1. For the causal LTI system implemented by the difference equation

$$
y(n)=2 x(n)+0.5 y(n-1)
$$

(a) Find the transfer function $H(z)$.
(b) Find the impulse response $h(n)$.
2. For the causal LTI system implemented by the difference equation

$$
y(n)=x(n)+x(n-1)-\frac{1}{6} y(n-1)+\frac{1}{6} y(n-2)
$$

(a) List the poles of the system.
(b) Find the impulse response $h(n)$. You do not need to compute the residues (constants) in the partial fraction expansion. You may leave them as ' A ' and ' B '.
3. For the LTI system with impulse response $h(n)=\delta(n)+2 \delta(n-1)-\delta(n-2)$, write a difference equation that implements the system.
4. For the LTI system with impulse response

$$
h(n)=3\left(\frac{1}{2}\right)^{n} u(n)+\left(\frac{2}{3}\right)^{n} u(n)
$$

write a difference equation that implements the system.
5. An LTI system has an impulse response $h(n)=(0.9)^{n} u(n)$. Find the impulse response $g(n)$ of the stable inverse to this system. Also, sketch the impulse response $g(n)$.
6. For the signal $h(n)=2\left(3^{n}\right) u(-n-1)$, find the Z-transform $H(z)$ and the region of convergence (ROC).
7. A causal LTI system is implemented with the difference equation $y(n)=0.5 x(n)+x(n-1)$. Find the impulse response $g(n)$ of the stable inverse to this system.
8. Two LTI systems are connect in series

where systems $H$ and $G$ are implemented by the difference equations:

$$
\begin{aligned}
H: & r(n)=x(n)+2 x(n-1)-0.5 r(n-1) \\
G: & y(n)=2 r(n)+r(n-1)
\end{aligned}
$$

Find the difference equation of the total system.

