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INTRODUCTION

A recursive IIR digital filter is an LTI system based on a difference

equation of the form:

y(n) = −
N∑
k=1

a(k) y(n− k) +
M∑
k=0

b(k)x(n− k) (1)

1. The impulse response h(n) is infinite in length.

2. A system described by this type of difference equation is called

an IIR (Infinite Impulse Response) filter, a recursive filter, or

an autoregressive moving-average (ARMA) filter.

The output y(n) of the filter can be written as

y(n) =
∞∑
k=0

h(k)x(n− k). (2)

As the impulse response is infinite, the convolutional sum is an

infinite sum. The transfer function of the system H(z) can be

written in term of the impulse response as

H(z) =
∞∑
k=0

h(k) z−k. (3)

The frequency response is therefore given by

H(ejω) =
∞∑
n=0

h(n) e−jω. (4)
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INTRODUCTION

The transfer function can also be written in terms of the difference

equation as

H(z) =
b0 + b1 z

−1 + b2 z
−2 + · · ·+ bM z−M

1 + a1 z−1 + a2 z−2 + · · ·+ aN z−N
(5)

or

H(z) =
B(z)

A(z)
(6)

where

B(z) =
M∑
n=0

b(n) z−n (7)

A(z) = 1 +
N∑
n=1

a(n) z−n. (8)

H(z) can also be written as

H(z) =
z−M

z−N
· b0 z

M + b1 z
M−1 + b2 z

M−2 + · · ·+ bM
zN + a1 zN−1 + a2 zN−2 + · · ·+ aN

. (9)

The the zeros of H(z) are the roots of the polynomial

b0 z
M + b1 z

M−1 + b2 z
M−2 + · · ·+ bM (10)

and the poles of H(z) are the roots of the polynomial

zN + a1 z
N−1 + a2 z

N−2 + · · ·+ aN . (11)

In addition, if N > M , then z = 0 is a zero of multiplicity N −M ;

and if M > N , then z = 0 is a pole of multiplicity M −N .
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COMPUTING THE IMPULSE RESPONSE

Computing h(n). Given the difference equation coefficients a(k)

and b(k), the impulse response h(n) can be obtained by taking the

inverse Z-transform of H(z), but it is usually simpler to calculate

h(n) numerically by running the difference equation with the input

x(n) = δ(n). The Matlab function filter implements a recursive

difference equation. The following code fragment computes the

first 30 values of h(n) from a(k) and b(k).

x = [1, zeros(1,29)];

h = filter(b,a,x);

where the vectors b and a contain the filter parameters

b = [b(0), b(1), . . . , b(M)] (12)

a = [a(0), a(1), . . . , a(N)] (13)
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COMPUTING THE FREQUENCY RESPONSE

Computing H(ejω). How can one compute the frequency response

H(ejω) from h(n) over a grid of equally spaced samples? One

approach is to write out the definition of the DTFT and truncate

the infinite sum to a finite sum. Let

ωk =
2π

L
k, 0 ≤ k ≤ L− 1, (14)

be a set of equally spaced frequencies. Then

H(ejωk) =
∞∑
n=0

h(n) e−jωkn (15)

≈
L−1∑
n=0

h(n) e−jωkn (16)

≈ DFTL{h(n) : 0 ≤ n ≤ L− 1} (17)

However, this method has several disadvantages.

1. The resulting values are only approximate because part of the

infinitely long impulse response is truncated.

2. The number of terms L must be large for the result to be

accurate.

3. One needs to compute the impulse response h(n).
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COMPUTING THE FREQUENCY RESPONSE

A second, better approach is to write H(z) as a rational function.

H(ejωk) =
B(z)

A(z)

∣∣∣∣
z=ejωk

(18)

=
B(ejωk)

A(ejωk)
(19)

=

M∑
n=0

b(n) e−jωkn

1 +
N∑
n=1

a(n) e−jωkn

(20)

=
DFTL{b(n)}
DFTL{a(n)}

(21)

This method has the advantages that

1. Exact values of H(ejω) are obtained at the values ωk.

2. It is simple to implement — the L-point DFT of the numerator

coefficients is simply divided, point by point, by the L-point

DFT of the denominator coefficients.
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COMPUTING THE FREQUENCY RESPONSE

The following Matlab function, for calculating the frequency re-

sponse H(ejω) on equally spaced frequencies, is based on the sec-

ond approach.

function [H,w] = iirfr(b,a,L)

% [H,w] = iirfr(b,a,L)

% -- input ----

% b : numerator coefficients

% a : denominator coefficients

% L : number of points from [0:pi]

% -- output ---

% H : frequency response of an IIR digital filter

% w : [1:L]*pi/L

H = fft(b,2*L)./fft(a,2*L); % frequency response from 0 to 2*pi.

