
SPECTRAL FACTORIZATION

Polynomial root finding and the Leja ordering

Spectral factorization is an important ingredient in the design of

minimum-phase filters, and has many other applications. First we

need to learn about polynomial root finding, and the problem of

forming a polynomial from its roots.
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THE roots, poly, AND leja COMMANDS

Consider the transfer function of an FIR filter of length N .

H(z) =
N−1∑
n=0

h(n) z−n (1)

= h(0) + h(1) z−1 + h(2) z−2 + · · ·+ h(N − 1) z−(N−1).

(2)

It can be written as

H(z) =
h(0) zN−1 + h(1) zN−2 + h(2) zN−3 + · · ·+ h(N − 1)

zN−1
.

(3)

The zeros of H(z) are the roots of the polynomial

h(0) zN−1 + h(1) zN−2 + h(2) zN−3 + · · ·+ h(N − 1). (4)

For example, if the impulse response h(n) is

h(n) = {5, 2, 9, 6, 2} (5)

where the underlined number represents h(0), then the zeros of

H(z) are the roots of the polynomial

5 z4 + 2 z3 + 9 z2 + 6 z + 2. (6)

The roots of a polynomial can be found with the Matlab command

roots, as illustrated in the following code fragment.

>> h = [5 2 9 6 2];

>> r = roots(h)

r =
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0.1535 + 1.3306i

0.1535 - 1.3306i

-0.3535 + 0.3130i

-0.3535 - 0.3130i

The Matlab command poly converts the roots of a polynomial

P (z) to the vector of polynomial coefficients. The command poly

produces a monic polynomial, so it may need to be scaled. The

following commands provide an example.

>> poly(r)

ans =

1.0000 0.4000 1.8000 1.2000 0.4000

>> poly(r)*h(1)

ans =

5.0000 2.0000 9.0000 6.0000 2.0000

Note that, because Matlab indexing begins with 1 rather than 0,

h(1) represents h(0). In some cases, the first coefficient h(1) is

very small, and it is desirable to do the rescaling in another way, as

in the following example.

>> p = poly(r)

p =

1.0000 0.4000 1.8000 1.2000 0.4000

>> C = sqrt((h*h’)/(p*p’))

C =
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5

>> C*p

ans =

5.0000 2.0000 9.0000 6.0000 2.0000

A plot of the zeros of H(z) can be obtained using the Matlab com-

mand zplane. The zplane command interprets a column vector

to be the roots of a polynomial, and creates a plot of them with

the unit circle.

zplane(r)
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You can also supply zplane with h directly. The zplane command

interprets a row vector to be the coefficients of a polynomial.

zplane(h)

In this case, the input argument h is a row vector, so the zplane

command invokes the roots command and then produces the plot

of the zeros of the polynomial.

The roots commands works even for quite long FIR filters (N over

a hundred). For example, the following figure shows an FIR filter

of length N = 151 and its zero diagram.
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The following Matlab commands were used.

wp = 0.2;

ws = 0.3;

N = 150;

h = firls(N,[0 wp ws 1],[1 1 0 0]);

r = roots(h);

[H,w] = freqz(h);

subplot(3,1,1), stem(0:N,h,’.’)

subplot(3,1,2), zplane(r);

subplot(3,1,3), plot(w/pi,abs(H))

I. Selesnick EL 713 Lecture Notes 5



TOTAL LOSS OF ACCURACY

A numerical problem can occur when using the command poly to

convert the roots of a polynomial into the polynomial coefficients.

Specifically, due to finite precision effects, the coefficients of the

polynomial reconstructed from the roots may bear little resemblance

to the original coefficients. This can happen when the degree of the

polynomial is very high. The following example, where we attempt

to retrieve h from r, illustrates this inaccuracy.

g = poly(r); % form poly coeffs from roots

C = sqrt((h*h’)/(g*g’)); % normalization constant

g = C*g; % rescale poly coeffs

subplot(3,1,1), stem(0:N,g,’.’)

subplot(3,1,2), stem(0:N,g-h,’.’)

