Sparse Regularization via Convex Analysis

Ivan Selesnick

Electrical and Computer Engineering
Tandon School of Engineering
New York University
Brooklyn, New York, USA

2019
Convex or non-convex: Which is better for inverse problems?

Benefits of convex optimization:

1. Absence of suboptimal local minima
2. Continuity of solution as a function of input data
3. Algorithms guaranteed to converge to a global optimum
4. Regularization parameters easier to set

But convex regularization tends to *under-estimate* signal values.

Non-convex regularization often performs better!

Can we design non-convex sparsity-inducing penalties that maintain the convexity of the cost function to be minimized?
Convex function
Non-Convex function
Goal

Goal: Find a sparse approximate solution to a linear system $y = Ax$.

Minimize a cost function:

$$J(x) = \frac{1}{2} \| y - Ax \|_2^2 + \lambda \| x \|_1$$

or

$$F(x) = \frac{1}{2} \| y - Ax \|_2^2 + \lambda \psi(x)$$

Question: How to define ψ?

Let us allow ψ to be non-convex such that F is convex.

This is the \textit{Convex Non-Convex} (CNC) approach.
Linear Filter

Given noisy data \(y \in \mathbb{R}^N \), perform smoothing via:

\[
\hat{x} = \arg \min_{x \in \mathbb{R}^N} \left\{ \sum_{n=0}^{N-1} |y(n) - x(n)|^2 + \lambda \sum_{n=1}^{N-1} |x(n) - x(n-1)|^2 \right\}
\]

which can be written

\[
\hat{x} = \arg \min_{x \in \mathbb{R}^N} \left\{ \|y - x\|_2^2 + \lambda \|Dx\|_2^2 \right\}
\]

where

\[
\|x\|_2^2 := \sum_n |x(n)|^2
\]

\[
D = \begin{bmatrix}
-1 & 1 \\
-1 & 1 & \ddots \\
& & & & & -1 \\
& & & & & 1
\end{bmatrix}
\]

Solution:

\[
\hat{x} = (I + \lambda D^T D)^{-1} y
\]
Total Variation Denoising (Nonlinear Filter)

Given noisy data $y \in \mathbb{R}^N$, perform smoothing via:

$$
\hat{x} = \arg \min_{x \in \mathbb{R}^N} \left\{ \frac{1}{2} \sum_{n=0}^{N-1} |y(n) - x(n)|^2 + \lambda \sum_{n=1}^{N-1} |x(n) - x(n-1)| \right\}
$$

which can be written

$$
\hat{x} = \arg \min_{x \in \mathbb{R}^N} \left\{ \frac{1}{2} \|y - x\|_2^2 + \lambda \|Dx\|_1 \right\}
$$

where

$$
\|x\|_2^2 := \sum_n |x(n)|^2, \quad \|x\|_1 := \sum_n |x(n)|
$$

$$
D = \begin{bmatrix}
-1 & 1 & & & \\
& -1 & 1 & & \\
& & \ddots & \ddots & \\
& & & -1 & 1
\end{bmatrix}
$$

Solution? No closed form solution.

Use iterative algorithm … but note the cost function is not differentiable!
Biosensor Signal

Biosensor data

Total variation denoising
Two Penalties

The ℓ_1 norm induces sparsity unlike the sum of squares.

\[f(x) = x \]
\[f(x) = \sin x \]
\[f(x) = \frac{1}{20} \exp x \]
Combine Quadratic and Sparse Regularization

\[
\arg\min_{u,v \in \mathbb{R}^N} \left\{ \frac{1}{2} \| y - u - v \|_2^2 + \lambda_1 \| Du \|_1 + \frac{\lambda_2}{2} \| Dv \|_2^2 \right\}
\]

\[\hat{x} = u + v\]
Combine Quadratic and Sparse Regularization

\[
\arg \min_{u,v \in \mathbb{R}^N} \left\{ \frac{1}{2} \| y - u - v \|_2^2 + \lambda_1 \| Du \|_1 + \frac{\lambda_2}{2} \| Dv \|_2^2 \right\}
\]