H = H([0:L]+1); % frequency response from 0 to pi.

w = [0:L]*pi/L; % frequency grid.
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EXAMPLE

The following values are the coefficients of a difference equation of

an IIR digital elliptic filter.

k b(k) a(k)

0 0.0931 1.0000

1 0.0960 −1.5757

2 0.1801 2.2408

3 0.1801 −1.5554

4 0.0960 0.8123

5 0.0931 −0.1837

A plot of the frequency response, impulse response, and pole-zero

diagram can be found with Matlab.
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EXAMPLE

This figure was produces with the following code.

b = [0.0931 0.0960 0.1801 0.1801 0.0960 0.0931];

a = [1.0000 -1.5757 2.2408 -1.5554 0.8123 -0.1837];

% ------ Plot frequency response magnitude ---

subplot(4,2,1)

[H,w]=iirfr(b,a,2^10);

plot(w/pi,abs(H))

axis([0 1 0 1.2])

xlabel(’\omega/\pi’)

ylabel(’|H(e^{j \omega})|’)

% ------ Plot frequency response in dB -------

subplot(4,2,3)

plot(w/pi,20*log10(abs(H)))

axis([0 1 -60 10])

xlabel(’\omega/\pi’)

ylabel(’|H(e^{j \omega})| in dB’)

% ------ Plot impulse response h(n) ----------

subplot(4,2,2)

N = 30;

im = [1 zeros(1,N-1)];

h = filter(b,a,im);

stem(0:N-1,h,’.’)

xlabel(’n’)

ylabel(’h(n)’)

axis([-1 30 -0.2 0.6])

% ------ Plot pole-zero diagram --------------

subplot(4,2,4)

z = zplane(b,a);

set(z,’markersize’,3);

ylabel(’Zeros of H(z)’)

xlabel(’’)

axis([-1 1 -1 1]*1.4)

axis square

orient tall

print -deps ex1
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REMARKS ON RECURSIVE IIR DIGITAL FILTERS

1. They are recursive.

2. They have poles as well as zeros. They will be unstable if not

all the poles are inside |z| = 1.

3. They can not have linear-phase.

4. Methods for IIR filter design are either more complicated or

less flexible than FIR design methods.

5. The implementation of IIR filters is more sensitive to finite

precision effects than FIR filters are.

6. The advantage of IIR filters over FIR ones is that for the same

filter complexity (number of filter parameters) the magnitude

response of an IIR filter can be significantly better than that

of an FIR one.
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IIR FILTER DESIGN

A causal IIR filter implemented with a rational transfer function can

not have linear-phase. Two general approaches are:

1. Ignore the phase response and design a filter so that |H(ejω)|
matches a desired function D(ω).

2. If the phase response is important, then the design problem

becomes more complicated.

The most common method for designing standard IIR digital filters

is to convert a classical analog filter in a digital one.

• Highly developed methods for the design of classical analog

filters can be used for the design of digital filters. Formulas

exist for the classic analog filters.

• This method is of limited flexibility because not all IIR digital

filters can be obtained by converting classical analog filters.

The conversion of an analog filter into a digital filter works

very well for the design of standard types: low-pass, high-pass,

band-pass, and band-reject filters. However, if one wants to

place constraints on the filters, or design a non-standard type

of response, then the classical analog filters can usually not be

used.

• A problem with the classical analog filters is that there is no

control over the phase of the frequency response. They are

developed so as to have good magnitude response but the

phase-response can be very nonlinear.
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IIR FILTER DESIGN

• When an analog filter is converted into a digital filter, you

generally get an IIR digital filter (not an FIR one). That is

why the conversion of an analog filter to a digital one is not

used for FIR filter design.