The following diagram illustrates g and the error between h and g.

Ideally, we would have h=g.
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From the figure, it is clear that the reconstruction of the coefficients

from the roots can be completely unreliable if their lengths are very

long.

A solution to this numerical problem is to order the roots of the

polynomial appropriately before using the poly command. Specif-

ically, the Leja ordering can dramatically improve the accuracy of

the polynomial coefficients [2]. The Matlab program leja, (not

currently included in Matlab, but available on the web), orders the

roots so as to improve the numerical properties of the poly com-

mand. Performing again the previous example, but adding the Leja

ordering, improves the accuracy as shown in the following example.

r = leja(r); % order roots according to the Leja ordering

g = poly(r); % form poly coeffs from roots

C = sqrt((h*h’)/(g*g’)); % normalization constant

g = C*g; % rescale poly coeffs

subplot(3,1,1), stem(0:N,g,’.’)

subplot(3,1,2), stem(0:N,g-h,’.’)
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ZEROS OF HIGH ORDER

We have noted in the previous section the complete loss of accu-

racy that can occur with the poly command when it is used for

high order polynomials; and we have illustrated how this numeri-

cal problem can be alleviated with the Leja ordering. We should

also mention a numerical problem that can occur with the roots

command. When a polynomial P (z) contains a zero zo of degree

5 or higher, say, the accuracy of zo is quite poor. For example, the

polynomial P (z) =
∑

n

(
K
n

)
zn has a zero at z = −1 of order K.

With K = 6 we have the following numerical result.

>> p = [1 6 15 20 15 6 1];

>> roots(p)

ans =

-1.0039

-1.0019 + 0.0034i

-1.0019 - 0.0034i

-0.9980 + 0.0034i

-0.9980 - 0.0034i

-0.9961

We can see what the error is, with the command

>> abs(roots(p)+1)

ans =

0.0039
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0.0039

0.0039

0.0039

0.0039

0.0039

It can be seen that the accuracy is not good. With K = 10 we

have the following numerical result.

>> p = [1 10 45 120 210 252 210 120 45 10 1];

>> roots(p)

ans =

-1.0535

-1.0430 + 0.0317i

-1.0430 - 0.0317i

-1.0159 + 0.0507i

-1.0159 - 0.0507i

-0.9831 + 0.0500i

-0.9831 - 0.0500i

-0.9573 + 0.0306i

-0.9573 - 0.0306i

-0.9476

We can see what the error is, with the command

>> abs(roots(p)+1)

ans =

0.0535

0.0534
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0.0534

0.0532

0.0532

0.0528

0.0528

0.0525

0.0525

0.0524

The accuracy gets worse fast as the multiplicity of the zero in-

creases. It is more than 10 times worse for K = 10 than it is for

K = 6!

Finding a zero of even moderate degree is well known to be an

inherently ill-conditioned problem. However, it does not usually

occur except by design, in which case one knows the zero zo and

its degree. Then one can extract it from the polynomial with the

deconv command.
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ZERO REFLECTIONS

In this section, it will be shown that an FIR filter h(n) is not uniquely

determined by the magnitude of its frequency response |H(ejω)|.
For a given FIR filter h(n), we will see how to obtain other FIR

filters that have exactly the same frequency response magnitude

|H(ejω)|.
Consider the transfer function H(z) of a length N FIR filter,

H(z) = z−(N−1)
(
h(0) zN−1 + h(1) zN−2 + h(2) zN−3 + · · ·+ h(N − 1)

)
.