Solving for \(v \) gives

\[
v = (I + \lambda_2 D^T D)^{-1} (y - u)
\]

\[
x = v + u = (I + \lambda_2 D^T D)^{-1} (y + \lambda_2 D^T Du)
\]

Substituting \(v \) back in to the cost function:

\[
J(u) = \frac{\lambda_2}{2} (y - u)^T D^T (I + \lambda_2 DD^T)^{-1} D(y - u) + \lambda_1 \| Du \|_1
\]

or

\[
J(u) = \frac{\lambda_2}{2} \| R^{-1} D(y - u) \|_2^2 + \lambda_1 \| Du \|_1
\]

\[
RR^T = I + \lambda_2 DD^T \quad (R \text{ is a banded matrix})
\]

Since \(x \) depends on \(Du \), not \(u \) directly, define \(g = Du \). So we need to minimize

\[
F(g) = \frac{\lambda_2}{2} \| R^{-1} Dy - R^{-1} g \|_2^2 + \lambda_1 \| g \|_1
\]
Scalar case

\[\hat{x} = \arg \min_x \left\{ \frac{1}{2} (y - x)^2 + \lambda |x| \right\} \]

\[\Rightarrow \]

\[\hat{x} \]

\[\lambda \]

\[0 \]

\[y \]

\[0 \]
Non-convex scalar penalty functions (alternatives to ℓ_1 norm)

<table>
<thead>
<tr>
<th>Penalty</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log</td>
<td>$\phi_a(x) = \frac{1}{a} \log(1 + a</td>
</tr>
<tr>
<td>Rat</td>
<td>$\phi_a(x) = \frac{</td>
</tr>
<tr>
<td>Exp</td>
<td>$\phi_a(x) = \frac{1}{a} \left(1 - e^{-a</td>
</tr>
</tbody>
</table>
| MC | $\phi_a(x) = \begin{cases}
|x| - \frac{a}{2}x^2, & |x| \leq 1/a \\
\frac{1}{2a}, & |x| \geq 1/a
\end{cases}$ |

The penalties are parameterized such that

$$
\phi_a'(0^+) = 1
$$

$$
\phi_a''(0^+) = -a.
$$
Non-convex scalar penalty functions

Penalty functions with $a = 1$.

Penalty functions

$$|x|$$

Log
Rat
Exp
MC
Logarithmic penalty

Logarithmic penalty (a = 1)

Second derivative

x
MC penalty

MC penalty (a = 1)

Second derivative
ℓ_p penalty, $0 < p < 1$ (precluded)
We consider henceforth only the minimax-concave (MC) penalty function

\[\phi_a(x) = \begin{cases}
|x| - \frac{a^2}{2}x^2, & |x| \leq 1/a \\
\frac{1}{2a}, & |x| \geq 1/a
\end{cases} \]
The parameter $a \geq 0$ controls the non-convexity of ϕ_a.
Scalar case using MC penalty

\[\hat{x} = \arg \min_x \left\{ \frac{1}{2} (y - x)^2 + \lambda \phi_a(x) \right\} \]

\(\hat{x} \) is a continuous function of \(y \) when \(a < \lambda \).
Scalar case using MC penalty

Consider

\[f(x) = \frac{1}{2} (y - x)^2 + \lambda \phi_a(x). \]

For what values ‘a’ is \(f \) a convex function?

\[f(x) = \frac{1}{2} x^2 + \lambda \phi_a(x) + \left[\frac{1}{2} y^2 - yx \right]. \]

It is sufficient to consider the convexity of

\[f_0(x) = \frac{1}{2} x^2 + \lambda \phi_a(x). \]
Scalar case using MC penalty

\[f_0(x) = \frac{1}{2}x^2 + \lambda \phi_a(x) \]

Is \(f_0\) convex?

