EL 6113 : Digital Signal Processing I Fall 2016
Section B (Selesnick)

Outline

13 Lectures + Midterm exam + Final exam

(The outline is subject to change.)

LECTURE 1
Discrete-time signals
System properties
LTI systems - convolution
 MATLAB function: conv
Connections of systems
BIBO stability condition
If time: Z-transform (definition, FIR examples)

Homework 1
From Signals packet
System classification
FIR convolution
one sided convolution
two-sided convolution
convolution as a matrix
MATLAB: plotting signals, convolution

LECTURE 2
Z-transform
 ROC
 Right-sided and left-sided signals
 Inverse Z-transform
 Partial fraction expansion
 MATLAB functions: roots, poly, residue
 Transformations of z (1/z, -z, -1/z, z^2)
Transfer functions
 Poles/zeros
Inverse systems
 non-causal systems
 stable inverses on non-minimum-phase systems
 MATLAB demo - Inverse System
If time allows:
Difference equations
 basic example
 difference equation -> transfer function
LECTURE 3
Difference equations
MATLAB function: filter
Complex poles
MATLAB demo: difference equation -> impulse response, for system with complex poles [complex_poles_demo]
Matching pole/zero and impulse responses diagrams
DC gain
Frequency response
Periodicity of frequency response
Response of LTI systems to sinusoidal inputs and frequency response evaluation of frequency response as a polynomial
MATLAB demo: frequency response
MATLAB functions: freqz, polyval
Normalized frequency
Z-transform / frequency response / unit circle
Relationships between time domain and frequency domain characteristics
poles-zeros <-> frequency response (pdf file animation)

Homework 3
From Signals packet
Difference equations
Complex poles
Frequency response
MATLAB functions: filter, freqz, polyval

LECTURE 4
DTFT
Definition
Ideal LPF / impulse response using inverse DTFT
sinc function
impulses
cosine
properties (shift, multiplication, periodicity, Parseval, etc.)
real-valued signals, symmetries
example spectra of signals (e.g., voiced and unvoiced speech)

Homework 4
frequency response
matching with pole-zero diagrams
Simple system design
 real and complex poles and zeros
DTFT problems from Oppenheim and Schafer
MATLAB: simple system design - verify them.

LECTURE 5
Simple system design (review HW 4)
 low-order systems, specified dc gain and nulls
Notch filters
 Motivation: removing 60 Hz hum, baseline drift correction
second-order recursive filter
tonal noise suppression
baseline drift correction
MATLAB demo: notch filter demo
N-point moving-average filter
 roots of unity
digital sinc function
roots of unity equally spaced on unit circle
 <-> nulls of digital sinc function equally spaced
Phase delay of system
 delay of sine through LTI system
MATLAB demo: filter delay demo

Homework 5
From Signals packet
From DSP packet
 Filters related to N-point moving average
transfer functions / filters / roots of unity
Matlab:
 baseline drift using dc notch filter
tonal noise speech filtering
higher-order notch filters

LECTURE 6
DFT
 definition
 properties
periodic and linear convolution
connection with DTFT
matching
 MATLAB functions: fft, ifft
DFT as a matrix
Circular convolution as a matrix
 relation to linear convolution
Using the DFT
 DFT to evaluate DTFT
 zero-padding
 MATLAB: fftshift
MATLAB demo: phase distortion demo
 ideal fractional-sample delay

Homework 6
DFT problems from DSP packet.
MATLAB:
 spectra of speech
 notch filter
 'anti-notch' filter

LECTURE 7
DFT/DTFT
 evaluation of spectra
 frequency leakage
Filtering
 general concepts
 ideal filters
 recursive/non-recursive filters
 approximation problem
Linear-phase FIR filters
 why linear-phase?
 the four types
 properties

Homework 7
From DSP packet
 DFT
 Filters
 Linear-phase FIR filters

LECTURE 8
FFT
 radix-2
Windows
 Standard windows
 Hamming, Hann, Blackman, Kaiser
 MATLAB functions: hamming, kaiser
FIR filter design using windows
 MATLAB functions: kaiserord, fir1
Frequency measurement using windows
FIR filter design using interpolation (DFT)
STFT (Maybe postponed to later lecture)
 definition
 parameters: frame size, hop, DFT length
 influence of parameters
 MATLAB function: specgram

Homework 8
From DSP packet
 Windows
 FIR filter design using windows
 FIR filter design by interpolation (DFT)
 STFT
Matlab: STFT

LECTURE 9
Recursive filters
 Standard types: Butterworth, Cheby1, Cheby2, Elliptic
 MATLAB demo: recursive filters demo
 MATLAB functions: butter, cheby1, cheby2, ellip
Optimal FIR filter design
 Least square linear-phase
 MATLAB function: firls
 Parks-McClellan (Remez)
 MATLAB demo: firpm demo

Homework 9
From DSP packet
 Least squares filter design
 Recursive filter design (classic methods)
Matlab:
 firls, firpm, butter, cheby1, cheby2, ellip
 low-pass filtering of noisy speech

LECTURE 10
Zero-phase filtering
 forwards-backwards filtering
 MATLAB function: filtfilt
Conversion of analog systems to digital systems
 Bilinear transformation (BLT)
 MATLAB function: bilinear
 Impulse Invariance method
Magnitude Characteristics of LTI systems
 Factorization of Desired Magnitude functions for system synthesis
All Pass Systems
Characterizations and Delay Properties
Minimum Phase Systems
 Definition
 Minimum Delay Property
 Factorization of $H(z)$ into minimum phase, all pass product

Homework 10
From DSP packet
 zero-phase filtering
Problems - Oppenheim and Schafer?
Matlab:
 compare causal IIR with zero-phase (non-causal) filtering (Matlab filter vs filtfilt)

LECTURE 11
Filter transformations
 LPF->HPF, LPF->BPF, LPF->BSF, etc.
Least squares
 overdetermined and underdetermined systems of linear equations
 differentiation wrt vectors
 normal equations
 constrained least squares
 polynomial approximation
 banded systems
 extrapolation, linear prediction
 smoothing
 deconvolution
 system identification
 interpolation

Homework 11
Least squares packet

LECTURE 12
Least squares (cont.)
 Least squares smoothing as an LTI filter
 Least squares deconvolution as an LTI filter
Fourier transforms (continuous-time)
Fourier Series and Orthogonal Functions
Sampling theorem

Homework 12
Problems - Oppenheim and Schafer..
LECTURE 13

Catch up
 if behind schedule

Special filters
 differentiators
 Hilbert transform
 fractional delay
 comb filters

Selected topics
 Convolution using overlap-add and overlap-save
 Discrete Cosine Transform (DCT)
 Stability triangle for second-order systems
 Periodogram
 Group delay
 Prony method

Homework 13
 None (last lecture)