(7)

We can factor the transfer function H(z) as

H(z) = z−(N−1) · h(0) · (z − c1) · (z − c2) · · · · (z − cN−1) (8)

where the roots ci are complex in general. c1, . . . , cN−1 are called

the zeros of H(z). The frequency response Hf(ω) := H(ejω) is

then given by

Hf(ω) = e−j (N−1)ω ·h(0)·(ejω−c1)·(ejω−c2)·· · · (ejω−cN−1) (9)

and the magnitude of the frequency response |Hf(ω)| is given by

|Hf(ω)| = |h(0)| · |ejω − c1| · |ejω − c2| · · · · |ejω − cN−1|. (10)

For convenience, let us define

Gi(z) := z − ci. (11)

Then we can write

H(z) = z−(N−1) · h(0) ·G1(z) ·G2(z) · · ·GN−1(z) (12)
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and

|Hf(ω)| = |h(0)| · |Gf
1(ω)| · |G

f
2(ω)| · · · · |G

f
N−1(ω)|. (13)

Let us look at the magnitude of the frequency response of the

function

G(z) = z − c. (14)

Noting that |a+ j b|2 = (a+ j b) · (a+ j b), we can write

|Gf(ω)|2 = Gf(ω) ·Gf(ω) (15)

= (ejω − c) · (e−jω − c) (16)

= 1− c · e−jω − c · ejω + c · c (17)

= 1− 2Re{c · e−jω}+ |c|2 (18)

so

|Gf(ω)| =
√

1− 2Re{c · e−jω}+ |c|2. (19)

Now consider the function F (z) obtained from G(z) by moving the

zero c to 1/c and scaling by c,

F (z) = c · (z − 1/c) = c z − 1. (20)

Then the zero of F (z) is z = 1/c, and |F f(ω)| can be obtained as

|F f(ω)|2 = F f(ω) · F f(ω) (21)

= (c ejω − 1) · (c e−jω − 1) (22)

= c · c− c · e−jω − c · ejω + 1 (23)

= |c|2 − 2Re{c · e−jω}+ 1 (24)

so

|F f(ω)| =
√

1− 2Re{c · e−jω}+ |c|2 = |Gf(ω)|. (25)
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If we define

Fi(z) := ci · (z − 1/ci) = ci z − 1 (26)

then we have

|F f
i (ω)| = |G

f
i (ω)|. (27)

That is, moving the zero c to 1/c and scaling by c does not affect

the magnitude of the frequency response Gf(ω).

Note that 1/c can be seen to be a ‘reflection’ of c about the unit

circle |z| = 1.

The result that |F f(ω)| = |Gf(ω)| can be used to see how |Hf(ω)|
changes when one of the zeros of H(z) is moved from z = ci to

z = 1/ci. For example, suppose h(n) is an FIR filter of length 5.

h(n) = {5, 2, 9, 6, 2} (28)

Then

H(z) = z−4 (5 z4 + 2 z3 + 9 z2 + 6 z + 2) (29)

= z−4 · h(0) · (z − c1) · (z − c2) · (z − c3) · (z − c4) (30)

= z−4 · h(0) ·G1(z) ·G2(z) ·G3(z) ·G4(z) (31)

where h(0) = 5 and

c1 = 0.1535 + j 1.3306, c2 = 0.1535− j 1.3306, (32)

c3 = −0.3535 + j 0.3130, c4 = −0.3535− j 0.3130. (33)

We can write:

|Hf(ω)| = |h(0)| · |Gf
1(ω)| · |G

f
2(ω)| · |G

f
3(ω)| · |G

f
4(ω)|. (34)
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Now let us define a new filter, for example,

H1(z) := z−4 · h(0) · (z − c1) · (z − c2) · (z − c3) · c4 · (z − 1/c4)

(35)

= z−4 · h(0) ·G1(z) ·G2(z) ·G3(z) · F4(z); (36)

then

|Hf
1 (ω)| = |h(0)| · |G

f
1(ω)| · |G

f
2(ω)| · |G

f
3(ω)| · |F

f
4 (ω)| (37)

= |h(0)| · |Gf
1(ω)| · |G

f
2(ω)| · |G

f
3(ω)| · |G

f
4(ω)| (38)

= |Hf(ω)| (39)

because |F f
4 (ω)| = |G

f
4(ω)|.