\(\phi_a\) is not differentiable. So we can not simply check that the second derivative of \(f_0\) is positive . . .
Scalar case using MC penalty

Let us write

$$\phi_a(x) = |x| - s_a(x)$$

We see the Huber function:

$$s_a(x) = \begin{cases} \frac{a^2 x^2}{2}, & |x| \leq 1/a \\ |x| - \frac{1}{2a}, & |x| \geq 1/a. \end{cases}$$
Scalar case using MC penalty

Writing ϕ_a as

$$\phi_a(x) = |x| - s_a(x),$$

we have

$$f(x) = \frac{1}{2} (y - x)^2 + \lambda \phi_a(x)$$

$$= \frac{1}{2} (y - x)^2 + \lambda \left[|x| - s_a(x)\right]$$

$$= \frac{1}{2} x^2 - \lambda s_a(x) + \left[\lambda |x| + \frac{1}{2} y^2 - xy\right]$$

$$g(x) \text{ convex in } x$$

g convex $\implies f$ convex

Note that g is differentiable unlike f.

Is g convex? It depends on a and λ.
Scalar case using MC penalty

\[g(x) = \frac{1}{2} x^2 - \lambda s_a(x) \]

\[g(x) = 0.5 x^2 - \lambda s_a(x) \]

\[a = 1, \lambda = 0.8, g \text{ is convex.} \]
Scalar case using MC penalty

\[g(x) = \frac{1}{2}x^2 - \lambda s_a(x) \]

\[g(x) = 0.5x^2 - \lambda s_a(x) \]

\[a = 1, \lambda = 1.3, \text{ } g \text{ is not convex.} \]
Scalar case using MC penalty

The Huber function is differentiable. But not twice differentiable.

\[s(x) \]

\[s'(x) \]

\[s''(x) \]
Scalar case using MC penalty

\[g(x) = \frac{1}{2}x^2 - \lambda s_a(x) \]

When is \(g \) convex?

We can not check the second derivative of \(g \) because it is not twice differentiable (see previous page).

How can we ensure \(g \) (and hence \(f \)) is convex?
The Huber function can be written as

$$s_a(x) = \min_v \left\{ \frac{a}{2}(x - v)^2 + |v| \right\}.$$

As infimal convolution

$$s_a(x) = \left(\frac{a}{2} (\cdot)^2 \square |\cdot| \right)(x)$$

where infimal convolution (Moreau-Yosida regularization) is defined as

$$(f \square g)(x) := \min_v \{ f(v) + g(x - v) \}$$
Huber function as an infimal convolution

\[\left(\frac{a}{2} (\cdot)^2 \square |\cdot| \right)(x) \]

\[g(x) = |x| \]

\[0.5x^2 \]
The epigraph of a function is a set comprising points on and above the graph.

The epigraph of

\[epi\{f \Box g\} = epi\{f\} + epi\{g\} \]
Scalar case using MC penalty

The Huber function can be written as

\[s_a(x) = \min_v \left\{ \frac{a}{2} (x - v)^2 + |v| \right\} . \]

When is \(g \) convex?

\[
g(x) = \frac{1}{2} x^2 - \lambda s_a(x)
\]

\[
= \frac{1}{2} x^2 - \lambda \min_v \left\{ \frac{a}{2} (x - v)^2 + |v| \right\}
\]

\[
= \frac{1}{2} x^2 - \lambda \min_v \left\{ \frac{a}{2} (x^2 - 2xv + v^2) + |v| \right\}
\]

\[
= \frac{1}{2} x^2 - \lambda \frac{a}{2} x^2 + \lambda \max_v \left\{ \frac{a}{2} (2xv - v^2) - |v| \right\}
\]

affine in \(x \)

convex in \(x \)

\[
= \frac{1}{2} (1 - a\lambda) x^2 + \text{convex function}
\]

The function \(g \) is \textit{convex} if \(1 - a\lambda \) is non-negative, i.e.,

\[a \leq 1/\lambda \]

We do \textit{not} need derivatives!
Scalar MC penalty

The MC penalty can be written as

\[\phi_a(x) = |x| - s_a(x) \]

\[= |x| - \min_v \left\{ \frac{a}{2} (x - v)^2 + |v| \right\} \]

\[= |x| - \left(\frac{a}{2} (\cdot)^2 \boxplus |\cdot| \right)(x) \]
Multivariate case

\[F(x) = \frac{1}{2} \| y - Ax \|_2^2 + \lambda \psi(x) \]

How can we set \(\psi \) so that \(F \) is convex and promotes sparsity of \(x \)?

