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Abstract—As an efficient distribution mechanism, Peer-to-Peer
(P2P) technology has become a tremendously attractive solution
to offload servers in large-scale video streaming applications.
However, in providing on-demand asynchronous streaming ser-
vices, P2P streaming design faces two major challenges: how to
schedule efficient video sharing between peers with asynchronous
playback progresses? how to provide incentives for peers to
contribute their resources to achieve a high level of system-wide
Quality-of-Experience (QoE)? In this paper, we present iPASS, a
novel mesh-based P2P VoD system, to address these challenges.
Specifically, iPASS adopts a dynamic buffering-progress-based
peering strategy to achieve high peer bandwidth utilization with
low system maintenance cost. To provide incentives for peer
uploading, iPASS employs a differentiated pre-fetching design
that enables peers with higher contribution pre-fetch content
at higher speed. A distributed adaptive taxation algorithm is
developed to balance the system-wide QoE and service differen-
tiations among heterogeneous peers. To assess the performance
of iPASS, we built a detailed packet-level P2P VoD simulator
and conducted extensive simulations. It was demonstrated that
iPASS can completely offload server when the average peer
upload bandwidth is more than 1.2 times the streaming rate.
Furthermore, we showed that the distributed incentive algorithm
motivates peers to contribute and collaboratively achieve a high
level of system wide QoE.

Index Terms—peer-to-peer, video streaming, on-demand, in-
centive

I. I NTRODUCTION

Video-on-Demand (VoD) services enable users to watch
their favorite videos at any time. YouTube, an extremely
popular VoD application on the Internet, serves100 million
distinct videos daily [1]. Traditional VoD solutions employ
video servers and content distribution networks (CDNs) to
stream video to viewers. The infrastructure cost grows linearly
with the user population and the video quality. It will become
very expensive for YouTube to stream higher resolution videos
with TV or even high-definition quality. On the other hand,
P2P technology utilizes available resources of peers and effec-
tively offloads servers in large scale content distribution, such
as file sharing [2] and live video streaming [3]. Recently, P2P
technology has also been adopted to provide VoD services. In
providing VoD services, P2P streaming design faces two major
challenges: how to schedule efficient video sharing between
peers with asynchronous playback progresses? how to provide
incentives for peers to contribute their resources to achieve a
high level of system-wide Quality-of-Experience (QoE)?

To address the asynchronous user playback issue, the
Cache-and-Relayapproach has been proposed. Peers store
downloaded video in memory or hard disk, and relay the
cached video to other peers in future, leading to asynchronous
P2P video sharing. Early Cache-and-Relay based systems
assume a small amount of video cache on peers and exploit
asynchronous sharing between peers with close playback pro-
gresses. Through batching, peers are organized into groups
according to their playback time and a tree-like topology is
formed for peers in the same group to exchange video [4],
[5]. Unfortunately, small video caching results in low P2P
sharing efficiency. The structured P2P topology incurs high
management overhead and is vulnerable to dynamic peer
arrivals and departures. Recent advances in computer hardware
technology make low-priced computers increasingly equipped
with abundant memory and storage. New P2P VoD systems
fully exploit the largely improved peer video caching capa-
bility for higher P2P sharing efficiency. In [6], [7], peers are
effectively turned into distributed “video seeds” by caching a
large volume of video clips on their hard disks. Longer video
caching also makes it possible for P2P VoD systems to adopt
mesh-based topology. Mesh-topology is robust to peer churn
and easy to manage. It has demonstrated its successes in many
large scale file sharing [2] and live streaming systems [3].
Inspired by the success of mesh structure, several mesh-based
P2P VoD systems have been proposed [8], [9], [10]. In those
systems, peers form one or multiple meshes randomly and
exchange data with neighbors. Unlike in file sharing, data
sharing in VoD systems is commonly uni-directional between
peers. Data flows from a peer to its neighbors with smaller
playback progresses. We will show that random peering leads
to poor peer resource utilization under this data flow direc-
tionality. How to design P2P VoD systems with high peer
bandwidth utilization and low maintenance cost remains to
be a challenging research problem.

