
shift invariant. Although that is not possible for the double density
DWT presented in this chapter, it turns out that it can be nearly shift
invariant. Having a closer spacing between adjacent wavelets within the
same scale makes the double density DWT less shift-sensitive than the
critically sampled DWT while keeping the redundancy much lower than
that of the undecimated DWT.

3. The ‘Ideal’ Double Density DWT
To develop the double density DWT we begin by selecting an appropriate
filter bank structure. The filter bank illustrated in Figure 2.2 exactly
matches the strategy for sampling the time-frequency plane illustrated
in the second panel of Figure 2.1. This resembles the usual two-channel
filter bank used in implementing the critically sampled DWT, however,
the down-sampler and up-sampler in the high-pass channel have been
deleted. This is called an oversampled filter bank because the total rate
of the subband signals c(n), d(n) is exceeds the input rate by 3/2. The
double density DWT is then implemented by recursively applying this
filter bank on the low-pass subband signal c(n). The prominent issue
is the design of the filters h0(n) and h1(n) so that y(n) = x(n) (that is
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Figure 2.1. Idealized time-frequency localization diagrams. The double density
DWT gives a denser sampling of the time-frequency plane than the critically sample
DWT. But unlike the undecimated DWT, it maintains the same octave spacing.
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Figure 2.2. An oversampled analysis and synthesis filter bank for which perfect re-
construction is impossible with realizable filters.

the perfect reconstruction condition). Unfortunately, for the filter bank
shown in Figure 2.2 there are no finite length filters hi(n) satisfying this
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required property. Even if infinite length hi(n) realizable with finite
order difference equations are allowed, there are still no solutions.

The perfect reconstruction condition for the filter bank of Figure 2.2
is derived as follows. Using basic multirate identities we find Y (z), the
Z-transform of y(n), in terms of X(z).

Y (z) =
[

1
2
H0(z)H0(1/z) +H1(z)H1(1/z)

]
X(z) +

1
2
H0(z)H0(−1/z)X(−z).

For perfect reconstruction, Y (z) = X(z), it is required that

1
2
H0(z)H0(1/z) +H1(z)H1(1/z) = 1

H0(z)H0(−1/z) = 0.

This can be written as

H0(ejω)H0(ej(ω−π)) = 0. (1)

Therefore, H0(ejω), the discrete-time Fourier transform of h0(n), must
be exactly zero on a set of nonzero measure, which is impossible for
realizable filters in general and finite length (FIR) filters in particular.
The ideal low-pass filter,

H0(ejω) =
{

1 |ω| < π
2

0 π
2 < |ω| < π

satisfies (1), but then h0(n) is of infinite support decays very slowly, and
the wavelet ψ(t) is the sinc function (it is not an ideal wavelet!).

Although the filter bank of Figure 2.2 is the one most closely matched
to the time-frequency sampling strategy discussed above, it can not be
used to implement an invertible transform with FIR filters.

4. The Double Density DWT with FIR Filters
To construct a double density DWT with FIR filters we will use the
oversampled filter bank shown in Figure 2.3. The filter h0(n) will be a
low-pass (scaling) filter, while h1(n) and h2(n) will both be high-pass
(wavelet) filters. To develop the perfect reconstruction conditions we
use standard multirate identities to write Y (z) in terms of X(z).

Y (z) =
1
2

[H0(z)H0(1/z) +H1(z)H1(1/z) +H2(z)H2(1/z)]X(z) +

1
2

[H0(z)H0(−1/z) +H1(z)H1(−1/z) +H2(z)H2(−1/z)]X(−z)
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Figure 2.3. An oversampled analysis and synthesis filter bank permitting perfect
reconstruction with FIR filters.

For perfect reconstruction, Y (z) = X(z), it is necessary that

H0(z)H0(1/z) +H1(z)H1(1/z) +H2(z)H2(1/z) = 2, (2)
H0(z)H0(−1/z) +H1(z)H1(−1/z) +H2(z)H2(−1/z) = 0. (3)

These conditions are somewhat more complicated than those arising in
the design of critically sampled filter banks, however, in Sections 5 and
6 we describe how they can be solved to obtain minimal length filters
satisfying zero moment and regularity conditions.