• The conversion of an analog filter into a digital one generally

yields a digital filter for which the numerator and denominator

of H(z) have the same degree. M = N .
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ANALOG FILTERS

The transfer function of an analog filter is given by the Laplace

transform of its impulse response,

Ha(s) = L{h(t)} :=

∫ ∞
−∞

h(t) e−stdt. (22)

The subscript a is used to denote an analog transfer function. For

realizable analog filters, the transfer function can be written as a

rational function,

Ha(s) =
P (s)

Q(s)
(23)

where P (s) and Q(s) are polynomials in s. The frequency response

of an analog filter is obtained by evaluating Ha(s) on the imaginary

axis. The frequency response is given by

Ha(jω) = Ha(s)|s=jω . (24)

For a stable, causal filter, all the poles of Ha(s) must lie in the left

half plane (LHP)

Re{pk} < 0 (25)

for all pk where Q(pk) = 0.

The Square Magnitude. Note:

|Ha(jω)|2 = Ha(jω) ·Ha(jω) (26)

= Ha(jω) ·Ha(−jω) (27)

= Ha(s) ·Ha(−s)|s=jω (28)

I. Selesnick EL 713 Lecture Notes 13



ANALOG FILTERS

Define

R(s) := Ha(s) ·Ha(−s). (29)

Then

R(jω) = |Ha(jω)|2. (30)

For convenience, define

F (ω) := R(jω), (31)

so that we do not need to carry j along. Then

R(s) = F (s/j) (32)

and

F (ω) = |Ha(jω)|2. (33)

Note that:

R(−s) = R(s) (34)

so R(s) is an even function of s. Also note that,

F (−ω) = R(−jω) = R(jω) = F (ω) (35)

so F (ω) is an even function of ω.

Example: If

Ha(s) =
0.2 s2 + 0.02 s+ 1

s3 + s2 + 2 s+ 1
(36)

then

R(s) = Ha(s) ·Ha(−s) =
0.04 s4 + 0.3996 s2 + 1

−s6 − 3 s4 − 2 s2 + 1
(37)

and

F (ω) = R(jω) =
0.04ω4 − 0.3996ω2 + 1

ω6 − 3ω4 + 2ω2 + 1
(38)
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ANALOG FILTERS

Note that the function F (ω) contains only even powers of ω. F (ω)

is an even function of ω. The magnitude of the frequency response

and the pole-zero diagram of Ha(s) is shown in the figure.
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The classical analog filters are developed by the following approach.

Design the function F (ω) so that R(s) = F (s/j) can be spectrally

factored, then compute a spectral factor to obtain Ha(s). That

means, given R(s), find Ha(s) so that

R(s) = Ha(s) ·Ha(−s).

This is the same approach taken in the design of minimum-phase

FIR filters where the first step was to design a linear-phase filter

with a non-negative frequency response and the second step entails

a spectral factorization. This leads to the following problem.

Design a rational function F (ω) = |Ha(jω)|2 such that

1. F (ω) ≥ 0

2. F (ω) is an even function of ω.

The classical analog lowpass filters are developed by writing F (ω)

as

F (ω) =
1

1 + ε2V (ω)2
. (39)
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ANALOG FILTERS

Note that whatever V (ω) is, F (ω) will be non-negative. The non-

negativity of F (ω) is built into this expression. V (ω) does not

need to be a non-negative function. Note that if V (ω) is a rational

function, then F (ω) will also be a rational function. The approach

is to design a rational function V (ω). Note that

1. when V (ω) is very large, F (ω) is close to 0.

2. when V (ω) is very small, F (ω) is close to 1.

So in the pass-band, V (ω) should be small, and in the stop-band,

V (ω) should be large.
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THE BUTTERWORTH ANALOG FILTER

The simplest case is the Butterworth filter. For the Butterworth

filter,

V (ω) = ωN . (40)

Then

F (ω) =
1

1 + ε2 ω2N
. (41)

For example, for N = 3 and ε = 0.5, the functions V (ω) and F (ω)

are as shown.
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Note that the value of F (ω) at the frequency ω = 1 is

F (1) =
1

1 + ε2
. (42)

For example, when ε = 0.5, then

F (1) = 1/(1 + 0.52) = 1/(1 + 1/4) = 1/(5/4) = 0.8. (43)
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THE BUTTERWORTH ANALOG FILTER

This is indicated by the dotted line in the figure above. Note that

F (ω) is monotonic in both the pass-band and the stop-band.

To obtain the transfer function Ha(s), we can first obtain R(s) by,

R(s) = F (s/j) =
1

1 + ε2(s/j)2N
(44)

=
1

1 + ε2(s2/j2)N
(45)

=
1

1 + ε2(−s2)N
(46)

To find the poles, set the denominator of R(s) to zero. This will

give the roots of Q(s) · Q(−s). Once we find these roots, we can

identify the roots of Q(s) by taking those in LHP.

