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Abstract—As an efficient distribution mechanism, Peer-to-Peer ~ To address the asynchronous user playback issue, the
(P2P) technology has become a tremendously attractive solution Cache-and-Relayapproach has been proposed. Peers store
to offload_server_s_ln large-scale video streaming appll_catlons. downloaded video in memory or hard disk, and relay the
However, in providing on-demand asynchronous streaming ser- . . .
vices, P2P streaming design faces two major challenges: how tocaChed_ video to cher peers in future, leading to asynchronous
schedule efficient video sharing between peers with asynchronousP2P video sharing. Early Cache-and-Relay based systems
playback progresses? how to provide incentives for peers to assume a small amount of video cache on peers and exploit

contribute their resources to achieve a high level of system-wide asynchronous sharing between peers with close playback pro-
Quality-of-Experience (QOE)? In this paper, we present iPASS, a gresses. Through batching, peers are organized into groups
e

novel mesh-based P2P VoD system, to address these challenges. ding to their plavback fi dat like t | .
Specifically, iPASS adopts a dynamic buffering-progress-based 2¢¢0rding fo their playback ime and a tree-like topology 1S

peering strategy to achieve high peer bandwidth utilization with formed for peers in the same group to exchange video [4],
low system maintenance cost. To provide incentives for peer [5]. Unfortunately, small video caching results in low P2P

uploading, iPASS employs a differentiated pre-fetching design sharing efficiency. The structured P2P topology incurs high
that enables peers with higher contribution pre-fetch content management overhead and is vulnerable to dynamic peer

at higher speed. A distributed adaptive taxation algorithm is - .
developed to balance the system-wide QOE and service differen- &rrivals and departures. Recent advances in computer hardware

tiations among heterogeneous peers. To assess the performancéechnology make low-priced computers increasingly equipped
of iPASS, we built a detailed packet-level P2P VoD simulator with abundant memory and storage. New P2P VoD systems

and conducted extensive simulations. It was demonstrated that fully exploit the largely improved peer video caching capa-
iPASS can completely offload server when the average peerb”ity for higher P2P sharing efficiency. In [6], [7], peers are

upload bandwidth is more than 1.2 times the streaming rate. . . . . " .
Furthermore, we showed that the distributed incentive algorithm  €ffectively tumed into distributed “video seeds” by caching a

motivates peers to contribute and collaboratively achieve a high large volume of video clips on their hard disks. Longer video
level of system wide QoE. caching also makes it possible for P2P VoD systems to adopt

Index Terms—peer-to-peer, video streaming, on-demand, in- mesh-based topology. Mesh-topology is rpbust to peer .churn
centive and easy to manage. It has demonstrated its successes in many
large scale file sharing [2] and live streaming systems [3].
Inspired by the success of mesh structure, several mesh-based
I. INTRODUCTION P2P VoD systems have been proposed [8], [9], [10]. In those
systems, peers form one or multiple meshes randomly and
Video-on-Demand (VMoD) services enable users to watexchange data with neighbors. Unlike in file sharing, data
their favorite videos at any time. YouTube, an extremelsharing in VoD systems is commonly uni-directional between
popular VoD application on the Internet, serve¥® million peers. Data flows from a peer to its neighbors with smaller
distinct videos daily [1]. Traditional VoD solutions employplayback progresses. We will show that random peering leads
video servers and content distribution networks (CDNs) to poor peer resource utilization under this data flow direc-
stream video to viewers. The infrastructure cost grows lineatipnality. How to design P2P VoD systems with high peer
with the user population and the video quality. It will becombandwidth utilization and low maintenance cost remains to
very expensive for YouTube to stream higher resolution videbg a challenging research problem.
with TV or even high-definition quality. On the other hand, Meanwhile, providing incentives for peers to contribute
P2P technology utilizes available resources of peers and efféheir resources is another essential design component for
tively offloads servers in large scale content distribution, suét2P systems. In file sharing systems, peers are motivated to
as file sharing [2] and live video streaming [3]. Recently, P2#pload content to other peers in order to achieve a higher
technology has also been adopted to provide VoD services.download rate from the system. By employing titefor-tat
providing VoD services, P2P streaming design faces two majoolicy, BitTorrent punishes free-riders who do not contribute
challenges: how to schedule efficient video sharing betwekandwidth to the system. In live streaming systems, peers are
peers with asynchronous playback progresses? how to prouidetivated to contribute more in order to get better playback
incentives for peers to contribute their resources to achieveyaality. It was proposed in [11], [12] that, with scalable
high level of system-wide Quality-of-Experience (QOE)? video coding, peers uploading more will be rewarded with



higher video quality. Due to the asynchronous peer playbaec#rious schemes to support VCR interactions have been pro-
progress and the data flow directionality, tit-for-tat type gbosed [15], [16]. The design of VoD systems keeps evolving.
direct reciprocity incentive mechanism is not applicable to PZRarly P2P VoD systems adopt structured streaming topologies
VoD systems. In addition, to maintain the playback continuitgnd require delicate system management. P2Cast [5] groups
each peer needs to download video data before their playb@elers according to their arrival time. Peers in the same
deadlines. It is critical to design incentive mechanism for PZRoup are organized into a multicast tree. Peers retrieve video
VoD systems to balance the system-wide QOE and servioentent through a combination of streaming along the tree and
differentiations among heterogeneous peers. patching from peers who arrived earlier. dPAM [4] employs
In this paper, we present IPASS, a novel mesh-basdi$tributed pre-fetching to improve system performance. oS-
P2P VoD system, to simultaneously address the previoustgam [17] constructs media distribution trees at the application
described efficiency and incentive issues. IPASS adoptslager to realize asynchronous media delivery.
dynamic Buffering-Progress-Based (BPB) peering strategy to
achieve high peer bandwidth utilization with low system main- .
o . o Recent advances in computer hardware technology largely
tenance cost. To provide incentives for peer uploading, iPASS o . .
improve peers’ video caching capability and broaden the

employs a differentiated pre-fetching design that enables peers. . . .
with higher contributions to pre-fetch content at higher spee(JlgeSIgn spaces of VoD systems. Inspired by P2P file sharing

S ; .
A distributed adaptive taxation algorithm is developed to baf[)‘-nd live streaming systemsesh-basedlata swarming has

: . . L een adopted by new P2P VoD systems. BiTos [10] cus-
ance the system-wide QoE and service differentiations amaon

- . hized the Bittorrent protocol for on-demand video stream-
heterogeneous peers. The contributions of this paper can. be - . : : :
; ) ing. PONDER [9] divides video into multiple sub-clips and
summarized as follows:

) ) forms multiple meshes, one for each sub-clip. Peer selection

1) We analytically study the impact of asynchronous pegfhq measurement based admission control was proposed to
playback progresses on the efficiency of mesh-based FgBnage swarms. BASS [18] combines streaming from the
sharing, and propose a distributed BPB peering stratég@irer with Bittorrent-assisted downloading. The impact of
Through analysis and simulation, we show that the BPEgment scheduling, overlay management and network coding
peering can enable mesh-based P2P VoD systemsgipihe performance of swarming-based VoD systems has been
achieve high peer bandwidth utilization, low maintegiscyssed in [8]. In the above mesh-based P2P VoD systems
nance cost a_qd high peer churn robustr_less. Moreov&g], [9], [10], [18]), each peer randomly connects others to
BPB also facilitates the support of VCR interactions. form one or multiple overlay meshes, which are scalable and

2) To the best of our knowledge, we are the first to us@pyst to peer churn. However, the peering strategy commonly
differentiated pre-fetching as an incentive mechanisghes not take into account neighbors’ buffering or playback
to motivate capable peers to contribute in P2P VoByqogresses, and this status-oblivious peering leads to inefficient
systems. We demonstrate that pre-fetchings on pegissr handwidth usage. In contrast, the buffering progress based
can be coordinated by an adaptive taxation algorithBkering strategy of iPASS can substantially enhance the system
to simultaneously maintain system-wide QOE and proagoyrce utilization. Meanwhile, the structured mesh formed

vide service differentiations among peers with dif'ferergy the peers is amenable to provide VCR functions.
contributions.