Meanwhile, providing incentives for peers to contribute
their resources is another essential design component for
P2P systems. In file sharing systems, peers are motivated to
upload content to other peers in order to achieve a higher
download rate from the system. By employing thetit-for-tat
policy, BitTorrent punishes free-riders who do not contribute
bandwidth to the system. In live streaming systems, peers are
motivated to contribute more in order to get better playback
quality. It was proposed in [11], [12] that, with scalable
video coding, peers uploading more will be rewarded with
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higher video quality. Due to the asynchronous peer playback
progress and the data flow directionality, tit-for-tat type of
direct reciprocity incentive mechanism is not applicable to P2P
VoD systems. In addition, to maintain the playback continuity,
each peer needs to download video data before their playback
deadlines. It is critical to design incentive mechanism for P2P
VoD systems to balance the system-wide QoE and service
differentiations among heterogeneous peers.

In this paper, we present iPASS, a novel mesh-based
P2P VoD system, to simultaneously address the previously
described efficiency and incentive issues. iPASS adopts a
dynamic Buffering-Progress-Based (BPB) peering strategy to
achieve high peer bandwidth utilization with low system main-
tenance cost. To provide incentives for peer uploading, iPASS
employs a differentiated pre-fetching design that enables peers
with higher contributions to pre-fetch content at higher speeds.
A distributed adaptive taxation algorithm is developed to bal-
ance the system-wide QoE and service differentiations among
heterogeneous peers. The contributions of this paper can be
summarized as follows:

1) We analytically study the impact of asynchronous peer
playback progresses on the efficiency of mesh-based P2P
sharing, and propose a distributed BPB peering strategy.
Through analysis and simulation, we show that the BPB
peering can enable mesh-based P2P VoD systems to
achieve high peer bandwidth utilization, low mainte-
nance cost and high peer churn robustness. Moreover,
BPB also facilitates the support of VCR interactions.

2) To the best of our knowledge, we are the first to use
differentiated pre-fetching as an incentive mechanism
to motivate capable peers to contribute in P2P VoD
systems. We demonstrate that pre-fetchings on peers
can be coordinated by an adaptive taxation algorithm
to simultaneously maintain system-wide QoE and pro-
vide service differentiations among peers with different
contributions.

3) To assess the performance of iPASS, we analytically
investigate iPASS’s system resource utilization and the
equilibrium state using a fluid modeling approach. We
built a detailed packet-level P2P VoD simulator and con-
ducted extensive simulations. Compared with previous
P2P streaming simulators, our simulator can examine
the packet-level details. In addition, it can prolong the
simulation duration to hours in order to study long-term
system behaviors under a rich set of simulated scenarios.

The remaining of this paper is organized as follows. We
briefly discuss the related work in Section II. The main design
components are outlined in Section III. The detailed system
implementation is presented in Section IV. The system proper-
ties and analysis are described in Section V. The performance
evaluation with numerical simulation results is presented in
Section VI. Finally, the paper is concluded in Section VII.

II. RELATED WORK

P2P sharing can greatly reduce server bandwidth cost to
provide on-demand streaming service [13]. Recently, various
P2P on-demand systems have been deployed [6], [14] and

various schemes to support VCR interactions have been pro-
posed [15], [16]. The design of VoD systems keeps evolving.
Early P2P VoD systems adopt structured streaming topologies
and require delicate system management. P2Cast [5] groups
peers according to their arrival time. Peers in the same
group are organized into a multicast tree. Peers retrieve video
content through a combination of streaming along the tree and
patching from peers who arrived earlier. dPAM [4] employs
distributed pre-fetching to improve system performance. oS-
tream [17] constructs media distribution trees at the application
layer to realize asynchronous media delivery.