1 + ε2(−1)Ns2N = 0 (47)

s2N =
−1

ε2(−1)N
(48)

s2N =
−1(−1)N

ε2
(49)

When N is even this becomes

s2N =
−1

ε2
. (50)

To find an expression for the poles, we can write

−1 = ejπ (51)

or

−1 = ej(π+2πk). (52)
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THE BUTTERWORTH ANALOG FILTER

This leads to the following chain

s2N =
−1

ε2
(53)

=
ej(π+2πk)

ε2
(54)

s =

(
ej(π+2πk)

ε2

) 1
2N

(55)

s =
ej(π+2πk)/(2N)

ε1/N
(56)

s =
ej(1+2k) π

2N

ε1/N
(57)

for 0 ≤ k ≤ 2N − 1.

For example, when N = 4, the poles are indicated by the marks in

the figure, they are equally spaced on a circle of radius 1
ε1/N

.
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0

1
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When N is odd, setting the denominator of R(s) to zero gives

s2N =
1

ε2
. (58)

To find an expression for the poles, we can write

1 = ej2π (59)

or

1 = ej2πk. (60)
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THE BUTTERWORTH ANALOG FILTER

Adding an integer multiple of 2π in the exponent leads to the fol-

lowing chain

s2N =
1

ε2
(61)

=
ej2πk

ε2
(62)

s =

(
ej2πk

ε2

) 1
2N

(63)

s =
ejπk/N

ε1/N
(64)

for 0 ≤ k ≤ 2N − 1.

For example, when N = 5, the poles are indicated by the marks in

the figure, they are equally spaced on a circle of radius 1
ε1/N

.
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The roots in the LHP, are given by the following formula, valid

when N is either even or odd.

sk =
1

ε1/N
· ej(2k + 1 +N)π/(2N) (65)

for 0 ≤ k ≤ N − 1. These are the poles of the analog Butterworth

filter of order N . The numerator is simply 1 so there are no finite

zeros.
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THE BUTTERWORTH ANALOG FILTER

The Matlab command buttap can be used to obtain the poles

of the Butterworth filter of degree N . (This command is part of

the Matlab Signal Processing Toolbox.) The only input to this

command is the filter order N . The result of buttap is normalized

so that at ω = 1, |Ha(jω)| = 1/
√

2.

The following code uses buttap to obtain the transfer function of

a fourth order Butterworth analog filter and plots |Ha(jω)|.
N = 4;

[z,p,k] = buttap(N);

P = k*poly(z);

Q = poly(p);

w = 0:0.01:3;

H = polyval(P,j*w)./polyval(Q,j*w);

figure(1)

clf

subplot(4,2,1)

plot(w,abs(H),[0 3],[1 1]/sqrt(2),’:’,[1 1],[0 1.2],’:’,[0 3],[1 1],’:’);

axis([0 3 0 1.2])

xlabel(’\omega’)

ylabel(’|H_a(j\omega)| Butterworth’)

orient tall

print -deps butex2
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THE CHEBYSHEV-I ANALOG FILTER

The Chebyshev-I analog filter is based on the Chebyshev polynomi-

als CN(ω). For the Chebyshev-I filter,

V (ω) = CN(ω). (66)

Then

F (ω) =
1

1 + ε2CN(ω)2
. (67)

The remarkable Chebyshev polynomials can be generated by the

following recursive formula.

C0(ω) := 1 (68)

C1(ω) := ω (69)

Ck+1(ω) := 2ω Ck(ω)− Ck−1(ω). (70)

The next few Ck(ω) are

C2(ω) = 2ω2 − 1 (71)

C3(ω) = 4ω3 − 3ω (72)

C4(ω) = 8ω4 − 8ω2 + 1 (73)

C5(ω) = 16ω5 − 20ω3 + 5ω. (74)

As can be seen in the following figures, in the interval −1 ≤ ω ≤ 1,

the Chebyshev polynomial oscillates between −1 and 1. This will

create a equiripple behavior in the pass-band of the resulting analog

filter.
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CHEBYSHEV POLYNOMIALS
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THE CHEBYSHEV-I ANALOG FILTER

For example, when N = 3 and ε = 0.5, then the functions V (ω)

and F (ω) are as shown.
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THE CHEBYSHEV-I ANALOG FILTER

When N = 4 and ε = 0.5, then the functions V (ω) and F (ω) are

as shown.
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The Chebyshev-I analog filter has no finite zeros.