If the filter banks of Figures 2.2 and 2.3 are compared, it turns out
that the first is a special case of the second. Specifically, the filter bank
of Figure 2.2 can be implemented using the filter bank of Figure 2.3 by
setting h2(n) = h1(n− 1). Then interleaving the subband signals d1(n)
and d2(n) in Figure 2.3 would give d(n) in Figure 2.2. The filter bank
of Figure 2.3 is more general than the filter bank of Figures 2.2 and we
can obtain FIR solutions using it.

Note that the filter bank in Figure 2.3 is oversampled by 3/2, but we
have called the corresponding transform the double density DWT. This
is because, when the filter bank is iterated a single time on its lowpass
branch (h0), the total oversampling rate will be 7/4. For a three-stage
filter bank, the oversampling rate will be 15/8. When this filter bank is
iterated on its lowpass branch indefinitely, the total oversampling rate
increases towards two.

4.1. The Scaling and Wavelet Functions
The three-channel filter bank which we will use to develop the double
density DWT corresponds to a wavelet frame based on a single scaling
function φ(t) and two distinct wavelets ψ1(t) and ψ2(t). (We label the
wavelets as ψ1, ψ2 instead of ψ0, ψ1 as it will simplify notation.) Fol-
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lowing the theory of dyadic wavelet bases, the scaling space Vj and the
wavelet spaces Wi,j are defined as

Vj = Span
n∈Z
{φ(2jt− n)} (4)

Wi,j = Span
n∈Z
{ψi(2jt− n)}, i = 1, 2. (5)

(Dyadic wavelet bases are based on a single scaling function φ and a
single wavelet ψ. The extra wavelet here makes this system an over-
complete one.) Following the multiresolution framework, one asks that
these signal spaces be nested: V0 ⊂ V1,W1,0 ⊂ V1,W2,0 ⊂ V1. It follows
that φ, ψ1, ψ2 satisfy the dilation and wavelet equations

φ(t) =
√

2
∑
n

h0(n)φ(2t− n)

ψi(t) =
√

2
∑
n

hi(n)φ(2t− n), i = 1, 2.

The scaling function φ(t) and the wavelets ψ1(t), ψ2(t) are defined
through these equations by the low-pass (scaling) filter h0(n) and the
two high-pass (wavelet) filters h1(n) and h2(n).

4.2. Zero Moments Properties
To design the filters hi(n) we can follow Daubechies’ program: look
for filters hi(n) of minimal length under the constraint that the scaling
function and wavelets satisfy certain polynomial properties. Similar to
the critically sampled case, the properties we ask ψ(t) to satisfy can
be translated into conditions on hi(n). However, in the oversampled
case under consideration here, more degrees of freedom are available.
Accordingly, it is possible to obtain wavelets that are much smoother.

Let K0 denote the number of zeros H0(ejω) has at ω = π. For i = 1, 2,
let Ki denote the number of zeros Hi(ejω) has at ω = 0. Then the Z-
transform of each hi(n) factors as follows.

H0(z) = Q0(z) (z + 1)K0 (6)

H1(z) = Q1(z) (z − 1)K1 (7)

H2(z) = Q2(z) (z − 1)K2 (8)

K0 denotes the degree of polynomials representable by integer translates
of φ(t) and is related to the smoothness of φ(t). K1 and K2 denote the
number of zero moments of the wavelets ψi(n) (provided K0 ≥ K1, and
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K0 ≥ K2). That is,

f(t) ⊂ PK0−1 ⇒ f(t) =
∑

k

c(k)φ(t− k)

for some c(k), and
∫
tk ψi(t) dt = 0 for k = 0, . . . ,Ki − 1, i = 1, 2.

Pk denotes the space of polynomials of degree k and less.
The value of K0 influences the degree of smoothness of φ (and there-

fore of ψi). On the other hand, the values K1 and K2 indicate what
polynomials are annihilated (compressed) by the transform. In contrast
to orthonormal wavelet bases, with the double density DWT one has
the possibility to control these parameters more freely. If it is desired
for a given class of signals that the wavelets have two zero moments (for
example), then the remaining degrees of freedom can be used to achieve
a higher degree of smoothness by making K0 greater than K1 and K2.

We seek the minimal-length FIR filters hi(n) satisfying the perfect
reconstruction conditions (2,3) that in addition have a prescribed num-
ber of zeros at z = −1 and z = 1 (specified by the values Ki). In the
following examples, we ask that K1 = K2. If they are unequal, then one
wavelet annihilates more polynomials than the other, or one wavelet is
doing ‘more work’ than the other.