3) To assess the performance of iPASS, we analytically .
investigate iPASS’s system resource utilization and the On the other hand, more and more attentions have been

equi“brium state using a fluid mode”ng approach. V\/@ttraCtEd to the deSign of incentive mechanisms in P2P Sys-
built a detailed packet-level P2P VoD simulator and corlems to discourage free-riders. Various schemes have been
ducted extensive simulations. Compared with previo@§oposed for file sharing and live streaming systems. Models
P2P streaming simulators, our simulator can exami@ée developed to study the phenomenon of free-riding in P2P
the packet-level details. In addition, it can prolong theystems [19], [20]. Atit-for-tat type of substream trading
simulation duration to hours in order to study long-terrlgorithm was developed in [12] to provide incentive in live

system behaviors under a rich set of simulated scenari§§€aming systems with layered video coding. A taxation

The remaining of this paper is organized as follows. W%cheme [21] was proposed to improve the overall social

briefly discuss the related work in Section Il. The main desidrﬁelfare through subsidizing resource-poor peers by exploiting

components are outlined in Section Ill. The detailed Systerﬁsource-rich peers, W.hiCh has be_en gpplied in [11] to en-
%furage peers to contribute to obtain higher playback quality.

implementation is presented in Section IV. The system prop . X .

ties and analysis are described in Section V. The performa QWever, previous '”C_er.‘“"e_ SChef"es. are generally based on

evaluation with numerical simulation results is presented rect_ reciprocity, pr(_)V|d|ng incentive in on-demand systems
Section VI. Finally, the paper is concluded in Section VII. remains a challenging proplem: Due to the gsynchronous
playback progress and the directional data flow, it rarely takes
place in on-demand systems that, between a pair of hosts,
Il. RELATED WORK each host has the content the other host needs. By motivating

P2P sharing can greatly reduce server bandwidth costpeers to contribute for higher pre-fretching speeds, an effective
provide on-demand streaming service [13]. Recently, varioadaptive taxation scheme is proposed in iPASS to address the
P2P on-demand systems have been deployed [6], [14] andentive issue in on-demand system from a new perspective.



I1l. IPASS: DESIGN OVERVIEW T T - —_‘
In this section, we present the two major design compo- S e L e

oo '

nents of iPASSBuffering-Progress-Based (BPB) peeriagd P by P2 by
Adaptive-Taxation-Based (ATB) pre-fetching (@peer] L
A. System Model Fig. 1. Peer buffer status

In peer-assistedVoD systems, servers host publishers’

videos and stream them to peers upon requests. To Sg¥8me peers are obedient to unveil their truthful information

bandwidth consumption of servers, peers viewing the samgeach other (There exist reputation mechanisms [22], [23] to
video form a P2P overlay network and redistribute videqs,sure peers truthfully reporting their information.)

among themselves. Severs are responsible for maintaining
peers’ playback continuity. If a peer cannot download video , i
data from other peers before the playback deadline, it whr Buffering Progress Based Peering
download the missing data from the server directly, which We first investigate the impact of asynchronous peer play-
increases the server bandwidth cost consequently. A Kegck progresses on the efficiency of content sharing among
design issue of peer-assisted VoD systems is to minimize theers. We then present the Buffering-Progress-Based peering
server bandwidth cost by efficiently utilizing peers’ uploadtrategy and study the impact of various peering strategies on
bandwidth. server cost.
Peers start to watch from the beginning of the video after 1) Impact of Asynchronous Playback on P2P Sharingt's
they join the system. Peers are allowed to pre-fetch contestart with a peer-assisted VoD system with homogendus
beyond its playback range, and the pre-fetching speedspafers, each of them with upload bandwidthSuppose each
peers are subject to the regulation of incentive mechanispeer randomly selectg peers as its neighbors. The video
In addition, peers can conduct VCR interactionsrasdom length is L. Peers store the content they have already played.
seek fast-forward and rewind Asynchronous playback leads to asynchronous buffering pro-
There are two unique features in VoD systems: the playbagkesses among peers. Obviously, a peer can only serve peers
progresses on peers assynchronouspeers can download with buffering progress behind it. In addition, a peer divides
content beyond its current playback range. To cope wiits upload bandwidth equally to all its receivers.
bandwidth variations and peer churn, a peer normally buffersProposition 1: With random peering and equal bandwidth
a certain amount of video beyond its playback progress. $bharing, the expected download rate of a peer from other peers
describe the status of a peer, we introduce the followirdyops as the peer buffering progress increases.
notations for peef in the system: Proof: Let the random variableX denote the buffering
. Playback progresw;: the current playback position of progress of a selected peer, afyddenotes the density function
peeri, indexed by the sequence number of the vide® its distribution. Each peer seledtseighbors randomly and

chunk being played. independently, and only the neighbors with larger buffering
« Buffering progress;: the sequence number of the firsprogress can be the suppliers. Given a peer with buffering
missing chunk beyond current playback positign progressz, the expected number of neighbors with smaller

. Buffering levelr;: the number of continuous bufferedbuffering progress is:P(X < z). Let d, represent the ex-
chunks beyond the current playback progress point. Bgcted distribution rate from this peer with buffering progress

definition, 7; = b; — p;. x to each of its receivers. With equal bandwidth sharing, the
« Playback buffering threshold,;: the number of buffered distribution rate can be approximated by

chunks necessary for smoothing playback. We call the u

sliding window(p;, p; +w,.4] peer:’'s continuous playback dy = m @)

range.

For peer with buffering progress we can obtain the expected

« Contribution levele;: th ber of chunks that pe¢ . .
ontribution 'evelc; the nUmber of chunks that peer aggregate download rate, from its k neighbors

has uploaded to other peers since it joins the system.
Fig. 1 illustrates two different peer buffer statuses. On Peer L
1, buffering level 7, is lower than the playback buffering E[D,] k/o dy fol (x> y)dz
thresholdw,4. It is downloading the missing chunks in the L
k / dy fodx
Yy

&)

continuous playback range. We say that peirin thenormal
playback modeOn peer2, buffering levelr; is higher than
the playback buffering threshold, ;. Peer2 is downloading From the above equation, we can deduce that the expected
chunks outside of the playback range. We say that pesr download rateD, decreases as the buffering progregs

in the pre-fetch mode increases. |
Peers are assumed to have enough storage to cache wh8pecifically, whenX has uniform distribution, we can get
they ever watched. Due to copyright issues, the content in théD,] = wu(InL — Iny), which shows that the expected

cache of a peer will be eliminated once the peer leaves thessible download rate drops logarithmically as the buffering
system, and the peer cannot serve as a seed anymore. We @isgress increases. For peers with larger buffering progress,



70 peerj. The aggregate download rate from all its neighbors

eol 222?;8; is Zj@lb(i) uj;, and then the complementary streaming rate
uj;). The goal

——Random needed from the server isax(0,7 —>_.c,.;
is to find the optimal peer bandwidth allocation to minimize
the aggregate server cost, then we have

Server Cost

min} (r— > w) ©)
twikiev jénpty)
subject to

A\llgrage Peerilni) Degree Z (2% < 1eV (4)

jenb(i)
Fig. 2. Normalized Server Cost with= 1.2 wij < Liju, 4,j€EV (5)
Z Ui < i e V. (6)

due to the random neighbor selection, they will find fewer jenb(i)

suppliers in their random neighbor set, from which they cdn the above formulation/;; denotes the buffering progress
download video. In addition, a supplier with larger progreg®lationship between peérand j, I;; = 1 whenp; > p;,
will be able to serve more download requests. Due to tlatherwise equal to 0. Eq. (4) states the bandwidth constraint
equal bandwidth sharing, it will upload to each of its receivefer each peer respectively. And Eqg. (5) shows the content
at a lower rate. These two factors conspire and lead to l@enstraint among peers. Eq. (6) presents the download speed
download rates for peers with large buffering progress. Thisnstraint without pre-fetching.
shows that random peering and equal bandwidth sharing lead’he above optimal bandwidth allocation formulation can
to low P2P bandwidth sharing efficiency. be applied to general topology. We now use it to compare the

