1. Convolution. Sketch the convolution of $y(n)=h(n) * x(n)$
(a) $h(n)=\delta(n-3)$

$$
x(n)=\delta(n)-\delta(n-5)
$$

(b) $h(n)=\delta(n-3)-2 \delta(n-6)$ $x(n)=\delta(n)-\delta(n-5)$
(c) $h(n)=\delta(n-3)-2 \delta(n-6)$ $x(n)=u(n)-u(n-5)$
(d) $h(n)=\delta(n)+2 \delta(n-1)+3 \delta(n-2)$

$$
x(n)=\sum_{k=0}^{\infty} \delta(n-4 k)
$$

2. An LTI system has impulse response

$$
h(n)=2\left(\frac{1}{3}\right)^{n} u(n)
$$

Find the system output $y(n)$ produced by the input signal

$$
x(n)=2
$$

Note: This input signal starts at 'minus infinity'.
3. Z-transforms. The Z-transform of the signal $x(n)$ is

$$
X(z)=2 z^{3}+z^{-1}-z^{-2}
$$

(a) Accurately sketch the signal $x(n)$.
(b) Define $F(z)=z^{-2} X(z)$. Sketch the signal $f(n)$.
(c) Define $G(z)=X(-z)$. Sketch the signal $g(n)$.
(d) Define $H(z)=z^{-2} X(-z)$. Sketch the signal $h(n)$.
(e) Define $Y(z)=z^{-2} X(1 / z)$. Sketch the signal $y(n)$.
4. Find the Z-transform $X(z)$ of the signal

$$
x(n)=3\left(\frac{1}{2}\right)^{n} u(n) .
$$

Also find and sketch the region of convergence of $X(z)$.
5. Two LTI systems are connected in series

$$
x(n) \longrightarrow H_{1}(z) \longrightarrow H_{2}(z) \longrightarrow y(n)
$$

with transfer functions

$$
\begin{aligned}
& H_{1}(z)=1+3 z^{-1}+4 z^{-2} \\
& H_{2}(z)=2-z^{-1}+z^{-2}
\end{aligned}
$$

(a) Find the impulse response $h(n)$ of the total system.
(b) Find output signal $y(n)$ produced by input signal $x(n)$.
$x(n)$