We originally obtained solutions in [31, 33] by solving the nonlinear de-
sign equations using Gröbner bases, a powerful but computationally ex-
pensive tool from computational algebraic geometry [9]. In a loose sense,
Gröbner bases extend the Gaussian elimination of variables to polyno-
mial systems of equations. (For previous applications of Gröbner bases
to the design of wavelets and filters, see for example [13, 21, 24, 30, 32].)
However, as described in Section 6, the solutions can be more easily
obtained using the formula for maximally flat FIR filters in conjunction
with extension methods for paraunitary matrices. The paraunitary ex-
tension method, used by Chui and He for the design of other types of
wavelet frames in [6], and the method of Petukhov [25], greatly simplifies
the design procedure.

5. Constructing the Scaling Filter
In contrast to the design of critically sampled dyadic wavelet systems,
the high-pass wavelet filters are not uniquely determined by the low-
pass scaling filter h0(n). Like the M -band case [36, 39, 41], there is
some freedom in how the high-pass filters are chosen. In this section, we
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describe how to obtain the minimal-length low-pass filter h0(n) satisfying
the perfect reconstruction conditions (2,3) and the constraints (6,7,8).
As in Daubechies’ construction, the filter h0(n) can be obtained through
the spectral factorization of a suitably designed symmetric filter. We
describe the design of the high-pass filters in Section 6.

It will be convenient to define the autocorrelation function for each of
the three filters hi(n),

pi(n) := hi(n) ∗ hi(−n) =
∑

k

hi(k)hi(n+ k).

Equivalently, the discrete-time Fourier transform of pi(n) is given by

Pi(ω) := DTFT {pi(n)} = |Hi(ejω)|2.
Each of the pi(n) are Type I FIR filters (symmetric finite-length se-
quences of odd length). We will determine P0(ω). Then we can obtain
h0(n) from P0(ω) through spectral factorization. The condition (6) im-
plies that

P
(i)
0 (π) = 0, 0 ≤ i ≤ 2K0,

conditions (7), (8) imply that

P
(i)
j (0) = 0, 0 ≤ i ≤ 2Kj , j = 1, 2,

and from (2) we have

P0(ω) + P1(ω) + P2(ω) = 2.

Therefore P0(0) = 2 and P (i)
0 (0) = −P (i)

1 (0)−P (i)
1 (0) for i ≥ 1. It follows

that P (i)
0 (0) = 0, for 1 ≤ i ≤ 2 min(K1,K2). In summary, we have then

for P0(ω) that

P0(0) = 2, (9)

P
(i)
0 (0) = 0, 1 ≤ i ≤ 2 min(K1,K2), (10)

P
(i)
0 (π) = 0, 0 ≤ i ≤ 2K0. (11)

The shortest p0(n) satisfying these derivative conditions is exactly the
maximally flat symmetric FIR filter originally described by Herrmann
[17]. Specifically, letting M = min(K1,K2), one has

P z0 (z) = 2
(
z + 2 + z−1

4

)K0 M−1∑

n=0

(
K0 + n− 1

n

) (−z + 2− z−1

4

)n

(12)
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Table 2.1. Matlab program for maximally flat Type I FIR filter.

function p = maxflatI(K,M)

% Maximally flat Type-I FIR filter

% 2K zeros at z=-1

% 2M-2 zeros away from z=-1

% note: if K = M, then p is halfband.

%

% Reference: O. Herrmann, "On the approximation problem

% in Nonrecursive Digital Filter Design", IEEE Trans. on

% Circuit Theory, Vol. 18, No. 3, May 1971, pp. 411-413

p2 = 1;

g = 1;

c = 1;

for k = 1:M-1

g = conv(g,[-1 2 -1]/4);

c = c*(K-1+k)/k;

p2 = [0 p2 0] + c*g;

end

p1 = 1;

for k = 1:2*K

p1 = conv(p1,[1 1]/2);

end

p = conv(p1,p2);

where P z0 (z) denotes the Z-transform of p0(n). A Matlab program for
calculating the maximally flat filter p0(n) is given in Table 2.1.

Example. When K0 = 4,K1 = K2 = 2, the coefficients of the filter
h0(n), the frequency response |H0(ejω)|, the scaling function φ(t) and
its Fourier transform, are illustrated in Figure 2.4.