2) Buffering-Progress-Based Peeringhe bandwidth shar- server bandwidth saving of random peering and BPB peering.
ing efficiency in P2P systems is mainly determined by twéowards this goal, we generate an instance of a peer-assisted
factors: how peers are connected and how a peer allocati&gleo-on-demand system using a discrete time simulation.
its upload bandwidth to all its neighbors. In the previouBuring the simulated session with duratih= 100, peers
section, we have demonstrated that random peering and equélve at the system according to a Poisson process with
bandwidth sharing is not efficient for asynchronous P2P Volate A = 2. We assume all peers’ download bandwidth is
systems. Peers with larger buffering progresses have |gssater than-. There are two types of peers with upload
opportunity to download from the P2P network. Intuitivelypandwidthl.5r and0.5r respectively. The normalized average
this suggests some heuristic peering politty:increase the peer upload bandwidth is = a/r = 1.2.
download rate of peers with large progress, the upload band- With random peering, upon its arrival, a peer randomly picks
width of peers close to the end of the streaming session shokilgbeers already in the system as its neighbors. With BPB
not be invested to peers who just joined the sessidore peering, peers are firstly ordered in the increasing order of
generally, we propose the Buffering Progress Badg@dB) their arrival times. A peer who arrived at the system with
peering to let peers connect to peers with close bufferiignk< will randomly pick & neighbors from peers with arrival
progress. Peers form one structured mesh overlay with BP@1Kks in the range ofi — ¢ = N, 4] given a total of N online
peering strategy. In the mesh topology constructed undgers. By changing, we manipulate the playback progress
BPB, peers with similar buffering progresses are preferentiayoseness of neighbors in the constructed BPB graph. We then
connected. A fraction of neighbors of a peer are suppliers witempare the normalized server cost under BPB and random
larger buffering progress. Another fraction of neighbors afgeering strategies with five snapshots of the system. With each
receivers with buffering progress lagging behind the peer. Astiapshot, we solve the optimal bandwidth allocation problem
remaining neighbors have very close progress and overlappifefined in (3). Figure 2 shows the minimum server cost can be
download interests, they may act as either supplier or receivaghieved with different peering strategies. The results indicate
On top of the BPB mesh, peers adaptively allocate thdhat with limited peering degree, BPB-peering can significantly
upload bandwidth to their neighbors to maximally reduce tifeduce the server cost compared with random peering. Due
complementary streaming requests to servers. Moreover, astagnore efficient system resource distribution and partnership
would present in the following section, the BPB peering cagetup among peers, BPB-peering can achieve higher system
adjust peers’ connection relationship dynamically to accorfgsource utilization. The results obtained here is only the lower
modate their differentiated pre-fetching speeds. Meanwhilegunds on the server bandwidth cost. In Section VI, we will
the structured mesh can be maintained well in the face edmpare the server bandwidth saving of random peering and
peer churn. BPB peering via detailed packet-level simulations.

To study the impact of peering and bandwidth allocation on
server bandwidth, we formulate the following Linear Progranf=- Adaptive Taxation Based Pre-fetching
ming model. There are a skt of peers in a peer-assisted on- Providing incentive in asynchronous VoD system is chal-
demand system. The video streaming rate.ifor peer:, let lenging. The asymmetric data flows between peers with dif-
nb(i) be its neighbor set, and;; be the download rate from ferent playback progresses make direct reciprocity incentive



mechanisms infeasible, such as tit-for-tat of BitTorrent. In olarge buffering level and — oo. How to adaptt with the
design, we use pre-fetching as an incentive to motivate pesystem resource availability is crucial in the adaptive taxation
to contribute more to obtain higher download rate from thecheme. The aggregate tax reverjue; would be balanced
system. To maintain the playback continuity in the face of pewiith the budget expenditurg’ ¢;/T;. And the taxation ratia
churn and network dynamics in P2P streaming systems, peemuild be determined by the system-wide resource availability.
normally buffer certain amount of data ahead of the playbadkith the summation on both sides of Eq. (7), we obtain
progress. Furthermore, in P2P VoD systems, peers with high

download rate carpre-fetch content beyond their playback t= Zci/ ZT’ (®)
points and potentially becom&eeds namely, nodes with the pye to peer dynamics and resource imbalance, it could be
whole content, long before their playbacks finish. From thgfeasible to collect all the information and tackle the issue in

system point of view, more seeds in the system, more efficieptentralized manner. A distribution protocol with the adaptive

simulations in Section VI with large enough peer bandwidth

resources and high sqheduling eﬁ_iciency, the seeds that evolved IV. IPASS: S'STEM DESIGN
from regular peers with pre-fetching may completely take the . ] } ) .
place of the servers and results in zero server c&som In this section we present the detailed design of iPASS
individual peers’ point of view, with pre-fetched content in th&yStem-

buffer, they can enjoy smooth non-linear viewing operations,

such as fast-forwarding and jumping. Moreover, peers can Architecture

finish the download process of the whole content before theySimiIar to most deployed large scale P2P streaming systems,

finish the playback, and they have options to leave the systam gg employs aracker to keep track of peer arrivals and

to proceed other Internet applications without interferenCgenartyres. The tracker maintains a list of active peers in the

Hence, pre-fetching can be leveraged to motivate peers {sem when a new peer joins in, it first contacts the tracker
contribute and facilitate the system distribution process.

for an initial peer list. Then the new peer makes connections

To coordinate the asynchronous demands of peers gfh peers on the returned list and starts to exchange signaling
maintain system-wide quality, we proposédaptive Taxation jnformation and video data with them. Through signaling,

scheme to regulate the pre-fetching on heterogeneous pefgirs exchange with their neighbors information about their
The bandwidth of a peer can be treated aswemlth And | tering progresses, contribution levels and neighbor lists.
the video pre-fetching can be regarded as a peecsme  jpass adopts the state-of-art pull based data exchange
Resource_—rl_ch peers contribute more bandwidth to the systefbchanism. A peer pulls video chunks from its neighbors by
and subsidize for the resource-poor peers. The tax regulaledjing download requests. Furthermore, to avoid contention
redistribution of peer wealth helps improve the social Welye 1 uncoordinated requests to the same peer, we introduce
fare and then reduce server cost. The tax ratio is fixed iy okensfor peers. Each peer periodically sends out pull
the original taxation scheme [21] and applied for providing,ens to its neighbors to give them permissions to pull chunks
incentive in live streaming system. To balance the budgglym jt. The total number of tokens that one peer sends out
the demograntrate (i.e., one peer who does not contribulls jetermined by the number of chunks that it can serve in
anything, _stlll receives the demogrant rate) is adaptive. Ont88-h round. The number of tokens that a peer sends to a
contrary, in peer-assisted systems, although peers may hg¥gicylar neighbor is determined by the contribution level of
different download rates, the base playback rates for all pegs nejghbor, and is calculated by a distributed implementation
are guaranteed. Therefore, in our adaptive taxation method, fiene ATB pre-fetching algorithm.

demogrant rate is fixed to be equal to the playback rate andy ¢ to asynchronous pre-fetching, a peer may become out-
the tax ratio would be adaptive. (In peer-assisted systems, H?fsync with its neighbors. Moreover, idle seeds and peers
pure free-riders should also be discouraged. In practice, 'iﬁ%king enough number of suppliers may turn to find com-
system can enforce peers to contribute with at least Cert%ifémentary neighbors. If so, to maintain the BPB peering, it
upload rates.) needs to update its neighbors. A peer will find new neighbors

Suppose we pose a taxation ration peers. All peers havep,y querying the tracker or searching through its neighbors’
download rates no less than the base playbackrafehen paighbor lists.

peer: with contribution levele; and lifetimeT;, could get the
average download ratg to accumulate the expected bufferingB _ .
level . BPB Peering Implementation

7= (ri — )T} = G (7) The BPB peering makes the structured mesh scalable,

t robust, and also facilitates the support of VCR interactions.