Skipping the derivation, the poles of the Chebyshev-I filter lie at

sk = − sinh(v) sin

(
(2k + 1)π

2N

)
+j cosh(v) cos

(
(2k + 1)π

2N

)
(75)

for 0 ≤ k ≤ N − 1 where

v =
sinh−1(1/ε)

N
. (76)
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THE CHEBYSHEV-I ANALOG FILTER

The frequency response of the Chebyshev-I analog filter is equiripple

in the pass-band, and monotonic in the stop-band.

The Matlab command cheb1ap can be used to obtain the poles of

the Chebyshev-I filter of degree N . The input arguments of this

command are the filter degree N and the pass-band ripple size Rp

in dB. For this filter |Ha(jω)| lies between the bounds 1 and 1− δp
in the pass-band. The value Rp is related to δp by

1− δp = 10−Rp/20 (77)

or

Rp = −20 log10(1− δp). (78)

For example, to obtain a Chebyshev-I filter of degree N such that

|Ha(jω)| lies between 0.9 and 1 in the pass-band, we can use

cheb1ap with

Rp = −20 log10(0.9). (79)

The code on the next page uses cheb1ap to obtain the trans-

fer function of a fourth order Chebyshev-I analog filter and plots

|Ha(jω)|.
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THE CHEBYSHEV-I ANALOG FILTER

N = 4;

dp = 0.1;

Rp = -20*log10(1-dp);

[z,p,k] = cheb1ap(N,Rp);

P = k*poly(z);

Q = poly(p);

w = 0:0.01:3;

H = polyval(P,j*w)./polyval(Q,j*w);

figure(1)

clf

subplot(4,2,1)

plot(w,abs(H),[0 3],[1 1]*(1-dp),’:’,[1 1],[0 1.2],’:’,[0 3],[1 1],’:’);

axis([0 3 0 1.2])

xlabel(’\omega’)

ylabel(’|H_a(j\omega)| Chebyshev-I’)

orient tall

print -deps chebex2
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THE CHEBYSHEV-II ANALOG FILTER

The Chebyshev-II analog filter (also called the inverse-Chebyshev

filter) is designed so as to have a monotonic pass-band and an

equiripple stop-band. This type of frequency response can be ob-

tained by a two step procedure. First, subtract the Chebyshev-I

F (ω) from 1. This is illustrated in the following figure.
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THE CHEBYSHEV-II ANALOG FILTER

Second, perform the change of variables ω ← 1/ω. This results in

the Chebyshev-II frequency response.
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As the figure shows, the frequency response has a monotonic pass-

band and an equiripple stop-band. According to the two step pro-

cedure, the formula for F (ω) for the Chebyshev-II filter is given

by

F (ω) = 1− 1

1 + ε2CN(1/ω)2
(80)

or

F (ω) =
ε2CN(1/ω)2

1 + ε2CN(1/ω)2
. (81)

The Chebyshev-II filter has zeros as the numerator is not just 1. It

turns out that all of its zeros lie on the imaginary axis. Skipping

the details, the zeros are given by

zk =
j

cos((2k + 1)π/(2N))
(82)

for 0 ≤ k ≤ N − 1. Surprisingly, the poles of the Chebyshev-

II analog filter are the reciprocals of the poles of the Chebyshev-I

analog filter.
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THE CHEBYSHEV-II ANALOG FILTER

The Matlab command cheb2ap can be used to obtain the poles and

zeros of the Chebyshev-II filter of degree N . The input arguments

of this command is the filter degree N and the stop-band ripple

size Rs in dB. For this filter |Ha(jω)| lies between the bounds 0

and δs in the stop-band. The value Rs is related to δs by

δs = 10−Rs/20 (83)

or

Rs = −20 log10(δs). (84)

For example, to obtain a Chebyshev-II filter of degree N such that

|Ha(jω)| lies between 0 and 0.1 in the stop-band, we can use

cheb2ap with

Rs = −20 log10(0.1). (85)

The code on the next pages uses cheb2ap to obtain the trans-

fer function of a fourth order Chebyshev-II analog filter and plots

|Ha(jω)|.
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THE CHEBYSHEV-II ANALOG FILTER

N = 4;

ds = 0.1;

Rs = -20*log10(ds);

[z,p,k] = cheb2ap(N,Rs);

P = k*poly(z);

Q = poly(p);

w = 0:0.01:3;