According to the derivative conditions, the length of h0(n) must sat-
isfy the inequality,

lengthh0 ≥ K0 + min (K1,K2). (13)

Therefore, the minimum length of h0 is K0 + min (K1,K2). Notice that
the well known length condition of the critically sampled DWT is re-
trieved when we set K0 = K1 and h2(n) = 0. In that case, K2 = ∞
(because then P

(i)
2 (ω) = 0 for all i) and the inequality becomes

lengthh0 ≥ K0 + min (K0,∞)
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Figure 2.4. The minimal length scaling filter h0(n) and scaling function φ(t) with
the parameters K0 = 4,K1 = K2 = 2.

which gives the minimum length of h0(n) to be 2K0. That is the length
of Daubechies’ minimal length orthonormal wavelets with K0 zero mo-
ments.

When M = K0, the formula (12) specializes to the Daubechies poly-
nomial; that is the polynomial that is used in Daubechies’ construction
of short orthonormal wavelets [11]. The Daubechies polynomial is the
halfband instance of the maximally flat filter. The filter in (12) is of the
same maximally flat family, but rather than being halfband, it can have
instead a higher degree of flatness at ω = π than it does at ω = 0. That
makes the passband more narrow than the stopband and increases the
smoothness of φ(t).

While (12) yields directly a formula for |H0(ejω)|2 from which h0(n)
can be obtained through spectral factorization, it does not yield the
wavelet filters h1(n), h2(n). Section 6 describes a method to obtain the
wavelet filters once h0(n) is obtained.

6. Constructing the Wavelet Filters
Once the low-pass filter h0(n) is obtained, the two (non-unique) wavelet
filters h1(n) and h2(n) can be obtained using a polyphase formulation.
Define the polyphase components Hi0(z) and Hi1(z) through

Hi(z) = Hi0(z2) + z−1Hi1(z2), i = 0, 1, 2 (14)
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Figure 2.5. The oversampled filter bank of Figure 2.3 in polyphase form.

and define the polyphase matrix H(z) as

H(z) =
[
H00(z) H10(z) H20(z)
H01(z) H11(z) H21(z)

]
.

Then the three-channel filter bank of Figure 2.3 can be redrawn as the
filter bank of Figure 2.5. Similarly, the perfect reconstruction condition
can be written as

H(z)Ht(1/z) = I2. (15)

The matrix H(z) is said to be a 2× 3 lossless system [37]. Once we find
four components H10, H11, H20 and H21 so that H(z) satisfies (15) we
can then form h1(n) and h2(n).

One way to obtain a 2× 3 lossless system is to first determine a 3× 3
lossless system and to then delete the last row. Define Ĥ(z) to be the
matrix

Ĥ(z) =



H00(z) H10(z) H20(z)
H01(z) H11(z) H21(z)
H02(z) H12(z) H22(z)




where only H00(z) and H01(z) are so far determined. We will design the
square lossless system Ĥ(z), or paraunitary matrix, to satisfy

Ĥt(1/z) Ĥ(z) = Ĥ(z) Ĥt(1/z) = I3.

Then

H00(z)H00(1/z) +H01(z)H01(1/z) +H02(z)H02(1/z) = 1,

or

H02(z)H02(1/z) = 1−H00(z)H00(1/z)−H01(z)H01(1/z). (16)
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Therefore H02(z) can be obtained by spectral factorization,

|H02(ejω)|2 = 1− |H01(ejω)|2 − |H01(ejω)|2.

Note that H02(z) is not uniquely defined.
Once we obtain H02(z) we have the first column of Ĥ(z). The re-

maining two columns of Ĥ(z) can be found using existing algorithms for
paraunitary completion, for example those described in [37, 38]. Once
the 3×3 paraunitary matrix Ĥ(z) is completely known, the 2×3 matrix
H(z) is obtained by deleting the last row of Ĥ(z).

Define E0(z) to be the first column of H(z) (now known),

E0(z) :=



H00(z)
H01(z)
H02(z)


 .

Then E0(z) is a 3 × 1 lossless system and as such it can be factored as
follows [37].

E0(z) = UN (z) · UN−1(z) · · · U1(z) · P (17)

with

Uk(z) = I − uk utk + uk u
t
k z
−1

where uk and P are column vectors of unit norm. The minimal number
of factors N is the McMillan degree of the system E0(z). The McMillan
degree also gives the minimum number of delay elements required to
implement a system.