In a resource rich system, peers accumulate different amouni) New Peer JoinThe key to BPB peering is to find peers
of buffering levels proportional to their contributions. In awith close buffering progresses. To facilitate BPB peering, the
resource deficit system with small peer average bandwidthcker sorts the list of active peers according to their arrival
u < r, the bandwidth supplies are not enough to sustain théimes. When a new peer joins in, the tracker records its arrival
normal playback demands and they need help from the sentgne and appends it to the end of the peer list. Then the tracker
In this case, it could be difficult for any peer to accumulateill return the new peer with an initial peer list consisting of



a number of random peers at the end of the list. Those peers
will be the suppliers for the new peer.
2) Dynamic BPB PeeringWhen there is no pre-fetching,

buffering on peers advances roughly at the same pace, namely

the playback rate. Peers who arrive close in time will remain
close in buffering progress. During the session, when a peer
needs to connect to new neighbors, either due to neighbor
departures or unsatisfactory peering connections, it can contact
the tracker for additional peers. The tracker can quickly search
through the sorted list to find peers with close buffering
progresses for the requesting peer. In addition, due to BPB
peering, a peer’s neighbors’ neighbors should also have close
buffering progresses with the peer. Without going to the
tracker, a peer can find new “close” neighbors in the neighbor
lists returned by its neighbors.

With pre-fetching, bufferings on peers advance at different
rates. A peer joins the system later can possibly download
video faster than its neighbors who arrived earlier and gain
larger buffering progress. Once this happens, the download
rate of the peer will be slowed down due to the lack of enough
suppliers. The peer should then trigghmamic BPB peering e
to find more suppliers satisfying the BPB peering criterion.
Fig. 3 shows a simple example of dynamic BPB peering.
Towards the goal of downloading the whole video, noge
runs on the “express track” with higher download speed, while
its neighbors runs on the “local track” with lower download
speed. As time evolves, it catches up with the buffering
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Fig. 3. Dynamic BPB peering

progress of its neighbors. To maintain its download rate, it
then connects with peer; with larger buffering progress and
disconnects from peet; with the smallest buffering progress.

To facilitate this dynamic BPB peering, a distributed so-

lution can be implemented as follows. Peers constantly ex-
change their buffering progresses with their neighbors. Due to
dynamic BPB buffering, there is a good chance that a peer,
even doing fast pre-fetching, can find peers ahead of it by
searching through the neighbor lists returned by its neighbors.

Then instead of requesting from the tracker, peers can request

complementary peer lists from neighbors and choose appro-
priate peers with close buffering progresses to connect with.
An alternative centralized solution is also possible, given a
tracker with powerful process capability. The tracker needs to
keep track of peers’ buffering progresses and help peers to
find new neighbors with close buffering progresses. This will

incur a large volume of signaling and processing overhead on
the tracker and peers.

fulfilled by playing one out ofv content segments, as-
suming that the fast-forward or rewind speed.isdence,
peers in fast-forward mode stop pre-fetching sequentially
and download one every segments. As peers may have
large download rate to pre-fetch content beyond its cur-
rent playback range, peers can fast-forward without extra
operations if the video content to be played has already
been pre-fetched. On the other hand, peers have to locate
new suppliers of the expected content in time when the
content is beyond the current buffering progress and has
not been downloaded yet. Unquestionably, peers can still
effectively search suppliers with larger buffering progress
along the structured mesh under dynamic BPB peering,
as illustrated in Fig. 3. As for the rewind function, peers
can certainly go back to playback what they have already
watched previously since the video content would be
stored in the cache. And peers can also conduct the BPB
peering in reverse direction to locate suppliers for missing
part, which has not been stored in cache due to previous
random seeks or fast-forward interactions.

Pause and Resum®@re-fetching actually decouples the
playback and download processes. In pause status, peers
can simply stop playback but keep downloading the
content, since the video content would be stored in the
cache. And the playback can be continued after the
resume command is requested.

Random SeelPeers can freely jump to any position of the
video to begin playback via the random seek interaction,
which calls for an indexing functionality of the system
so that a peer can efficiently locate suppliers far away in
time. As we discussed previously, a centralized solution
is possible with a powerful tracker, which keeps track
of peers’ buffering progress and returns information of
corresponding peers. In practice, we can set up multiple
landmarks of playback progress positions with equal
distance. When the buffering progress of a peer advances
and passes such a landmark, the peer would report to
the tracker with certain probability. The system can
adjust the probability to control the overhead of the cross-
landmark signaling. In this way, the tracker can maintain
and always update such a list of peers who just pass
certain landmark playback positions. Whenever a peer
conducts a random seek operation and the position it
wants to jump to is too far away that the suppliers cannot
be located quickly just by searching neighbors’ peer list
along the mesh, it would inquiry the tracker about peers in
the list with associated landmark nearest to the position.
And then it would search suppliers along the structured
mesh via the returned peer as a portal. Finally, it would
establish new connections with peers with close buffering
progress corresponding to the specified position and tear
down old connections.

The video content stored in a peer's cache might be dis-

3) VCR Interaction Suppartin on-demand systems, usergontinuous due to fast-forward and random seek interactions.
can freely trigger VCR operations. Next, we will show howjowever, it could hardly cause data availability problem

to support VCR operations with BPB peering strategy.

in iIPASS because peers exchange data only with neighbors

« Fast-forward and RewindThese two functions could bewith close buffering progresses. On the other hand, content



segments may have also been pre-fetched ahead of peerste. Peers generate buffer-maps only for chunks in their
current buffering progress due to non-sequential playback wititerested areas. Furthermore, peers could only send the buffer
VCR interactions. After the missing part in between beingaps to neighbors who have overlapping interested areas in
downloaded, a peer adjust its buffering progress and bufferder to reduce the signalling overhead. In addition, peer
ing level to prevent duplicate download and incorrect tokesends to its neighbors the information on its buffering progress
distribution in incentive mechanism, which is based on thg, buffering levelr;, and contribution levet;.

buffering and contribution of peers. Fig. 4 illustrates how peer

, D. Chunk Scheduling between Neighbors

------- Chunk scheduling determines the data flows among neigh-
: - . bors. iIPASS employs pull-based scheduling design. We let
L b bi (ri=0) (i) denote the set of receivers of peerAfter obtaining
buffer-maps from its neighbors, a peer sends out pull requests
to download missing chunks from its neighbors who have

1 adjusts these progress indicators at the moment of the fin@ﬁm' Due 1o distributed sc_heldulmg,.peErmay receive
of the missing part download. The peer changes bufferirEumple requests from peers in its receiver géi). Some of
L