The following Matlab commands can be used to calculate the co-

efficients of the newly obtained filter h1(n).

h = [5 2 9 6 2]; % poly coeffs

r = roots(h); % obtain roots

ra = r([1 2 3]); % roots 1,2,3

rb = conj(r([4])); % root 4, conjugate

r1 = [ra; 1./rb]; % new set of roots

C = h(1)*rb; % normalization const

h1 = C*poly(r1); % obtain new poly coeffs

The polynomial coefficients h1 are complex:

>> h1.’

-1.7675 + 1.5651i

-4.5922 + 0.6261i

-3.3622 + 4.0334i

-8.6699 + 1.5048i

-3.1711 + 2.8080i

We can compare the zero-diagrams of H(z) and H1(z) with the

commands,
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subplot(2,1,1), zplane(h);

subplot(2,1,2), zplane(h1);
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The polynomial coefficients h1 can not be real because the zeros

of H1(z) do not occur in complex conjugate pairs.

It can be numerically verified that |Hf
1 (ω)| = |Hf(ω)| with the

following commands.

[H,w] = freqz(h);

[H1,w] = freqz(h1);

subplot(1,2,1), plot(w/pi,abs(H))

subplot(1,2,2), plot(w/pi,abs(H1))
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The fact that |Hf
1 (ω)| = |Hf(ω)| can also be verified using directly

h(n) and h1(n). Note that

|Hf(ω)|2 DTFT⇐⇒ h(n) ∗ h(−n) (40)

|Hf
1 (ω)|2

DTFT⇐⇒ h1(n) ∗ h1(−n) (41)

If we define the autocorrelations

p(n) := h(n) ∗ h(−n) (42)
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and

p1(n) := h1(n) ∗ h1(−n) (43)

then |Hf
1 (ω)|2 = |Hf(ω)|2 if and only if p(n) = p1(n). Accord-

ingly, we can check that |Hf
1 (ω)| = |Hf(ω)| by evaluating the two

autocorrelation signals with the following commands.

>> p = conv(h,conj(h(end:-1:1)))

p =

10 34 75 94 150 94 75 34 10

>> p1 = conv(h1,conj(h1(end:-1:1)))

p1 =

1.0e+02 *

Columns 1 through 4

0.1000 0.3400 - 0.0000i 0.7500 + 0.0000i 0.9400 - 0.0000i

Columns 5 through 8

1.5000 0.9400 + 0.0000i 0.7500 - 0.0000i 0.3400 + 0.0000i

Column 9

0.1000

>> real(p1)

ans =

Columns 1 through 7

10.0000 34.0000 75.0000 94.0000 150.0000 94.0000 75.0000

Columns 8 through 9
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34.0000 10.0000

It can be seen that p(n) = p1(n) as expected. In this code frag-

ment, notice that h(end:-1:1) produces a reversed version of h.

>> h

h =

5 2 9 6 2

>> h(end:-1:1)

ans =

2 6 9 2 5

As a second example, let us define a new filter h2(n) by

H2(z) := z−4 ·h(0) · (z−c1) · (z−c2) ·c3 · (z−1/c3) ·c4 · (z−1/c4).

(44)

Then we have |Hf
2 (ω)| = |Hf(ω)| as above. The coefficients of

the filter h2(n) can be obtained with the following commands.

>> h = [5 2 9 6 2]; % poly coeffs

>> r = roots(h); % obtain roots

>> ra = r([1 2]); % roots 1,2

>> rb = conj(r([3 4])); % roots 3, 4, conjugate

>> r2 = [ra; 1./rb]; % new set of roots

>> C = h(1)*prod(rb); % normalization const

>> h2 = C*poly(r2) % obtain new poly coeffs

h2 =

1.1148 3.1928 5.9147 4.8072 8.9705
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In this case the coefficients h2(n) are real, as the zeros of H2(z)

come in complex conjugate pairs. The zero diagram of H2(z) and

the frequency response magnitude |Hf
2 (ω)| are shown in the follow-

ing figure.
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As a third example, let us define a new filter h3(n) by reflecting all

of the zeros about the unit circle.