Once the factorization (17) is determined, using the algorithm de-
scribed in [37, 38], a paraunitary matrix is obtained by replacing P with
an orthogonal matrix Q (QtQ = I) the first column of which is P .
The resulting paraunitary matrix will have the same McMillan degree
as E0(z).

Note that Uk(1) = I3. Then setting z = 1 in (17) gives

E0(1) = UN (1) · UN−1(1) · · · U1(1) · P = P.

The column vector P is therefore uniquely determined by H0i(z). Note
from (14) that

H0(1) =H00(1) +H01(1),
H0(−1) =H00(1)−H01(1).
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From (9) we have H0(1) =
√

2 and from (11) we have H0(−1) = 0. In
turn it follows that

H00(1) = H01(1) =
1√
2
.

From (16) we have

H02(1) = 0.

Hence, the column vector P is given by

P =
1√
2




1
1
0


 . (18)

Therefore, a 3 × 3 paraunitary matrix Ĥ(z), with E0(z) as the first
column, is given by

Ĥ(z) = UN (z) · UN−1(z) · · · U1(z) ·Q
where Q is a 3 × 3 orthogonal matrix the first column of which is P in
(18). In this case there is one degree of freedom in parameterizing Q. A
simple parameterization of Q is given by

Q =
1√
2




1 1 0
1 −1 0
0 0

√
2






1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


 .

We will use the parameter θ to set the last coefficient of h2(n) to zero.

Example. Let us continue with the previous example where K0 = 4,
and K1 = K2 = 2. In obtaining H02(z) we used a minimum-phase
spectral factor. We then found a factorization of E0(z). The McMillan
degree N is 2 for this example. We used θ to set the last coefficient
of h2(n) equal to zero. The filters h1(n) and h2(n) then obtained are
tabulated in Table 2.2. As shown in the table, the last two values of
h2(n) are zero, even though that property was not imposed. The scaling
function φ(t), the wavelets ψi(t), and the frequency response of the filters
hi(n), are illustrated in Figure 2.6.

Because the last two samples of h2(n) are zero, we can form a new sys-
tem from this one without affecting the overall length (without affecting
the maximum filter length). Lets define

g0(n) = h0(n) (19)
g1(n) = cos(α)h1(n)− sin(α)h2(n− 2) (20)
g2(n) = sin(α)h1(n) + cos(α)h2(n− 2) (21)
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Table 2.2. The coefficients of a wavelet tight frame with minimal McMillan degree.
(2 delay elements required.) K0 = 4,K1 = K2 = 2.

n h0(n) h1(n) h2(n)

0 0.14301535070442 -0.08558263399002 -0.43390145071794
1 0.51743439976158 -0.30964087862262 0.73950431733582
2 0.63958409200212 0.56730336474330 -0.17730428251781
3 0.24429938448107 0.04536039941690 -0.12829858410007
4 -0.07549266151999 -0.12615420862311 0
5 -0.05462700305610 -0.09128604292445 0
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Figure 2.6. The solution tabulated in Table 2.2. K0 = 4,K1 = K2 = 2.

This is equivalent to replacing h2(n) by h2(n − 2) in the filter bank
illustrated in Figure 2.3 and then applying a rotation matrix to the
subband signals d1(n) and d2(n). Both of these operations preserve the
tight frame characteristic of the filter bank — the three filters (g1, g2, g3)
form a tight frame just as (h1, h2, h3) do. However, the McMillan degree
of the corresponding 2× 3 lossless system is increased by 1. The lossless
system G(z) will now require 3 delay elements for its implementation.

If we choose α so that g2(5) is zero then we get the three filters tab-
ulated in Table 2.3. Notice again, that both g2(4) and g2(5) are zero,
even though that property was not imposed. The wavelets ψi(t) corre-
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Table 2.3. The coefficients of a wavelet tight frame of non-minimal McMillan degree.
(3 delay elements required.) K0 = 4,K1 = K2 = 2.

n g0(n) g1(n) g2(n)

0 0.14301535070442 -0.04961575871056 -0.06973280238342
1 0.51743439976158 -0.17951150139240 -0.25229564915399
2 0.63958409200212 -0.02465426871823 0.71378970545825
3 0.24429938448107 0.62884602337929 -0.39176125392083
4 -0.07549266151999 -0.21760444148150 0
5 -0.05462700305610 -0.15746005307660 0
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Figure 2.7. The solution tabulated in Table 2.3. K0 = 4,K1 = K2 = 2.

sponding to these filters are shown in Figure 2.7. The scaling function
φ(t) is not shown in Figure 2.7 because it is exactly the same as that
shown in Figure 2.6. (The lowpass filter g0(n) equals h0(n)).