Fig. 4. Adjustment of progress indicators

progressh; accordingly and locates appropriate suppliers vi e requests will be delayed or even disposed if pesmnot

dynamic BPB peering. Meanwhile, the playback progress tu:zlll alltof therlntm t|n|1|e. To a\émg contentlon,swe !Ptrolfluce
is replaced with avirtual playback progresindicatorp;. And OKens 1o reguiate pull TeqUESLs Trom peers. Specitically, peer

the buffering levelr; is reset to zero by letting’ equal to ‘ peri.od!cally . .to peers in gf) to give them
b at that moment. Furthermore. the contributié)n levelis permission to pull data from it. The number of tokens that peer
allso set to zero. By such settir;gs we can prevent the dziss_ends is determined by how many chunks it can serve within
turbance of the neighbors’ pull token distribution determine%aCh_ r_ound. In the _strgtegy without prg-fgtchmg, the tokens of
eri is randomly distributed to peers if(i). In the pre-fetch

by incentive mechanism. Then the peer would act as a né de. the token distributi hould b ducted t ntai
peer in the incentive mechanism. Similarly, whenever peer&O ©, IS IoKeM CISIMbUToN SHould he CoNcLILIed 1o Malntain

return to normal playback after any VCR interactions, th ormal playback on all peers and enable differentiated pre-

contribution levels should be reset to zero. And if the content %[Ichl_ng based on pe_ers’ co_ntnbutlon: The ATB pre-fetc_hmg

the new playback progress has been downloaded, the virtth or.|thm dgscrlbed n Sect.|on l-C is an ideal centralized

playback indicator would be exploited and set to the sa utlon_, which cannot be |mple_:me_nted in a Iarg_e _syst_em.

as the buffering progress. Especially, when users pause rnatively, we developed a distributed token distribution
. o ' . %Igorithm to realize ATB pre-fetching.

playback, a virtual playback indicator would keep moving an

the download process would not be interrupted.

Algorithm 1: ATB Token Distribution on Peer
input : 7k, cx, Vk € (7)
output: P(k): fraction of tokens to peek

C. Signaling between Neighbors

In iPASS, peers would frequently collect information from , ., ... ¢
their neighbors and exchange data qvallablllty udindfer- ot Zkew(i) Ck/Zkew(i) .
maps A buffer-map of a peer consists of a sequence of 3 for k € ¢(i) do
binary bits, each of which indicates the availability of one 4
specific chunk on that peer. In live P2P streaming systems,
due to the synchronous peer playback, at any_tlme instant, sum — sum + ey
the chunks that peers need to download fall into a small 7 end
moving window covering several minutes wor_th of wcjeo. The g for k € (i) do P(k) — ey,/sum
buffer-map length can be kept short. In P2P file sharing, peers
randomly download different portions of files. Buffer-maps
have to indicate the data availability for the whole file. Similar The ATB token distribution algorithm is presented in Al-
to file sharing, peers in VoD systems are asynchronous.ghrithm 1. Instead of assessing a universal tax ratio based on
is challenging to design VoD buffer-map to simultaneouslglobal information, peers deduce it locally based on informa-
achieve high utilization and low system overhead. tion exchange with their neighbors. The tax ratioalculated

To address this issue, we define theerested are@f a peer by peer: is the ratio between the aggregate buffering levels
as the range of chunks that the peer is currently downloadirand the aggregate contribution levels of pgeneighbors. The
In the normal playback mode, peeneeds to retrieve chunkstarget buffering levef; of a neighbork is its contribution level
in their current playback rande;, p; + w.q]. Once all chunks ¢, divided byt. Then peer. determines thexpected tokens
in the playback range have been retrieved, it enters into theto peerk as7, — . ATB scheduling gives neighbors in the
pre-fetch mode and starts to download chunks falling into iteormal playback mode priority in access tokens. If a neighbor
pre-fetching window. Therefore, the interested area of a peetkis buffer progressr;, falls behind the playback buffering
either its current playback range, if it is in the normal playbadkresholdw,.,, peer: will give at leastw,.; — 71, tokens to peer
mode, or the pre-fetching window, if it is in the pre-fetchk so that it can download chunks in the playback range. After

if 7x <w,.qthen ep — max(wpq,cp/t) — 7 + 1
else ey «— max(cg/t — 1, 1)




(Tjé if ® almost surely bounded and determined by the distribution of
=Ty 2 the leading peers.
oo {znj S S With BPB peering, peers can dynamically search the nearby
‘ B preceding peers for appropriate suppliers. Given a reasonably
P):05 P3):02 ? large neighbor set size and rich system resources, peers can
©) a:? (TZ 2 (T; 41 % always find suppliers suﬁicient_for their basic real-time play-
2 back demand except the leading peers. The peer bandwidth

can be fully utilized by pre-fetching. The data flow backwards

Fig. 5. lllustration of token distribution from the peers with larger buffering progress. Therefore, the
aggregate bandwidth requirement of leading peers accounts
for the server cost during the initial startup phase. And the

calculatingey, for all its neighbors, the peer can determine thdistribution of the leading peers determines the amount of

fraction of tokens for each neighbor in this round and themggregate demand from the server.

assign tokens according to the distribution. Fig. 5 illustrates anWe try to find an upper bound for the server cost in the

example of ATB token distribution, where,, is set tol. Peer following asymptotic way. We define aupply saferegion

n has five neighbors and only;, n, andns are its receivers. formed by the leadind” number of peers. The probability

First, the tax ratio is calculated to le= 2. Then, based on Pr = P{the average bandwidth of the firBtpeers is larger

the buffering level and contribution level, the expected numbthan streaming rate}. If the average upload bandwidth of the

of tokense,, is calculated for each peer. Finally, the fractionpeers in supply safe region is larger than the streaming rate,

of tokens sent tov;, no, andns are decided a8.5, 0.25 and the server cost would be only incurred by the peers in the

0.25, respectively. supply safe region, which would be less tHan the aggregate

After a peer receives pull tokens from all its neighbors, handwidth necessary for directly streaming to them.

will decide which chunk is to be pulled from which neighbor. Suppose the numbers of leading peers with typand b

Various chunk requesting algorithms in live streaming can the region aren andn, respectively, andn +n =I'. We

be applied. In a simplified manner, one can request missiagsumenu, + nu, > I'r, which yields

chunks randomly from the neighbors which hold the chunk 1-3

and also send the token. Tokens from a neighbor will be m > Q_BR

disposed if the peer does not send pull request to that neighbor

in this round. This is to avoid disturbances to the efficieneg ereu, = ar andw, = fr. The arrivals of two type of
of scheduling in future rounds. eers are assumed to be independent Poisson processes. Then

we obtain
T _
V. PERFORMANCEANALYSIS P = Z < o > (pa)m(pb)r‘ m
In this section, we analyze the performance of iPASS m>i=41
system. First we try to derive the upper bound of server cost (1281
a—f3

in iPASS system and then attempt to characterize the system e \Im
behavior at steady state with a fluid modeling based approach. = 1- Z m (Pa)™ (b)
To make the analysis tractable, we assume there are only m=0

two types of peers in the following analysis. The two types ~ 1_C Li;féFJ —T'pa ©)
of peers have upload bandwidify andw, respectivelyu, = - VIDalb ’

ar,u, = Br. And the node distributions of them apg and
pp- The average peer bandwidthis= > u;p;. The streaming
rate isr and the playback duration of the video file on th
channel isL. Without loss of generality, we assune> r,
given the fact that the streaming rate of current IPTV syste
is commonly less than the average peer bandwidth.

Given aTI which lets Pr > 1 — € with ¢ — 0, we can
glmost be sure that the average bandwidth of leadlippers
would be larger than the streaming rate. ket 0.05, with

% confidence interval, the maximum server cost is bounded

y I'r. Assumep, = p, = 0.5 anda = 1.4,8 = 0.8, the
average peer bandwidth is sightly larger than the steaming
] - rate @ = 1.1r), the value ofl’ needs only to be larger than
A. Server Bandwidth Cost at Initial Startup Phase 30. The cost is small considering thousands of peers would

During the initial startup phase, there is no seed in thein in typical IPTV systems.
system. The server has to provide content to the leading peerdn a resource rich system, the estimated bound for the
who arrive at the system earliest, for their real-time playbadystem initialization phase may also be applicable to other
demand. The server is the only source which can provide tegstem phases. Furthermore, peers that finish downloading
content to the leading peers. As for the peers with smalldre whole video content and still stay at the system, would
playback progress, they can pull content from the precedibgcome seeds to contribute. With the help from seeds, the
peers. We are interested in how much server bandwidthsigstem would become self-sustained without any need for
needed in iPASS system given certain peer distributions. server bandwidth. As to be presented in the simulation section,

Property 1: At the system initial startup phase, the servethe server cost in the simulations is almost bounded at the
bandwidth is required to boost up the system. The costifstial phase and then drops to nearly zero as seeds appear.