H = polyval(P,j*w)./polyval(Q,j*w);

figure(1)

clf

subplot(4,2,1)

plot(w,abs(H),[0 3],[1 1]*ds,’:’,[1 1],[0 1.2],’:’,[0 3],[1 1],’:’);

axis([0 3 0 1.2])

xlabel(’\omega’)

ylabel(’|H_a(j\omega)| Chebyshev-II’)

orient tall

print -deps ichebex2
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THE ELLIPTIC (CAUER) ANALOG FILTER

The elliptic analog filter (also called the Cauer filter) is equi-ripple

in both the pass-band and the stop-band. For a given set of error

tolerances, the elliptic filter gives the minimal-degree filter. For the

elliptic filter, V (ω) is the Chebyshev rational function RN(ω, α)

which depends on a parameter α, so

F (ω) =
1

1 + ε2RN(ω, α)2
. (86)

The functional form for V (ω) is quite complicated as it is based on

elliptic functions. As elliptic functions are difficult to apply to other

design problems, we will skip the details here. An elliptic analog

filter is illustrated in the following figure.
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THE ELLIPTIC (CAUER) ANALOG FILTER

The Matlab command ellipap can be used to obtain the poles

and zeros of the elliptic filter of degree N . The input arguments of

this command is the filter degree N , the pass-band ripple size Rp

in dB, and the stop-band ripple size Rs in dB. The magnitude of

the frequency response of the elliptic filter |Ha(jω)| will lie within

the bounds 1− δp and 1 in the pass-band, and it will lie within the

bounds 0 and δs in the stop-band. The values Rp and Rs is related

to the pass-band ripple by

δp = 1− 10−Rp/20 (87)

δs = 10−Rs/20 (88)

or

Rp = −20 log10(1− δp) (89)

Rs = −20 log10(δs). (90)

For example, to obtain an elliptic filter of degree N such that

|Ha(jω)| lies between 0.9 and 1 in the pass-band, and 0 and 0.1 in

the stop-band, then we can use ellipap with

Rp = −20 log10(0.9) (91)

Rs = −20 log10(0.1). (92)
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THE ELLIPTIC (CAUER) ANALOG FILTER

The following code uses ellipap to obtain the transfer function of

a fourth order elliptic analog filter and plots |Ha(jω)|.
N = 4;

ds = 0.1;

dp = 0.1;

Rs = -20*log10(ds);

Rp = -20*log10(1-dp);

[z,p,k] = ellipap(N,Rp,Rs);

P = k*poly(z);

Q = poly(p);

w = 0:0.001:3;

H = polyval(P,j*w)./polyval(Q,j*w);

figure(1)

clf

subplot(4,2,1)

plot(w,abs(H),[0 3],[1 1]*ds,’:’,[0 3],[1 1],’:’,[1 1],[0 1.2],’:’,[0 3],[1 1]*(1-dp),’:’);

axis([0 3 0 1.2])

xlabel(’\omega’)

ylabel(’|H_a(j\omega)| Elliptic’)

orient tall

print -deps ellipex2
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ADJUSTING THE BAND-EDGES

The four classical analog filters described in the previous sections

were presented in normalized form. That means a band-edge is at

the frequency ω = 1. For the Chebyshev-I and elliptic filters, as

presented, the pass-band edge was at ω = 1. For the Chebyshev-

II filter as it was presented, the stop-band edge was at ω = 1.

On the other hand, the Butterworth filter was normalized so that

|Ha(jω)| = 1/
√

2.

To change the band-edges, one can simply scale the variable ω

by a constant. If Ha(jω) has its pass-band edge at ω = 1, then

Ga(jω) = Ha(jω/ωc) has its pass-band edge at ω = ωc for ex-

ample. The transfer function Ga(s) is likewise given by Ga(s) =

Ha(s/ωc).