Because the last two samples of g2(n) are zero, we can repeat this
procedure. Lets define

f0(n) = g0(n) (22)
f1(n) = cos(β) g1(n)− sin(β) g2(n− 2) (23)
f2(n) = sin(β) g1(n) + cos(β) g2(n− 2) (24)

If we choose β so that f2(5) is zero, then we obtain the filters tabulated
in Table 2.4. In this case, f2(4) is not zero. The new wavelets are
illustrated in Figure 2.8.

Comparing the wavelets illustrated in Figures 2.6, 2.7, and 2.8, it can
be observed that ψ1(t) approximates ψ2(t − 1

2) most closely in Figure
2.8. That is, the tight frame generated by the wavelets shown in Figure
2.8 are more similar to the original filter bank considered in Figure 2.2.
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Table 2.4. The coefficients of a wavelet tight frame of non-minimal McMillan degree.
(4 delay elements required.) K0 = 4,K1 = K2 = 2.

n f0(n) f1(n) f2(n)

0 0.14301535070442 -0.01850334430500 -0.04603639605741
1 0.51743439976158 -0.06694572860103 -0.16656124565526
2 0.63958409200212 -0.07389654873135 0.00312998080994
3 0.24429938448107 0.00042268944277 0.67756935957555
4 -0.07549266151999 0.58114390323763 -0.46810169867282
5 -0.05462700305610 -0.42222097104302 0
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Figure 2.8. The solution tabulated in Table 2.4. K0 = 4,K1 = K2 = 2.

In Figure 2.9 we plot both on the same plot to compare how well
ψ1(t) approximates ψ2(t− 1

2). When the match is close, the signal space
generated by the integer translations of the two wavelets approximately
resembles a signal space generated by half-integer translations of a single
wavelet. This is an example of a case where the minimal McMillan degree
system consistent with h0(n) is not the most desirable one (as far as it
is desirable that ψ1(t) and ψ2(t) match).

Example. As another example, we take K0 = 6, K1 = K2 = 3. In
this case, the minimal length scaling filter h0(n) has 9 coefficients, and
the wavelet filters h1(n) and h2(n) are of length 9 and 7 respectively.
Implementing the 2 × 3 lossless system requires 4 delay elements. The
filter coefficients are tabulated in Table 2.5 and the wavelets are illus-
trated in Figure 2.10. The wavelets are very smooth and have 3 zero
moments each. The integer translations of the scaling function φ(t) cover
polynomials up to degree 5.
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We can repeat the procedure used above to generate wavelet filters
with higher McMillan degree that are consistent with the same lowpass
filter h0(n) and for which ψ1(t) approximates ψ2(t − 1/2) more closely.
With each iteration of the procedure the McMillan degree increases by
one. For this example, one can repeat the procedure four times before
the shorter filter attains a length of 8. That solution is tabulated in
Table 2.6 and illustrated in Figure 2.11.

To compare how well ψ1(t) approximates ψ2(t − 1
2), we plot both

on the same plot in Figure 2.12 as above. In this example, the match
is very close for the solution tabulated in Table 2.6 — the wavelets
ψ1(t) and ψ2(t) are almost the same except for a translation by one
half. The wavelet coefficients d1(n) and d2(n) can then be interpreted
approximately as being generated by half-integer translations of a single
wavelet .

Table 2.5. The coefficients of a wavelet tight frame of minimal McMillan degree. (4
delay elements required.) K0 = 6,K1 = K2 = 3.

n h0(n) h1(n) h2(n)

0 0.05857000614054 -0.01533062192062 0.00887131217814
1 0.30400518363062 -0.07957295618112 -0.33001182554443
2 0.60500290681752 -0.10085811812745 0.74577631077164
3 0.52582892852883 0.52906821581280 -0.38690622229177
4 0.09438203761968 -0.15144941570477 -0.14689062498210
5 -0.14096408166391 -0.23774566907201 0.06822592840635
6 -0.06179010337508 -0.05558739119206 0.04093512146217
7 0.01823675069101 0.06967275075248 0
8 0.01094193398389 0.04180320563276 0
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Figure 2.9. Comparison of ψ1(t) and ψ2(t− 1
2
) corresponding to Table 2.2 (a), and

Table 2.4 (b). K0 = 4,K1 = K2 = 2.
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Figure 2.10. The solution tabulated in Table 2.5. K0 = 6,K1 = K2 = 3.