Recent advances in computer hardware technology largely
improve peers’ video caching capability and broaden the
design spaces of VoD systems. Inspired by P2P file sharing
and live streaming systems,mesh-baseddata swarming has
been adopted by new P2P VoD systems. BiTos [10] cus-
tomized the Bittorrent protocol for on-demand video stream-
ing. PONDER [9] divides video into multiple sub-clips and
forms multiple meshes, one for each sub-clip. Peer selection
and measurement based admission control was proposed to
manage swarms. BASS [18] combines streaming from the
server with Bittorrent-assisted downloading. The impact of
segment scheduling, overlay management and network coding
on the performance of swarming-based VoD systems has been
discussed in [8]. In the above mesh-based P2P VoD systems
([8], [9], [10], [18]), each peer randomly connects others to
form one or multiple overlay meshes, which are scalable and
robust to peer churn. However, the peering strategy commonly
does not take into account neighbors’ buffering or playback
progresses, and this status-oblivious peering leads to inefficient
peer bandwidth usage. In contrast, the buffering progress based
peering strategy of iPASS can substantially enhance the system
resource utilization. Meanwhile, the structured mesh formed
by the peers is amenable to provide VCR functions.

On the other hand, more and more attentions have been
attracted to the design of incentive mechanisms in P2P sys-
tems to discourage free-riders. Various schemes have been
proposed for file sharing and live streaming systems. Models
are developed to study the phenomenon of free-riding in P2P
systems [19], [20]. Atit-for-tat type of substream trading
algorithm was developed in [12] to provide incentive in live
streaming systems with layered video coding. A taxation
scheme [21] was proposed to improve the overall social
welfare through subsidizing resource-poor peers by exploiting
resource-rich peers, which has been applied in [11] to en-
courage peers to contribute to obtain higher playback quality.
However, previous incentive schemes are generally based on
direct reciprocity, providing incentive in on-demand systems
remains a challenging problem. Due to the asynchronous
playback progress and the directional data flow, it rarely takes
place in on-demand systems that, between a pair of hosts,
each host has the content the other host needs. By motivating
peers to contribute for higher pre-fretching speeds, an effective
adaptive taxation scheme is proposed in iPASS to address the
incentive issue in on-demand system from a new perspective.
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III. IPASS: DESIGN OVERVIEW

In this section, we present the two major design compo-
nents of iPASS:Buffering-Progress-Based (BPB) peeringand
Adaptive-Taxation-Based (ATB) pre-fetching.

A. System Model

In peer-assistedVoD systems, servers host publishers’
videos and stream them to peers upon requests. To save
bandwidth consumption of servers, peers viewing the same
video form a P2P overlay network and redistribute videos
among themselves. Severs are responsible for maintaining
peers’ playback continuity. If a peer cannot download video
data from other peers before the playback deadline, it will
download the missing data from the server directly, which
increases the server bandwidth cost consequently. A key
design issue of peer-assisted VoD systems is to minimize the
server bandwidth cost by efficiently utilizing peers’ upload
bandwidth.

Peers start to watch from the beginning of the video after
they join the system. Peers are allowed to pre-fetch content
beyond its playback range, and the pre-fetching speeds of
peers are subject to the regulation of incentive mechanism.
In addition, peers can conduct VCR interactions asrandom
seek, fast-forwardand rewind.

There are two unique features in VoD systems: the playback
progresses on peers areasynchronous; peers can download
content beyond its current playback range. To cope with
bandwidth variations and peer churn, a peer normally buffers
a certain amount of video beyond its playback progress. To
describe the status of a peer, we introduce the following
notations for peeri in the system:
• Playback progresspi: the current playback position of

peer i, indexed by the sequence number of the video
chunk being played.

• Buffering progressbi: the sequence number of the first
missing chunk beyond current playback positionpi.

• Buffering levelτi: the number of continuous buffered
chunks beyond the current playback progress point. By
definition, τi = bi − pi.