B. System Equilibrium State Suppose the peer arrival rate is According to the Little's

To characterize the system behavior in steady state, (bW, the expected number of peers in current systel is
and Srikant [24] proposed a fluid modeling approach for filtL- For typei peer, we have
sharing applications. Taking into account the heterogenous Wil + | Wi| = Np;
peer types, our approach investigates the system from the f w Pi-

perspective of the resource balance. Since peers of type can finish downloading in expected

To make the analysis tractable, we assume peers Wil and peers have steady download speed when the system
neither leave until the whole file is successfully downloaded staple, the set of¥i and W} peers can be regarded
nor conduct VCR interactions. Peers have option to leayg the arrival peers in the time intervl, 7¢] and [T%, L),

immediately once they finish the downloading. And there agggpectively. The expected degree of the sets should follow
altruistic peers who would stay at the system to contribute

until they finish the playback. We define tiselfish ratio p° Wil LT
to denote the probability of peers choosing to leave as soon Wil — T

as they finish download the whole video. i ]
Suppose when the system enters the stable state, the [d&0Ce, we obtain the expected number of seeds of tyipe

(12)

pected numbers of seeds afé, and W, for type a andb, the system

respectively. For the peers with typ&s= {a, b}, the expected EW)] = (1-p°)|Wi

time needed to download the whole file are assumed t6%e ! ! ;

andT?. Let §;(x) denote the net contribution of a typepeer = (1- pO)L — Tlei. (13)

to the system, who stays at the system for duratiorThe

net contribution is determined by the contribution minus the \We validate the above results from the perspective of seed

consumption due to video download, which yields evolution and resource requirement. First, when the system
8;(2) = w;z — L. is stable, the rate of turning into seed and seed departure

should be equal. For typenode, there arélV| number of

Let 6° and 0" represent the expected net contribution gieers possibly turning to seeds and the expect time for this

a selfish and unselfish peer, respectively. Then, we hay@cess isI. Then the rate for peers to become seeds can

0° =3 ey pidi(T") and@® =3, pid;(L). To balance the pe approximated byW:|/T". Similarly, the seed departure

system resource, the net contribution of peers should followate can be denoted By /(L — T*). Taking into account the

poes + (1 _ po)eu =0 selfish ratio,oo, we obtain
. . o Wi W;
which yields -y oy W (14)
o= L = ey wipi L (10) eV eV
2iey wipi(T" — L) The above equation holds true provided the calculated set

In light of the taxation incentive mechanism, the amount afegree and seed number based on Equation (12)(13). Second,
buffered future content corresponds to the peer’s contributitie system should own enough resource to facilitate peers
so far. For a peer who accomplished the file download witiccomplish file downloading in the specified time. For type
time 7%, the amount of buffered content j& — 7"%)r and the i node, the expected file download time nedds then the
amount of contribution is:; 7. For the two types of peersaverage download rate would bé& /7. Therefore, we should
with homogenous taxation ratio among the system, we haveave

_ p° rL __ .
L-T% ¢ Nu— Y ——Wu; =Y —|Wi|. (15)
L—Tb  uTb° (11) eV L=p iev T
With Equation(10)(11), we can deduce the expected peer fiffie left item denotes the summation of system resource
download timeT* and 7" provided with certainp°. excluding that of the dummy nodes. The right item denotes

Next we discuss the impact pf on the number of seeds inthe current system demand, the product of peer number and
the system. We define thdummy nodeas the mirrors in the download rate. By replacing the number with Equation (13),
system corresponding to those leave the system as soon as ihgyequivalent to Equation (10).
finish the video download. When one peer leaves the systenrhe above analysis provides several insights of the system
before the playback finishes, one corresponding dummy nogehavior:
will be added to the system. These dummy nodes will stay
at the system without contribution until the playback finishes.
Let W} denote the subset of typepeers those accomplished
file downloading while still in playback at some time, which
includes the dummy nodes. And’! denotes the subset of
type i peers, who are still in downloading process. Given that
the number of typé seeds idV;, we have

1) The system has very good scalabilisrom Equation
(10)(11), we can observe that the average download time
T* is not related with either the peer arrival rate or the
aggregate number of online peers.

2) The system resource reduces A% increases From
Equation (10)(13), we can deduce that the download
time 7" increases and the number of se&dsdecreases

E[|W}\] =W;/(1—p°). correspondingly ag® increases.
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. TABLE |
To represent the aggregate seed upload bandwidth, W&kmaLizep PEER AVERAGE BW AND THE CORRESPONDINGFRACTION

define the functionf,(p°) in terms of the selfish ratio OF PEER TYPES

fo(p®) = Z Wi, 0 Fraction of Peers p Fraction of Peers

= (1M,384k,128Kk) (1M,384k,128k)

[ 0.90 | 0.15,0.39,0.46 | 1.40 | 0.34,0.52,0.14

- oL — 1.00 | 0.20,0.40,0.40 | 1.50 | 0.43,0.38,0.19

= Z(l =) Npiu;. (16) 1.12 | 0.23,0.46,0.31 | 1.60 | 0.49,0.36,0.15

i€V 1.20 | 0.25,0.53,0.22 | 1.70 | 0.54,0.32,0.14

1.30 | 0.30,0.50,0.20 | 1.80 | 0.60,0.30,0.10

Based on Equation (10)(11), we can deduce the aggregate
bandwidth of seeds. This suggests thatequilibrium state,

the system can self-sustain itself without server bandwidth .
if the selfish ratio satisfies the constraint? < f;'(I'r). 128kbps based on the measurement study [26]. The video

I'r is the upper bound of the server resource demandc}ﬁf{zr"ammgthratfe is;i.OOkbp? t?]nd etach Ch?nk (;wfs i(B Zi.ze.t th
terms of the Property 1. If the aggregate seed bandwi ¢ vary the fractions of three types of nodes to adjust the
ngrmallzed peer average bandwidth, as shown in Table I. In

is larger than this demand, then no server bandwidth S " . . ) .
necessary. Figure 6 plots the aggregate seed bandwidth ur‘hgr&mglatlon., we use a single V|d'eo witbmins Iength.' One
single simulation round lasts f@mins to get a better view of
the system behavior. We believe that the video length and the
\ [ =L4ru =0.8r simulation duration are already long enough to demonstrate
~7-U,=1.6r u,=0.8r the features of different strategies. The peer arrivals follow
0 UL Bru, =090 a Poisson process with arriving rate = 1/4 per second.
b The average number of online peers maintains arokow
after the startup phase and there are arounsb0 peers
joining the system during the whole session. The default
number of neighbors of each peer i§. The size of the
playback buffering threshold and pre-fetching window are