Table 2.6. The coefficients of a wavelet tight frame. K0 = 6,K1 = K2 = 3. (7 delay
elements required.)

n f0(n) f1(n) f2(n)

0 0.05857000614054 0.00194831075352 0.00699621691962
1 0.30400518363062 0.01011262602523 0.03631357326930
2 0.60500290681752 0.02176698144741 0.04759817780411
3 0.52582892852883 0.02601306210369 -0.06523665620369
4 0.09438203761968 -0.01747727200822 -0.22001495718527
5 -0.14096408166391 -0.18498449534896 -0.11614112361411
6 -0.06179010337508 -0.19373607227976 0.64842789652539
7 0.01823675069101 0.66529265123158 -0.33794312751535
8 0.01094193398389 -0.32893579192449 0

7. Other Wavelet Tight Frames
Ron and Shen present a very interesting example in [28, 29] of a family
of wavelet tight frames based on spline functions. In that example,
there are K0 wavelets, and the scaling function φ is a spline obtained
by convolving the square pulse p(t) with itself K0−times: φ(t) = p(t) ∗
· · · ∗ p(t); (a B-spline). K0 can be any integer, so φ can be extremely
smooth and symmetric, and approaches the Gaussian as K0 is increased.
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Figure 2.11. The solution tabulated in Table 2.6. K0 = 6,K1 = K2 = 3.
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Figure 2.12. Comparison of ψ1(t) and ψ2(t− 1
2
) corresponding to Table 2.5 (a) and

Table 2.6 (b). K0 = 6,K1 = K2 = 3.

In addition, all the wavelets are also symmetric or anti-symmetric. The
filters hi(n) are given by

Hi(z) =
√

2

√(
K0

i

)(
1 + z−1

2

)K0−i(1− z−1

2

)i

for i = 0, . . . ,K0. In this construction there are K0 wavelets and the ith

wavelet ψi(t) has i zeros at z = 1. That means increasing K0 increases
the redundancy and does not raise the minimum Ki. In particular, ψ1

has K1 = 1 only.
Chui and He [6] and Petukhov [25] have since shown that only two

wavelets are required and described algorithms to obtain them, starting
with a given scaling function. In particular, Chui and He [6] have intro-
duced wavelet tight frames for the spline φ(t), but with only 2 wavelets
(3 if they are to be symmetric and anti-symmetric). For the spline φ(t),
Petukhov [26] has identified the special cases where 2 anti-symmetric
wavelets are possible [25]. In each case this reduces the redundancy,
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however, at least one of the wavelets does not have more than a sin-
gle zero moment when φ(t) is a B-spline. Also introduced in [6] are
wavelet tight frames based on symmetric interpolating scaling functions,
for which K0 = K1 = 2K2.

8. Near Shift-invariance
Kingsbury demonstrated the near shift-invariance of the dual-tree DWT
in [18, 19] by reconstructing a shifted discrete-time step function u(n−
n0) from only its wavelet coefficients at a single scale j. Varying the shift
n0 in increments of 1, the results reveal the shift-varying properties of
the system. Following the same procedure, for j = 1, 2, 3, 4, the left hand
side of Figure 2.13 illustrates the shift sensitivity of the double density
DWT filters tabulated in Table 2.6. For comparison, the right hand side
uses Daubechies’ orthonormal basis D5 (length h0 = 10) [11]. The top
panels show the reconstruction from only the scaling coefficients at level
j = 4. Although this double density DWT is not as shift-insensitive as
the dual-tree DWT presented in [19], it is much less shift-sensitive than
the orthonormal basis, as illustrated in Figure 2.13.

It should be noted that other orthonormal bases may be less shift-
sensitive than Daubechies’ bases, for example those designed in [2];
however, the shift-sensitivity properties of orthonormal wavelet bases
are naturally limited in comparison with tight wavelet frames.