H3(z) := z−4·h(0)·c1·(z−1/c1)·c2·(z−1/c2)·c3·(z−1/c3)·c4·(z−1/c4).
(45)

Then we have again |Hf
3 (ω)| = |Hf(ω)|, and the coefficients h3(n)

can be obtained as follows.

>> h = [5 2 9 6 2]; % poly coeffs

>> r = roots(h); % obtain roots

>> ra = r([]); % (no roots)

>> rb = conj(r([1 2 3 4])); % roots 1,2,3,4, conjugate

>> r3 = [ra; 1./rb]; % new set of roots

>> C = h(1)*prod(rb); % normalization const

>> h3 = C*poly(r3) % obtain new poly coeffs

h3 =

2.0000 6.0000 9.0000 2.0000 5.0000

In this case the coefficients h3(n) are exactly the same as h(n),

but in reverse order, h3(n) = h(4 − n). This will always be the
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case when all of the zeros are reflected. The zero diagram of H3(z)

and the frequency response magnitude |Hf
3 (ω)| are shown in the

following figure.
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For the filter h(n) in this and the previous examples, it can be

seen that there are 4 different real-valued FIR filters hi(n) with the

same frequency response magnitude. They are shown together in

the following figure.
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REAL IMPULSE RESPONSES WITH SAME FREQUENCY

RESPONSE MAGNITUDE

0 1 2 3 4 5 6 7

0

2

4

6

8

10

−2 −1 0 1 2

−1

0

1

0 1 2 3 4 5 6 7

0

2

4

6

8

10

−2 −1 0 1 2

−1

0

1

0 1 2 3 4 5 6 7

0

2

4

6

8

10

−2 −1 0 1 2

−1

0

1

0 1 2 3 4 5 6 7

0

2

4

6

8

10

−2 −1 0 1 2

−1

0

1

I. Selesnick EL 713 Lecture Notes 20



SPECTRAL FACTORIZATION

The (real-valued) spectral factorization problem we deal with here

can be stated as follows.

Given p(n), find h(n) (real-valued) such that

p(n) = h(n) ∗ h(−n), (46)

or equivalently,

P (z) = H(z)H(1/z) (47)

or

P f(ω) = |Hf(ω)|2. (48)

The sequence p(n) is called the autocorrelation of h(n). We will

focus here on the case where both p(n) and h(n) are FIR. There

is also a complex-valued spectral factorization problem, where one

has p(n) = h(n) ∗ h(−n). But for convenience, we deal here with

only the real case.

Note that not just any p(n) can be factored as in (46). The se-

quence p(n) must satisfy certain conditions.

1. p(n) must be real and symmetric,

p(n) = p(−n).

The sequence h(n)∗h(−n) is always a real symmetric sequence

when h(n) is real-valued, so if p(n) is not real symmetric, then

p(n) can not be written in the form of (46).
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2. If zo is a zero of P (z), then 1/zo is also a zero of P (z). This

comes from (47). The zero zo must be a zero of either H(z)

or H(1/z) (or both). In either case, 1/zo is a zero of the other

and is therefore a zero of P (z).

3. P f(ω) must be real and nonnegative,

P f(ω) ≥ 0

This comes from (48). |Hf(ω)| can not be negative because

it is the absolute value of a function, so if P f(ω) is negative

for any −π ≤ ω ≤ π, then p(n) can not be written in the

form of (46). Note that P f(ω) is always real when p(n) is a

real symmetric sequence.

4. Any zero of P (z) on the unit circle must be of even multiplicity.

If zo is a zero of H(z), and if h(n) is real as we have assumed,

then zo is also a zero of H(z). Therefore, 1/zo is a zero

of H(1/z). Suppose zo is on the unit circle (zo = ej ωo).

If ejωo is a zero of H(z), then 1/zo = 1/e−jωo = ejωo is

also a zero of H(1/z) Similarly, if ejωo is a zero of H(z) of

multiplicity d, then it is also a zero of H(1/z) of multiplicity

d. Clearly each zero of P (z) on the unit circle must have even

multiplicity, otherwise it will be impossible to construct h(n)

so that P (z) = H(z)H(1/z).