This scaling can be done using the poles, zeros, and gain factor. If

one writes Ha(s) as

Ha(s) = k ·

M∏
i=1

(s− zi)

N∏
i=1

(s− pi)

(93)
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ADJUSTING THE BAND-EDGES

then

Ga(s) = Ha(C s) (94)

= k ·

M∏
i=1

(C s− zi)

N∏
i=1

(C s− pi)

(95)

= k ·

M∏
i=1

C (s− zi/C)

N∏
i=1

C (s− pi/C)

(96)

= k · CM−N ·

M∏
i=1

(s− zi/C)

N∏
i=1

(s− pi/C)

(97)

So, given the zeros zi, poles pi, and gain factor k of a prototype

transfer function Ha(s), the transfer function Ga(s) = H(C s) has

the zeros, poles and gain factor given by

z′i = zi/C (98)

p′i = pi/C (99)

k′ = k · CM−N (100)
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SUMMARY OF CLASSIC ANALOG LOW-PASS FILTER

Filter type Characteristic Matlab function

Butterworth |H(jω)||ω=1 = 1/
√

2 buttap(N)

Chebyshev-I 1− δp ≤ |H(jω)| ≤ 1 cheb1ap(N,Rp)

for |ω| ≤ 1

Chebyshev-II |H(jω)| ≤ δs cheb2ap(N,Rs)

for |ω| ≥ 1

Elliptic 1− δp ≤ |H(jω)| ≤ 1 ellipap(N,Rp,Rs)

for |ω| ≤ 1;

|H(jω)| ≤ δs

for |ω| ≥ ωs

δp = 1− 10−Rp/20

δs = 10−Rs/20

Rp = −20 log10(1− δp)
Rs = −20 log10(δs)

For the elliptic filter, the stop-band edge ωs is determined by N

and the specified values of δp and δs.
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DESIGN EXAMPLE

Problem: Design an analog Chebyshev-II of minimal degree meeting

the specifications:

0.92 ≤ |Ha(jω)| ≤ 1 for |ω| ≤ 2 (101)

|Ha(jω)| ≤ 0.1 for |ω| ≥ 2.2 (102)

To find the solution to this problem, note that the analog Chebyshev-

II prototype has a stop-band edge at ω = 1. Therefore, we will need

to scale the prototype with the change of variables s← s/2.2. That

is, we define Ga(s) = Ha(C s) where Ha(s) is the Chebyshev-II pro-

totype and the constant C is 1/(2.2).

Then the Chebyshev-II filter of degree 8, after rescaling, is shown

in the following figure. It can be seen from the figure that it does

not meet the pass-band edge.
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DESIGN EXAMPLE

However, the Chebyshev-II filter of degree 9, after rescaling, is

shown in the following figure. It can be seen from the figure that

it does meet the specifications.
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This filter was obtained and the plot was generated with the fol-

lowing Matlab code.

N = 9; % number of poles

dp = 0.08; % desired pass-band error margin

ds = 0.1; % desired stop-band error margin

wp = 2.0; % pass-band edge

ws = 2.2; % stop-band edge

Rs = -20*log10(ds);

[z,p,k] = cheb2ap(N,Rs); % analog filter prototype

M = length(z); % number of zeros

C = 1/ws; % constant for scaling poles and zeros

k = k*C^(M-N); % modified gain factor

P = k*poly(z/C); % modified numerator

Q = poly(p/C); % modified denominator

w = 0:0.005:5;

H = polyval(P,j*w)./polyval(Q,j*w);

figure(1)

subplot(4,2,1)

plot(w,abs(H),[0 5],[1 1]*ds,’:’,ws*[1 1],[0 1.2],’:’,[0 5],[1 1],’:’,...

wp*[1 1],[0 1.2],’:’,[0 5],[1 1]*(1-dp),’:’);

axis([0 5 0 1.2])

xlabel(’\omega’)

ylabel(’|H_a(j\omega)| Chebyshev-II’)
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CONVERTING ANALOG FILTERS TO DIGITAL FILTERS

THE BILINEAR TRANSFORMATION

The bilinear transform (BLT) can be used to convert an analog filter

into a digital filter. The BLT consists of the change of variables

s = C · z − 1

z + 1
. (103)

We will use C = 1 in the following.

Let Ha(s) denote the transfer function of an analog filter. Then

define

H(z) = Ha(s)|s= z−1
z+1

,

that is:

H(z) = Ha

(
z − 1

z + 1

)
.

If Ha(s) is a rational function of s, the H(z) will be a rational

function of z. Therefore it represents a finite order system (a finite

order difference equation).

Question: What is the frequency response of H(z) ?

H(ejω) = Ha

(
ejω − 1

ejω + 1

)
Let us simplify the term ejω−1

ejω+1 .