• Playback buffering thresholdwrd: the number of buffered
chunks necessary for smoothing playback. We call the
sliding window[pi, pi+wrd] peeri’s continuous playback
range.

• Contribution levelci: the number of chunks that peeri
has uploaded to other peers since it joins the system.

Fig. 1 illustrates two different peer buffer statuses. On Peer
1, buffering level τ1 is lower than the playback buffering
thresholdwrd. It is downloading the missing chunks in the
continuous playback range. We say that peer1 is in thenormal
playback mode. On peer2, buffering levelτ2 is higher than
the playback buffering thresholdwrd. Peer2 is downloading
chunks outside of the playback range. We say that peer2 is
in the pre-fetch mode.

Peers are assumed to have enough storage to cache what
they ever watched. Due to copyright issues, the content in the
cache of a peer will be eliminated once the peer leaves the
system, and the peer cannot serve as a seed anymore. We also

p1 b1

︸ ︷︷ ︸

τ1

︸︷︷︸

wrd

p2 b2

︸ ︷︷ ︸

τ2
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wrd

sequence

(a)peer1 (b)peer2

Fig. 1. Peer buffer status

assume peers are obedient to unveil their truthful information
to each other (There exist reputation mechanisms [22], [23] to
ensure peers truthfully reporting their information.)

B. Buffering Progress Based Peering

We first investigate the impact of asynchronous peer play-
back progresses on the efficiency of content sharing among
peers. We then present the Buffering-Progress-Based peering
strategy and study the impact of various peering strategies on
server cost.

1) Impact of Asynchronous Playback on P2P Sharing. Let’s
start with a peer-assisted VoD system with homogenousN
peers, each of them with upload bandwidthu. Suppose each
peer randomly selectsk peers as its neighbors. The video
length isL. Peers store the content they have already played.
Asynchronous playback leads to asynchronous buffering pro-
gresses among peers. Obviously, a peer can only serve peers
with buffering progress behind it. In addition, a peer divides
its upload bandwidth equally to all its receivers.

Proposition 1: With random peering and equal bandwidth
sharing, the expected download rate of a peer from other peers
drops as the peer buffering progress increases.

Proof: Let the random variableX denote the buffering
progress of a selected peer, andfx denotes the density function
of its distribution. Each peer selectsk neighbors randomly and
independently, and only the neighbors with larger buffering
progress can be the suppliers. Given a peer with buffering
progressx, the expected number of neighbors with smaller
buffering progress iskP (X < x). Let dx represent the ex-
pected distribution rate from this peer with buffering progress
x to each of its receivers. With equal bandwidth sharing, the
distribution rate can be approximated by

dx =
u

kP (X < x)
(1)

For peer with buffering progressy, we can obtain the expected
aggregate download rateDy from its k neighbors

E[Dy] = k

∫ L

0

dxfxI(x > y)dx

= k

∫ L

y

dxfxdx (2)

From the above equation, we can deduce that the expected
download rateDy decreases as the buffering progressy
increases.

Specifically, whenX has uniform distribution, we can get
E[Dy] = u(lnL − lny), which shows that the expected
possible download rate drops logarithmically as the buffering
progress increases. For peers with larger buffering progress,
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due to the random neighbor selection, they will find fewer
suppliers in their random neighbor set, from which they can
download video. In addition, a supplier with larger progress
will be able to serve more download requests. Due to the
equal bandwidth sharing, it will upload to each of its receivers
at a lower rate. These two factors conspire and lead to low
download rates for peers with large buffering progress. This
shows that random peering and equal bandwidth sharing lead
to low P2P bandwidth sharing efficiency.