Note that as we saw in the previous section, reflecting a zero across

the unit circle, |z| = 1, does not affect |Hf(ω)|. Therefore, from
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(48), once one solution Hf(ω) is found, other solutions can be

obtained by reflecting zeros across the unit circle.

The solution to the spectral factorization problem is most conve-

niently explained using the Z-transform. Specifically, the diagram

of the zeros of P (z) indicate how H(z) can be chosen. For example,

suppose P (z) has the zeros shown in the following diagram.

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

P(z)

2

2

2

Then H(z) can have any one of the four following zero diagrams

shown in the left panels. The right panels show the zeros of H(1/z).
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DIFFERENT SPECTRAL FACTORIZATIONS OF THE SAME

TRANSFER FUNCTION
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A PROGRAM FOR SPECTRAL FACTORIZATION

To write a program to perform spectral factorization, one can

1. first find the roots of P (z),

2. identify an appropriate subset of those roots,

3. construct h(n) from that subset of roots.

A simple way to do this is to take all the roots inside the unit circle,

|z| < 1, and half of those roots on the unit circle, |z| = 1, and

none of those roots outside the unit circle, |z| > 1. (This will give

the minimum-phase solution.)

First we get the zeros using the Matlab command

rts = roots(p);

Numerically, we must allow a small margin about the unit circle,

because we will not have |zo| = 1 exactly with finite precision. To

select the roots inside the unit circle, we can use the commands

SN = 0.0001;

irts = rts(abs(rts)<(1-SN));

The variable SN is a ‘small number’. This command selects all roots

z for which |z| < (1− SN).

To select the roots on the unit circle (within some margin), we can

use the command

orts = rts((abs(rts)>=(1-SN)) & (abs(rts)<=(1+SN)));
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This command selects all roots z for which (1 − SN) < |z| <
(1+ SN). As each zero of P (z) on the unit circle should be of even

multiplicity, orts must be a vector of even length. We can check

for this with the command,

N = length(orts);

if rem(N,2) == 1

disp(’Sorry, but there is a problem here’)

end

The next step is to select an appropriate subset of orts. We can do

this by sorting the zeros by their angles and then taking every second

element of the sorted list. This can be done with the commands,

[a,k] = sort(angle(orts));

orts = orts(k(1:2:end));

Finally, we form the set of zeros of H(z) by concatenating irts

and orts,

r = [irts; orts];

Putting these commands together, we have the following program

called seprts.
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THE seprts PROGRAM

function r = seprts(p)

% r = seprts(p)

% This program is for spectral factorization.

% The roots on the unit circle must have even degree.

% Roots with high multiplicity will cause problems,

% they should be handled by extracting them prior to

% using this program.

SN = 0.0001; % Small Number (criterion for deciding if a

% root is on the unit circle).

rts = roots(p);

% The roots INSIDE the unit circle

irts = rts(abs(rts)<(1-SN));

% The roots ON the unit circle

orts = rts((abs(rts)>=(1-SN)) & (abs(rts)<=(1+SN)));

N = length(orts);

if rem(N,2) == 1

disp(’Sorry, but there is a problem (1) in seprts.m’)

r = [];

return

end

% Sort roots on the unit circle by angle

[a,k] = sort(angle(orts));

orts = orts(k(1:2:end));

% Make final list of roots

r = [irts; orts];
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It remains only to form h(n) from the subset of the zeros of P (z)

that we selected. We can use the command poly to do this —

however as we saw earlier, the numerical errors that occur in the

poly command can be greatly reduced by using the Leja ordering,

r = leja(r);

h = poly(r);

Note that poly gives a monic polynomial. The monic polynomial

must be scaled correctly, otherwise we will not have (46). Suppose

h̃(n) is the monic polynomial which we need to normalize,

h(n) = C h̃(n).