9. 2D Extension
A separable 2D double density DWT can be obtained by alternating
between rows and columns, as is usually done for 2D separable DWTs.
The corresponding filter bank, illustrated in Figure 2.14, is iterated on
the lowpass branch (the first branch). While the 1D double density
DWT is redundant by a factor of 2, the corresponding 2D version is
redundant by a factor of 8/3, not by 2 or 4 as one might initially expect.

In the oversampled filter bank for the 2D case, the 1D oversampled
filter bank is iterated on the rows and then on the columns. This gives
rise to 9 2D branches. One of the branches is a 2D lowpass scaling filter,
while the other 8 make up the 8 2D wavelet filters. Note that for a
critically sampled 2D filter bank, there are 3 wavelet filters, hence the
rate of oversampling, when the structure is iterated indefinitely, is 8/3.
In general, the redundancy rate is (3d − 1)/(2d − 1) for the extension
to d-dimensional signals. Note that as d increases, this ratio approaches
(3/2)d, the oversampling rate of the filter bank building block. This is
higher than the redundancy of a 2D Laplacian pyramid [5], but lower
than the 2D dual-tree. The 2D extension of the dual-tree DWT has
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Figure 2.13. Reconstruction of u(n− n0) from coefficients at level j only. Left: The
decomposition uses the double density DWT illustrated in Figure 2.11. Right: The
decomposition uses Daubechies’ critically sampled DWT D5 (length h0 = 10). The
double density DWT is less shift-sensitive than the critically sampled DWT.

a redundancy rate of 4. In general, the d-dimensional dual-tree has a
redundancy of 2d [19]. It should be noted that the steerable pyramid
[14, 34] is another example of a system that gives an overcomplete sig-
nal decomposition. They are especially designed to yield orientation
information of image components.

9.1. Rectangular Artifacts
Following Kingsbury’s illustration, the improved behavior of the 2D dou-
ble density DWT can be indicated by projecting the image of a line onto
the wavelet spaces and the scaling space. In Figure 2.15 the image of
a line is reconstructed from different levels of a 4 scale decomposition.
The image is 64 by 64 pixels. On the left side of the figure, the de-
composition is performed using the filters illustrated in Figure 2.11. On
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Figure 2.14. An oversampled filter bank for 2D signals.

the right side of the figure, the decomposition is performed using the
most symmetric form of Daubechies’ orthonormal D4 filters (length h0

= 8). In each column, the top-most panel is obtained by reconstructing
the image from the coarse scaling coefficients, while the following pan-
els are obtained by reconstructing from the wavelet coefficients in scales
j = 1, 2, 3, 4. The decomposition using the double density DWT suffers
from fewer of the rectangular artifacts than the decomposition using the
orthonormal basis. Similar figures are obtained if the other tight frame
examples given above are used, or if other other orthonormal bases are
used.

10. Conclusion
Kingsbury showed that the shift-sensitivity of the DWT can be dramat-
ically improved by using a dual-tree, an overcomplete expansion that
is redundant by a factor of 2 only. So motivated, this chapter consid-
ered the design of wavelet tight frames based on iterated oversampled
filter banks as in [6, 25, 28, 29]. In particular, we consider the design
of wavelet tight frames that are analogous to Daubechies orthonormal
wavelets bases. As the number of zeros H0(z) has at ω = π need not
equal the number of zeros H1(z) and H2(z) have at ω = 0, a greater
design freedom is available, than in the orthonormal case. The wavelets
are constructed using maximally flat FIR filters in conjunction with ex-
tension methods for paraunitary matrices. By asking that K0 > K1,K2,
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WAVELET DECOMPOSITION OF A DIAGONAL

TIGHT FRAME ORTHO−BASIS

Figure 2.15. Reconstruction of the image of a line from coefficients at level j only.
Left: The decomposition uses the tight wavelet frame illustrated in Figure 2.11. Right:
The decomposition uses the most symmetric form of Daubechies’ orthonormal wavelet
basis D4 (length h0 = 8).
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wavelets are obtained that are very smooth in comparison with orthonor-
mal wavelet bases. Like the dual-tree DWT of Kingsbury, the overcom-
plete DWT described above is less shift-sensitive than an orthonormal
wavelet basis, and in the 2D case has fewer rectangular artifacts.

The Matlab programs for reproducing the the wavelet filters devel-
oped in this chapter, and other examples, are available on the author’s
webpage: http://taco.poly.edu/selesi/.
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