2) Buffering-Progress-Based Peering. The bandwidth shar-
ing efficiency in P2P systems is mainly determined by two
factors: how peers are connected and how a peer allocates
its upload bandwidth to all its neighbors. In the previous
section, we have demonstrated that random peering and equal
bandwidth sharing is not efficient for asynchronous P2P VoD
systems. Peers with larger buffering progresses have less
opportunity to download from the P2P network. Intuitively,
this suggests some heuristic peering policy:to increase the
download rate of peers with large progress, the upload band-
width of peers close to the end of the streaming session should
not be invested to peers who just joined the session. More
generally, we propose the Buffering Progress Based (BPB)
peering to let peers connect to peers with close buffering
progress. Peers form one structured mesh overlay with BPB
peering strategy. In the mesh topology constructed under
BPB, peers with similar buffering progresses are preferentially
connected. A fraction of neighbors of a peer are suppliers with
larger buffering progress. Another fraction of neighbors are
receivers with buffering progress lagging behind the peer. And
remaining neighbors have very close progress and overlapping
download interests, they may act as either supplier or receiver.
On top of the BPB mesh, peers adaptively allocate their
upload bandwidth to their neighbors to maximally reduce the
complementary streaming requests to servers. Moreover, as we
would present in the following section, the BPB peering can
adjust peers’ connection relationship dynamically to accom-
modate their differentiated pre-fetching speeds. Meanwhile,
the structured mesh can be maintained well in the face of
peer churn.

To study the impact of peering and bandwidth allocation on
server bandwidth, we formulate the following Linear Program-
ming model. There are a setV of peers in a peer-assisted on-
demand system. The video streaming rate isr. For peeri, let
nb(i) be its neighbor set, anduji be the download rate from

peer j. The aggregate download rate from all its neighbors
is

∑
j∈nb(i) uji, and then the complementary streaming rate

needed from the server ismax(0, r−∑
j∈nb(i) uji). The goal

is to find the optimal peer bandwidth allocation to minimize
the aggregate server cost, then we have

min
{uji}

∑

i∈V

(r −
∑

j∈nb(i)

uji) (3)

subject to ∑

j∈nb(i)

uij ≤ ui, i ∈ V (4)

uij ≤ Iijui, i, j ∈ V (5)∑

j∈nb(i)

uji ≤ r, i ∈ V. (6)

In the above formulation,Iij denotes the buffering progress
relationship between peeri and j, Iij = 1 when pi > pj ,
otherwise equal to 0. Eq. (4) states the bandwidth constraint
for each peer respectively. And Eq. (5) shows the content
constraint among peers. Eq. (6) presents the download speed
constraint without pre-fetching.

The above optimal bandwidth allocation formulation can
be applied to general topology. We now use it to compare the
server bandwidth saving of random peering and BPB peering.
Towards this goal, we generate an instance of a peer-assisted
video-on-demand system using a discrete time simulation.
During the simulated session with durationT = 100, peers
arrive at the system according to a Poisson process with
rate λ = 2. We assume all peers’ download bandwidth is
greater thanr. There are two types of peers with upload
bandwidth1.5r and0.5r respectively. The normalized average
peer upload bandwidth isρ = ū/r = 1.2.

With random peering, upon its arrival, a peer randomly picks
k peers already in the system as its neighbors. With BPB
peering, peers are firstly ordered in the increasing order of
their arrival times. A peer who arrived at the system with
rank i will randomly pickk neighbors from peers with arrival
ranks in the range of[i − δ ∗N, i] given a total ofN online
peers. By changingδ, we manipulate the playback progress
closeness of neighbors in the constructed BPB graph. We then
compare the normalized server cost under BPB and random
peering strategies with five snapshots of the system. With each
snapshot, we solve the optimal bandwidth allocation problem
defined in (3). Figure 2 shows the minimum server cost can be
achieved with different peering strategies. The results indicate
that with limited peering degree, BPB-peering can significantly
reduce the server cost compared with random peering. Due
to more efficient system resource distribution and partnership
setup among peers, BPB-peering can achieve higher system
resource utilization. The results obtained here is only the lower
bounds on the server bandwidth cost. In Section VI, we will
compare the server bandwidth saving of random peering and
BPB peering via detailed packet-level simulations.