To find the normalization constant, we can set n = 0 in equation

(46) to get,

p(0) = |h(0)|2 + |h(1)|2 + |h(2)|2 + · · ·+ |h(N − 1)|2 (49)

= C2
[
|h̃(0)|2 + |h̃(1)|2 + |h̃(2)|2 + · · ·+ |h̃(N − 1)|2

]
(50)

Solving for C we get

C =

√
p(0)

|h̃(0)|2 + |h̃(1)|2 + |h̃(2)|2 + · · ·+ |h̃(N − 1)|2
.

Note that p(0) will always be the maximum value among all of

p(n), so we can normalize h with the command

h = h*sqrt(max(p)/sum(abs(h).^2));

The following example illustrates the procedure.
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>> p = [-2 1 2 7 2 1 -2];

>> r = seprts(p)

r =

0.5000

-0.5000 - 0.8660i

-0.5000 + 0.8660i

>> h = poly(r)

h =

1.0000 0.5000 - 0.0000i 0.5000 - 0.0000i -0.5000 + 0.0000i

>> h = real(h) % (discard zero imag part)

h =

1.0000 0.5000 0.5000 -0.5000

>> h = h*sqrt(max(p)/sum(abs(h).^2))

h =

2.0000 1.0000 1.0000 -1.0000

We can alway test h(n) to ensure that it really is a spectral factor

of p(n). We just need to check (46).

>> conv(h,h(end:-1:1))

ans =

-2.0000 1.0000 2.0000 7.0000 2.0000 1.0000 -2.0000
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The check shows that h(n) is correct. Remember, though, that

there are other h(n) that also work, corresponding to non-minimum

phase solutions.
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THE sfact PROGRAM

Collecting these commands together, we have the program called

sfact.

function [h,r] = sfact(p)

% [h,r] = sfact(p)

% spectral factorization of a polynomial p.

% h: new polynomial

% r: roots of new polynomial

%

% % example:

% g = rand(1,10);

% p = conv(g,g(10:-1:1));

% h = sfact(p);

% p - conv(h,h(10:-1:1)) % should be 0

% Required subprograms: seprts.m, leja.m

% leja.m is by Markus Lang, and is available from the

% Rice University DSP webpage: http://www.dsp.rice.edu/

if length(p) == 1

h = p;

r = [];

return

end

% Get the appropriate roots.

r = seprts(p);

% Form the polynomial from the roots

r = leja(r);

h = poly(r);

if isreal(p)

h = real(h);

end

% normalize

h = h*sqrt(max(p)/sum(abs(h).^2));
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COMPLEX SPECTRAL FACTORIZATION

In fact, sfact also works for complex spectral factorization, as the

following example illustrates.

>> i = sqrt(-1);

>> p = [1-8*i 5+4*i 2-1*i 25 2+1*i 5-4*i 1+8*i];

>> r = seprts(p)

r =

0.0935 + 0.9599i

-0.6975 - 0.5233i

0.4392 - 0.3486i

>> h = poly(r)

h =

1.0000 0.1648 - 0.0880i 0.3240 - 0.3162i 0.0585 + 0.4679i

>> h = h*sqrt(max(p)/sum(abs(h).^2))

h =

4.1349 0.6813 - 0.3640i 1.3397 - 1.3074i 0.2418 + 1.9347i

Again, we can test h(n) to ensure that it really is a spectral factor

of p(n). We just need to check p(n) = h(n) ∗ h(−n).

> conv(h,conj(h(end:-1:1)))
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ans =

Columns 1 through 4

1.0000 - 8.0000i 5.0000 + 4.0000i 2.0000 - 1.0000i 25.0000

Columns 5 through 7

2.0000 + 1.0000i 5.0000 - 4.0000i 1.0000 + 8.0000i

The check shows that h(n) is correct.
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REFERENCES REFERENCES

OTHER METHODS

There are other ways to do spectral factorization, for example, the

cepstral method [3] or matrix factorization [4]. More references

about spectral factorization are given in [5]. We also note that

software for polynomial root finding and spectral factorization is

described in [1].
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