We can generalize the scalar case . . .
Separable penalty (*precluded*)

Conventional penalty: additive (separable)

\[\phi(x) = \phi(x_1) + \phi(x_2) \]
Generalized Huber function

Let $B \in \mathbb{R}^{M \times N}$. We define the \textit{generalized Huber function}

$$S_B(x) := \min_{v \in \mathbb{R}^N} \left\{ \frac{1}{2} \| B(x - v) \|_2^2 + \| v \|_1 \right\}.$$

In the notation of infimal convolution, we have

$$S_B(x) := \left(\frac{1}{2} \| B \cdot \|_2^2 \square \| \cdot \|_1 \right)(x).$$
Example 1. Generalized Huber function

\[B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \]

\[S_B(x) := \min_v \left\{ \frac{1}{2} \| B(x - v) \|_2^2 + \| v \|_1 \right\} \]
Example 2. Generalized Huber function

\[B = \begin{bmatrix} 1 & 0.5 \end{bmatrix} \]

\[S_B(x) := \min_v \left\{ \frac{1}{2} \| B(x - v) \|_2^2 + \| v \|_1 \right\} \]
Example 3. Generalized Huber function

\[B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[S_B(x) := \min_v \left\{ \frac{1}{2} \| B(x - v) \|_2^2 + \| v \|_1 \right\} \]

If \(B \) is diagonal, then \(S_B \) is separable.
The generalized Huber function is differentiable.

Its gradient is given by

\[\nabla S_B(x) = B^T B \left(x - \arg \min_{v \in \mathbb{R}^N} \left\{ \frac{1}{2} \| B(x - v) \|_2^2 + \| v \|_1 \right\} \right) \]

Neither the generalized Huber function nor its gradient have simple closed form expressions. But we will still be able to use them . . .

When \(B = I \) we recover a well known identity

\[\nabla S_I(x) = x - \arg \min_{v \in \mathbb{R}^N} \left\{ \frac{1}{2} \| x - v \|_2^2 + \| v \|_1 \right\} \]
We define the \textit{generalized MC (GMC)} penalty

\[
\psi_B(x) := \|x\|_1 - S_B(x) \\
:= \|x\|_1 - \min_{v \in \mathbb{R}^N} \left\{ \frac{1}{2} \|B(x - v)\|_2^2 + \|v\|_1 \right\}.
\]
Example 1. Generalized MC penalty

\[\psi_B(x) = \|x\|_1 - S_B(x) \]
Example 2. Generalized MC penalty

\[\psi_B(x) = \|x\|_1 - S_B(x) \]
Example 3. Generalized MC penalty

\[\psi_B(x) = ||x||_1 - S_B(x) \]
Theorem. The function

\[F(x) = \frac{1}{2} \|y - Ax\|^2_2 + \lambda \psi_B(x) \]

\[= \frac{1}{2} \|y - Ax\|^2_2 + \lambda \left[\|x\|_1 - S_B(x) \right] \]

\[= \frac{1}{2} \|y - Ax\|^2_2 - \lambda \|x\|_1 - \lambda \min_{v \in \mathbb{R}^N} \left\{ \frac{1}{2} \|B(x - v)\|^2_2 + \|v\|_1 \right\}. \]

is *convex* if

\[
B^T B \preceq \frac{1}{\lambda} A^T A
\]

even when \(\psi_B \) is *non-convex.*
Convexity condition – proof

Write F as

$$F(x) = \frac{1}{2} \| y - Ax \|_2^2 + \lambda \psi_B(x)$$

$$= \frac{1}{2} \| y - Ax \|_2^2 + \lambda [\| x \|_1 - S_B(x)]$$

$$= \left[\frac{1}{2} \| Ax \|_2^2 + \frac{1}{2} \| y \|_2^2 - y^T Ax \right] + \lambda \| x \|_1 - \lambda S_B(x)$$

$$= \frac{1}{2} \| Ax \|_2^2 - \lambda S_B(x) + \frac{1}{2} \| y \|_2^2 - y^T Ax + \lambda \| x \|_1$$

$$\underbrace{G(x)}_{\text{convex in } x} + \underbrace{\frac{1}{2} \| y \|_2^2 - y^T Ax + \lambda \| x \|_1}_{\text{convex in } x}$$