%ua=2.0r u =1.0r

800

b,
E
=]
c
©
Qo
© 600
o
j=2)
E
(=2}
j=2
<

053 o Oﬂjﬂgtf; both 4 seconds. Peers broadcast buffer-map messages every
' Seffishratio (09) 0.5 second and the token number information is piggybacked
Fig. 6. Aggregate seed bandwidth vs. selfish ratio within the message. The server bandwidth cost consists of two

parts, due to the complementary pull from peers for missing
two different node bandwidth distribution with various selfiskehunks and request scheduled from peers who receive the
ratios, wherep, = p, = 0.5,L = 1000, = 2. We can tokens from server respectively. The number of tokens sent
observe ag° increases, the resource of seeds decrease. T periodic_ally frqm server corresponds ]thps. To make
larger the average peer bandwidth, the more the correspondifg comparison fair, we generate the peer arrivals and upload
seed resource we will obtain. Whert < 0.85, the system bandwidth configuration beforehand and use the same setting
can sustain itself without server bandwidth given= 1.4, to compare different strategies.
up = 0.87 andI’ = 30.
B. Numerical Results
VI. SIMULATION RESULTS . . ]
. . We first show the performance of various strategies on
We use simulations to evaluate the performance of th% . LT Lo .
roposed peering and pre-fetching strateglesbp np and sérver bandwidth saving in tHimear viewingmode. Peers will
Fanp n refF:ar to t?]e BPB? cerin a?1d randgm g—eri‘; stratnpt leave the system before they finish the whole video play-
ANP_Np rb-p 9 ) b 9 Back. The results on differentiated pre-fetching are presented
gies without pre-fetching respectivelypbp inc refers to our

. S : . ext. Then we study the performance with batch peer joins and
IPASS strategy, the combination of the BPB-peering with ATgarly peer departures. At last, we compare the performance of

pre-fetching. A random peering strategy with pre-fetching]F,ASS with other P2P VoD systems
denoted byanp_wp, is also developed to make the comparison 1) Effectiveness on server cost éavin'ghe server band-

comprehensive. width saving is the most important performance metric to
) ) evaluate the different P2P strategies.

A. Simulation Setup eServer cost evolution illustration. We begin by showing the

We developed a packet-level event-driven simulator in C4evolution of server cost during one simulation session. Fig.
to study the performance of iPASS. Our simulator adopts tfi¢a) shows the instant aggregate user demand and the peer
simulator engine of [25] simulating the end-to-end latency ibandwidth when the normalized average peer bandwiiith(
terms of real-world latency measurement results. Two 4-CRiduals to1.3. There are no peers in the system at the
servers are employed to accelerate the simulations. beginning. The first peer finished playback and leave the

We follow the common consumption that peer downloaslystem atl,800 second. The time periofD, 1,800] is the
bandwidth is larger than the streaming rate and peer uplosgtem startup phas€ig. 7(b) presents the instant server cost
bandwidth is the only bottleneck. Three DSL types of nodesder the different strategies. We can observe that the server
are assigned with upload bandwiditMbps, 384kbps and cost of random peering strategies increase almost linearly at
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3x10 : ‘ ‘ ‘ ‘ is 0.9, bpbp_np slightly outperformspbp_inc. We believe this

% ; is because that pre-fetching potentially impairs some peers’
§,2, | normal playback when the whole system is in a bandwidth
£ } resource deficit status. This disadvantage can be conquered in
= 3 | iPASS by giving more preference to neighbors who haven't
g ﬁﬁ;’;‘f 3 — Aggregate demand fill up the playback window during the scheduling.

oZ ‘ L ‘ Aggregate peer bw Although bpbp_np and bpbp_inc perform closely in terms

0 1000 2000 - 9900 4000 5000 of server bandwidth saving, pre-fetchingtgbp_inc produces

(a) Demand vs. resource seeds in the system. Fig. 8(c) illustrates the number of seeds
s during the simulation with normalized bandwidth equal 16.

,!;5?‘2 : It is very impressive that fobpbp_inc the seed number can
S, ranpwp even reach nearly0% of all peers. In contrast, the ineffec-
% || brbp_np tiveness of random peering leads to fewer number of seeds
g 8L bpbp_inc in ranp_wp. Seeds make the system resource allocation more
@2 flexible and thus more robust to peer dynamics. Furthermore,
fz.j 1t seeds can completely take the place of the server.
D ' Peers only exchange the interested area information, which

0 1000 2000 3000 4000 5000

Time(s) is efficient to keep the overhead low. Fig.8(b) shows the
control traffic throughput compared with data traffic. The
overhead contributes less tha# percentage for all cases. As
Fig. 7. Server cost under different peering strategies the resource increases, the exchange between peers become
more effective with large enough bandwidth, which leads to
less control overhead in return. The same phenomena can be
the startup phase as the number of peers increases, thenotfserved between random peeing and BPB-peering strategies,
curves oscillate closely with the instant peer average banskcause the latter is more effective than the former.
width. However, for BPB-peering strategies, it is interesting 2) Impact of Differentiated Pre-fetchingfo study the dif-
to observe that the server cost increases in a short period &@ntiated pre-fetching of peers, we collect the following peer
maintains almost constant at the startup phase. Peers joinjtifermation: the time to finish the whole video download
system early have limited data to share with each other. TAed the amount of contribution at the moment of finish
server has to stream data to them directly. When more pedtsvnloading. Fig. 9(a) plots the correlation between peer’s
get into the system, peers start to download data from eagbwnload rate and contribution level as= 1.4. The crosses
other. When the startup phase is over, the server cost drefissely scatter along the linear fitting line, which indicates
nearly to zero inbpbp_inc strategy. Later simulation resultslarger contribution peers can finish download faster. Due to
show that a certain amount of peers evolve into seeds aée limited simulation duration, the system does not enter
take the place of the server. Without pre-fetchibghp_np the equilibrium state. That is the reason why the crosses do
is also sensitive to the average peer upload bandwidth.nlit form a strictly linear line. Peers in the deficit region are
successfully controls the server cost at low level. We cagelieved to be among the earliest batch of peers which can
find whenp = 1.3, in the comparison of original streaminghardly find other suppliers to maintain the deserved down-
solution without P2P support, the random-peering without priwad rate although they contribute a lot. As more and more
fetching strategy ranp_np) can save at least arourith% peer become seeds, the download time of all peers decrease
server bandwidth. The saving can be improved6c with correspondingly. But the peers with larger contribution still
pre-fetching. With BPB-peering, thig@bp_np can enhance the finish sooner. The contributions of peers are limited by their
saving further to aroun@5%. Moreover,bpbp_inc can sustain upload bandwidth. Fig. 9(b) plots the cumulative distribution
the system without server cost after the startup phase. of the seeding timeof different types of peers, which is
ePerformance with various peer distribution. Next we defined as the duration from the time a peer finishes video
examine the server cost savings with different normalized pe#wnloading till its departure. The peers with zero seeding
average bandwidth. Fig. 8(a) shows the average server disie are not counted. We can observe that larger bandwidth
after the firsts0 mins. As the system resource increases, tipeers get longer seeding time. Peers withbps bandwidth
cost of all strategies dropspbp_np andbpbp_inc both achieve have average seeding time #.6% of the video length, while
most bandwidth saving. Especiablybp_inc can sustain itself the average seeding time for peers wittikbps andl28kbps
without server whemp > 1.2. The system does not need serveare 9.9% and 6.3% respectively. Differentiated pre-fetching
bandwidth with the assistance of seeflise BPB-peering can enlarges the seed capability further by encouraging peers with
effectively improve the scheduling efficiency, which results larger bandwidth to become seeds earlier.
more server bandwidth savin§re-fetching enables peers to When the average peer bandwidth increases, peers can
download future content with extra bandwidth, thus reduceseragely spend less time to accomplish the whole file down-
the possibility of data pull from the server in the future. Thibad. Meanwhile, due to the increased number and prolonged
ranp_wp Strategy with pre-fetching can also work withouseeding time of seeds, peers would expect to contribute less to
server wherp = 1.8. When the normalized average bandwidtfinish downloading. Fig. 9(c) presents the average download

(b) Instant server cost
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Fig. 9. Impact of differentiated pre-fetching on peer download time

time and amount of corresponding contribution level of peers.Different from the linear viewing scenario, peers may