To simplify it, we use the same ‘trick’ used when we dealt with

linear-phase FIR filter — extract the ‘center’ frequency.
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THE BILINEAR TRANSFORMATION

That means we write it as

ejω − 1

ejω + 1
=
e−j

ω
2

e−j
ω
2

· e
jω − 1

ejω + 1
(104)

=
ej

ω
2 − e−j ω2

ej
ω
2 + e−j

ω
2

(105)

=
2j sin(ω2 )

2 cos(ω2 )
(106)

= j tan
(ω

2

)
(107)

Therefore

H(ejω) = Ha

(
j tan

(ω
2

))
= Ha(jΩ)

where Ha(jΩ) is the frequency response of the analog filter.

H(ejω) is a warped, or compressed, version of Ha(jΩ).

Ω = tan
(ω

2

)
(108)

Plot of Ω versus ω.

Fig 7.4 in Mitra

The analog filter has a frequency response which is defined for

0 ≤ Ω <∞

(and Ω < 0 too).

The digital filter frequency response only needs to be defined for

0 ≤ ω ≤ π
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(and −π ≤ ω ≤ 0 too).

(H(ejω) is periodic beyond π).

So the infinite interval is compressed into the finite interval — some

warping must occur. (Fig 7.5 in Mitra.)
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THE BILINEAR TRANSFORMATION

If |Ha(jΩ)| fits into the template:

Ω
P

Ω
S Ω0

|H
a
(jΩ)|

then what template does the digital filter fit into?

|H(ejω)| = |Ha

(
j tan

(ω
2

))
|

What is the pass-band edge and stop-band edge of the digital filter

frequency response?

|H(ejωp)| = |Ha

(
j tan

(ωp
2

))
| =: |Ha(jΩp)|

so

tan
(ωp

2

)
= Ωp (109)

similarly,

tan
(ωs

2

)
= Ωs (110)
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THE BILINEAR TRANSFORMATION

If you want a digital filter with passband and stopband edges ωp

and ωs, then

1. Design an analog filter with pass-band edge

Ωp = tan(
ωp
2

)

and stop-band edge

Ωs = tan(
ωs
2

)

2. Convert the analog filter to a digital one using the BLT

s =
z − 1

z + 1
.

Question: How to find H(z) conveniently from Ha(s)?

Use poles and zeros!

H(zo) = 0 Ha

(
zo − 1

zo + 1

)
= 0

Setting

so =
zo − 1

zo + 1

gives

Ha(so) = 0.

So if so is a zero of Ha(s), then a zero of H(z) can be obtained by

solving

so =
zo − 1

zo + 1
.
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THE BILINEAR TRANSFORMATION

so =
zo − 1

zo + 1
(111)

so (zo + 1) = zo − 1 (112)

zo so + so = zo − 1 (113)

zo (so − 1) = −so − 1 (114)

zo =
so + 1

1− so
(115)

so

zo =
so + 1

1− so

If so is a zero of Ha(s), then so+1
1−so is a zero of H(z). Likewise, if so

is a pole of Ha(s), then so+1
1−so is a pole of H(z).

So to find H(z) from Ha(s), find the poles and zeros of Ha(s) and

convert to poles and zeros of H(z), then get the numerator and

denominator coefficicients of H(z) from its poles and zeros.

Note: due to the warping of the frequency axis, the behavior of the

frequency response can be affected.

However, when |Ha(jΩ)| is piecewise constant, then after the BLT,

the piecewise constant behavior is preserved.

If D(ω) is not made of constant segments, then the BLT can destroy

the shape of the frequency response.
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REMARKS ON THE BLT

1. The order of H(z) and Ha(s) are the same. (The order is

the number of poles, or the number of zeros, which ever is

greater.)

2. The left half plane (LHP) is mapped to the unit disk |z| ≤ 1

3. The imaginary axis is mapped to the unit circle |z| = 1.

4. Because the LHP is mapped to the disk, poles in the LHP are

mapped to the inside of the unit circle. Therefore, a causal

stabel ananog system is converted by the BLT into a stable

causal digital system.

5. The optimality of the Chebyshev (minimax) approximation to

piecewise constant D(ω) is preserved (in magnitude frequency

response sense).

IMPULSE-INVARIANCE METHOD

Another well-known method for analog to digital filter conversion

is the impulse-invariance method.

1. h(n) = ha(nT ) for 0 ≤ n ≤ N − 1. The impulse response

of the digital filter is matched to the samples of the impulse

response of the analog filter.

2. It does not preserve the shape of Ha(jΩ).

3. It does not always preserve the stability of causal systems like

the BLT does.

The impulse-invariance method is not usually as suitable for IIR

digital filter design as the BLT is, but it is usually OK for simulation.
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