G convex \implies F convex
Convexity condition – proof

Write G as

$$G(x) = \frac{1}{2} \|Ax\|_2^2 - \lambda S_B(x)$$

$$= \frac{1}{2} \|Ax\|_2^2 - \lambda \min_v \left\{ \frac{1}{2} \|B(x - v)\|_2^2 + \|v\|_1 \right\}$$

$$= \frac{1}{2} \|Ax\|_2^2 - \lambda \min_v \left\{ \frac{1}{2} \|Bx\|_2^2 + \frac{1}{2} \|Bv\|_2^2 - v^T B^T B x + \|v\|_1 \right\}$$

$$= \frac{1}{2} \|Ax\|_2^2 - \frac{1}{2} \|Bx\|_2^2 + \lambda \max_v \left\{ v^T B^T B x - \frac{1}{2} \|Bv\|_2^2 - \|v\|_1 \right\}$$

affine in x

convex in x

$$= \frac{1}{2} x^T (A^T A - \lambda B^T B) x + \text{ convex function}$$

The function G (hence F) is *convex* if $A^T A - \lambda B^T B$ is positive semidefinite, i.e.

$$B^T B \preceq \frac{1}{\lambda} A^T A.$$
Convexity condition

A straightforward choice of B to satisfy

$$B^T B \preceq \frac{1}{\lambda} A^T A.$$

is

$$B = \sqrt{\frac{\gamma}{\lambda}} A$$

for some γ with $0 \leq \gamma \leq 1$.
Optimization Algorithm

We can use the Forward-Backward Splitting (FBS) algorithm

\[
F(x) = \frac{1}{2} \|y - Ax\|^2 + \lambda \psi_B(x)
\]

\[
= \frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1 - \lambda S_B(x)
\]

\[
= \frac{1}{2} \|y - Ax\|^2 - \lambda S_B(x) + \lambda \|x\|_1
\]

\[
= f_1(x) + f_2(x)
\]

The FBS algorithm is given by:

\[
w^{(i)} = x^{(i)} - \mu [\nabla f_1(x^{(i)})]
\]

\[
x^{(i+1)} = \arg\min_x \left\{ \frac{1}{2} \|w^{(i)} - x\|^2 + \mu f_2(x) \right\}
\]

\[
= \text{prox}_{\mu f_2}(w^{(i)})
\]
Optimization Algorithm

Let $0 \leq \gamma \leq 1$ and $B = \sqrt{\gamma/\lambda} A$. Then a minimizer of the objective function F is obtained by the iteration:

$v^{(i)} = \arg \min_{v \in \mathbb{R}^N} \left\{ \frac{\gamma}{2} \| A(x^{(i)} - v) \|_2^2 + \lambda \| v \|_1 \right\}$

$z^{(i)} = \gamma A(x^{(i)} - v^{(i)})$

$x^{(i+1)} = \arg \min_{x \in \mathbb{R}^N} \left\{ \frac{1}{2} \| y + z^{(i)} - Ax \|_2^2 + \lambda \| x \|_1 \right\}$

Interpretation: iteratively adjusted additive data perturbation of ℓ_1 norm regularized problem ...
Biosensor Signal

Biosensor data

Time (n)

0 100 200 300 400 500 600 700 800 900 1000
0
50
100
150

SIPS Denoising

Time (n)

0 100 200 300 400 500 600 700 800 900 1000
0
50
100
150
ECG Signal
ECG Signal

ECG data

SIPS Denoising
ECG Signal

ECG data

SIPS Denoising (non-separable non-convex penalty)
Consider the function

\[
J(x) := \frac{1}{2} \|Ax - b\|^2_2 + \lambda R(x)
\]

where \(R \) is a convex regularizer of the form

\[
R(x) = \Phi(G(Lx))
\]

where \(L \) is a linear operator, \(G \) is possibly nonlinear, and \(\Phi \) promotes sparsity.