3) Robustness against System Dynamigimulations in also Ieave.the system without finishing playback. We also
previous sections assume peers are in linear viewing moﬁgdy the impact on .the_syste.m performanqe Que to peer
and only leave the system after they finish their playbacﬁf"lrly .depart.urejs. I'n this §|mula'F|on, the peer lifetime follows
We now study the system’s performance under different p rWe|bull distribution. With Welb_ull distribution para_\meters
churn models. We start with the flash-crowd scenario whe £400’4)’ peers leave the session gradually starting _from
a batch of peers joins the system at the same time. 271th second. And thgre are omy% peers who_ wil
» = 1.5, 100 peers, almos20% of the maximum number of watch the whole video without early departure. Flg.lo(p)
online peers, suddenly join the system simultaneously aroun WS t_he average server cost under various peer bandwidth
3,600 second. Fig. 10(a) shows the server cost evolutioﬂ'.smbuuons' The_serv_er cost of a_lll strategies decreases almost
Pre-fetching prevents the bandwidth costrafip_wp from _alf compared Wlth Fig.8(a). This is because the number of
jumping up significantly. However, there are big jumps in bot imultaneously online PEers decreases due fo the eaf'y peer
non-pre-fetching schemeanp_np andbpbp_np. At the same epartl_Jres. But_the r_elguve performancg orde_r among different
time, bpbp_inc is highly robust against batch peer arrivalsStrategies remains similar. lepbp_mc still achieves the best
There is only a small pulse in the server cost after the bateﬁrformance, and no server cost is needed whenl.4.
arrival. The server cost quickly goes back to zero afterward. \ye also examine the system performance when users con-

As an incentive in iPASS, peers are allowed to leave tleict VCR interactions, in particular, fast-forward. After the
system after they finish downloading the whole video. In thaystem startup phase (the firkt800 seconds),10% of the
case, it cannot continue to stay as a seed to serve othersn&w joining users are randomly picked to conduct the fast-
verify the impact, we assume all peers are selfish and they wWidkward operations until they leave the system. Fig. 10(c)
leave the system as soon as they finish the downloading. Tgresents the instant server cost at various fast-forward speeds
system performance under this assumption is plotted in Fighenp = 1.3. Because peers randomly connect to others with
10(a) using the curve denoted @sp_inc2. The performance ranp_wp strategy, part of the peer neighbors may have far
is close tobpbp_inc. The peak value of the pulse due tdarge buffering progress and can serve them always. The VCR
batch join at around, 600 second is also less thadpbp_np interactions do not bring much impact, and the peak value of
and the pulse soon disappears as time evolves. The adapsiever cost only increases by arouz&, compared with that
taxation scheme subsidizes large peers’ bandwidth for smiallFig. 7(b) without VCR interactions. With dynamic BPB
peers. Therefore the system still benefits a lot from the largapport, bprp_inc always maintains low server bandwidth
peers’ contribution before they finish the whole download. cost. When those peers fast-forward faster with speed,
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Fig. 10. System performance under various peer dynamic scenarios

the number and demand of online fast-forward peers decreagg X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study
accordingly, which leads to the decrease of server cost. of a large-scale P2P IPTV systeniEEE Transactions on Multimedia

. . . . 2007.
4) Comparisons with other VoD SyStethhOUt detailed [4{ A. Sharma, A. Bestavros, and |. Matta, “dPAM: A distributed prefetch-

system implementation and parameter settings, we cannot ing protocol for scalable asynchronous multicast in p2p systems,” in
conduct head-to-head comparisons between iPASS and other Proceedings of IEEE International Conference on Network Protocols

P : - (ICNP), 2005.
P2P VoD systems. We qualitatively compare iPASS wit Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-peer

some known mesh-based P2P VoD systems using performance patching Scheme for VoD Service,” Morld Wide Web Conference
numbers reported by the authors. Simulations of BiTos[10] 2003.

assume all users arrive at almost the same time. They al@ Y. Huang, T. Z. J. Fu, D-M. Chiu, J. C.'S. Lui, and C. Huang,
. . . Challenges, Design and Analysis of a Large-scale P2P-VoD System,
not comparable with common asynchronous peer simulation j, proceedings of ACM SIGCOMMOOS.

setting. In PONDER][9] system, the server cost saving capy K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley,

reach95% whenp = 2.9. In [8], even the best approach with a”dl Mi' Va[V?"?ééFéujh'tO'Pleef V'Sdelo ?”d DAema”d 5>(’:5temi d?Si%” and
. . . evaluation, In ournal on oSelecte reas In Ccommunicayons
network coding cannot let chunk delivery ratio exce®ds. 2008,

The saving in BASS[18] can only reacdid% with their own (8] s. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and D. Gu-
setting. The results are all simulated in linear viewing scenario. nhawardena, “Is High Quality VoD Feasible using P2P Swarming?” in

While in iPASS, the system can sustain itself without servey, Froceedings of International World Wide Web Conferera?. _
. 9] Y. Guo, S. Mathur, K. Ramaswamy, S. Yu, and B. Patel, “PONDER:
whenp > 1.2. Moreover, with early departure, the system can ' performance Aware P2P Video-on-Demand ServicePiiaceedings of
also sustain itself whep > 1.4 with only 5.7% linear viewing GLOBECOM 2007.
peers. [10] A. Vlavianos, M. lliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for Supporting Streaming Applications,” fEEE Global
Internet Symposiup2006.

VII. CONCLUSION [11] Y.-W. Sung, M. Bishop, and S. Rao, “Enabling Contribution Awareness
In this paper, we present the design of iPASS, a novel mesh- go?\;MO\Z'Sgg?' Broadcasting System,” lroceedings of ACM SIG-

based P2P VoD system. iPASS achieves high peer bandwidt) z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “Substream
utilization at low system maintenance cost by adopting a T][é}féiggi IToward_s anl%per} P2P Live S’\tlreamirlzgpsyster??r(ﬁ'g?\l;gjggs
H . . [0} nternational Conference on Networ rotocols .
d.ynamlc bgffermg progress baged peerlng strategy. TO. pi?S] C. Huang, J. Li, and K. W. Ross, “Can Internet Video-on-Demand be
vide incentives for peer uploading, iPASS employs a diffef- " profitable?” inProceedings of ACM SIGCOMM20O7.
entiated pre-fetching design that enables peers with high®e B. Cheng, L. Stein, H. Jin, and Z. Zhang, “Towards Cinematic Internet
contributions pre-fetch content at higher speed. We further \Sd?/\(/)-on-Deg]indL"- ”ElXOSVS 2098-Sk_ L et-Based Overtay for O
_ . - . Wang and J. Liu, * ynamic Skip List-Base verlay for On-
demonStrate_d that p_re fetChII:]g on pe_ers can be coor@na[_lje% Demand Media Streaming with VCR Interactions,1EEE Transactions
by an adaptive taxation algorithm to simultaneously maintain on Parallel and Distributed Syste2008.
system-wide QOE and provide service differentiations amofig] X. Qiu, C. Wu, X. Lin, and F. C. Lau, “InstantLeap: Fast Neighbor
rs with different contributions. We provi rforman Discovery in P2P VoD Streaming,” iNOSSDAY 2009.
peers . different contributions € pro ded a perto a (f]?%] Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asynchronous Streaming
analysis on the server COSF bound and syste_m be_hawor I Multicast in Application-Layer Overlay Networks,” ifEEE Journal on
steady state. Through detailed packet-level simulations, we Selected Areas in Communicatio2904.
showed that iPASS can efficiently offload server and achief#8! C. Dana, D. Li, D. Harrison, and C.-N. Chuah, "BASS: BitTorrent

. . . Assisted Streaming System for Video-on-Demand,” liternational
the desired balance between the system-wide QOE and Service yqshop on multimedia signal processing (MMSE)OS.

differentiations among heterogeneous peers. [19] M. Feldman and J. Chuang, “Overcoming free-riding behavior in peer-
to-peer systemsSlGecom Exchvol. 5, no. 4, pp. 41-50, 2005.
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