For example, total variation regularization is expressed as

\[
R(x) = \|G(Lx)\|_1 = \sum_i |g_i(Lx)|
\]

with

\[
g_i(Lx) = \begin{cases}
(D_h x)_i & \text{anisotropic TV} \\
\sqrt{(D_h x)_i^2 + (D_v x)_i^2} & \text{isotropic TV}
\end{cases}
\]
Generalizations (TV, nuclear norm, etc)

Suppose \(R \) satisfies

A1) \(R(\cdot) = \Phi(G(L \cdot)) \) is convex and bounded from below by zero;

A2) \(\Phi(G(\cdot)) \) is a proper, lower semicontinuous and coercive function.

Consider the function

\[
J_B(x) := \frac{1}{2} \|Ax - b\|_2^2 + \lambda R_B(x)
\]

(2)

with non-convex regularizer

\[
R_B(x) := R(x) - \min_{v \in \mathbb{R}^N} \left\{ \frac{1}{2} \|B(x - v)\|_2^2 + R(v) \right\}.
\]

The function \(J_B(x) \) is convex (strongly convex) if

\[
A^T A - \lambda B^T B \succeq 0 \quad (> 0).
\]

Numerical Examples – 1D Total Variation denoising

Summary

▶ We show how to construct non-convex regularizers that preserve the convexity of functionals for sparse-regularized linear least-squares.
▶ Generalizes the ℓ_1 norm.
▶ Can be used in conjunction with other convex non-smooth regularizers (TV, nuclear norm, etc).
▶ Resulting regularizers are non-separable.
▶ Optimization implementable using proximal algorithms (as for ℓ_1 norm).

Optimization Algorithm (saddle point algorithm)

With

\[J_B(x) = \frac{1}{2} \| Ax - b \|^2_2 + \lambda R_B(x) \]
\[R_B(x) = R(x) - \min_v \left\{ \frac{1}{2} \| B(x - v) \|^2_2 + R(v) \right\} \]

we have

\[J_B(x) = \frac{1}{2} \| Ax - b \|^2_2 + \lambda R(x) - \lambda \min_v \left\{ \frac{1}{2} \| B(x - v) \|^2_2 + R(v) \right\} \]
\[= \frac{1}{2} \| Ax - b \|^2_2 + \lambda R(x) + \lambda \max_v \left\{ -\frac{1}{2} \| B(x - v) \|^2_2 - R(v) \right\} \]

and

\[\hat{x} = \arg \min_x J_B(x) \]
\[= \arg \min_x \left\{ \frac{1}{2} \| Ax - b \|^2_2 + \lambda R(x) + \lambda \max_v \left\{ -\frac{1}{2} \| B(x - v) \|^2_2 - R(v) \right\} \right\} \]

or a saddle point problem

\[(\hat{x}, \hat{v}) = \arg \min_x \max_v \left\{ \frac{1}{2} \| Ax - b \|^2_2 + \lambda R(x) - \frac{1}{2} \| B(x - v) \|^2_2 - \lambda R(v) \right\} \]
Optimization Algorithm (saddle point algorithm)

This saddle-point problem is an instance of a monotone inclusion problem. Hence, the solution can be obtained using the forward-backward (FB) algorithm.

\begin{align*}
\text{for } k = 0, 1, 2, \ldots \\
 w_k &= x_k - \mu \left[A^T (Ax_k - b) + \lambda B^T B (v_k - x_k) \right] \\
 u_k &= v_k - \mu \lambda B^T B (v_k - x_k) \\
 x_{k+1} &= \arg \min_{x \in \mathbb{R}^n} \left\{ \mathcal{R}(x) + \frac{1}{2\mu \lambda} \|x - w_k\|_2^2 \right\} \\
 v_{k+1} &= \arg \min_{v \in \mathbb{R}^n} \left\{ \mathcal{R}(v) + \frac{1}{2\mu \lambda} \|v - u_k\|_2^2 \right\}
\end{align*}

end

This algorithm reduces to ISTA for $B = 0$ and $\mathcal{R}(x) = \|x\|_1$.