C. Adaptive Taxation Based Pre-fetching

Providing incentive in asynchronous VoD system is chal-
lenging. The asymmetric data flows between peers with dif-
ferent playback progresses make direct reciprocity incentive
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mechanisms infeasible, such as tit-for-tat of BitTorrent. In our
design, we use pre-fetching as an incentive to motivate peers
to contribute more to obtain higher download rate from the
system. To maintain the playback continuity in the face of peer
churn and network dynamics in P2P streaming systems, peers
normally buffer certain amount of data ahead of the playback
progress. Furthermore, in P2P VoD systems, peers with high
download rate canpre-fetch content beyond their playback
points and potentially becomeseeds, namely, nodes with the
whole content, long before their playbacks finish. From the
system point of view, more seeds in the system, more efficient
the content sharing among peers. As will be shown through
simulations in Section VI :with large enough peer bandwidth
resources and high scheduling efficiency, the seeds that evolved
from regular peers with pre-fetching may completely take the
place of the servers and results in zero server cost. From
individual peers’ point of view, with pre-fetched content in the
buffer, they can enjoy smooth non-linear viewing operations,
such as fast-forwarding and jumping. Moreover, peers can
finish the download process of the whole content before they
finish the playback, and they have options to leave the system
to proceed other Internet applications without interference.
Hence, pre-fetching can be leveraged to motivate peers to
contribute and facilitate the system distribution process.

To coordinate the asynchronous demands of peers and
maintain system-wide quality, we propose aAdaptive Taxation
scheme to regulate the pre-fetching on heterogeneous peers.
The bandwidth of a peer can be treated as itswealth. And
the video pre-fetching can be regarded as a peer’sincome.
Resource-rich peers contribute more bandwidth to the system,
and subsidize for the resource-poor peers. The tax regulated
redistribution of peer wealth helps improve the social wel-
fare and then reduce server cost. The tax ratio is fixed in
the original taxation scheme [21] and applied for providing
incentive in live streaming system. To balance the budget,
the demograntrate (i.e., one peer who does not contribute
anything, still receives the demogrant rate) is adaptive. On the
contrary, in peer-assisted systems, although peers may have
different download rates, the base playback rates for all peers
are guaranteed. Therefore, in our adaptive taxation method, the
demogrant rate is fixed to be equal to the playback rate and
the tax ratio would be adaptive. (In peer-assisted systems, the
pure free-riders should also be discouraged. In practice, the
system can enforce peers to contribute with at least certain
upload rates.)

Suppose we pose a taxation ratiot on peers. All peers have
download rates no less than the base playback rater. Then
peeri with contribution levelci and lifetimeTi, could get the
average download rateri to accumulate the expected buffering
level

τi = (ri − r)Ti =
ci

t
. (7)

In a resource rich system, peers accumulate different amount
of buffering levels proportional to their contributions. In a
resource deficit system with small peer average bandwidth
ū < r, the bandwidth supplies are not enough to sustain their
normal playback demands and they need help from the server.
In this case, it could be difficult for any peer to accumulate

large buffering level andt → ∞. How to adaptt with the
system resource availability is crucial in the adaptive taxation
scheme. The aggregate tax revenue

∑
ri would be balanced

with the budget expenditure
∑

ci/Ti. And the taxation ratiot
would be determined by the system-wide resource availability.
With the summation on both sides of Eq. (7), we obtain

t =
∑

ci/
∑

τi. (8)

Due to peer dynamics and resource imbalance, it could be
infeasible to collect all the information and tackle the issue in
a centralized manner. A distribution protocol with the adaptive
taxation is to be presented in the following sections.

IV. IPASS: SYSTEM DESIGN

In this section we present the detailed design of iPASS
system.

A. Architecture

Similar to most deployed large scale P2P streaming systems,
iPASS employs atracker to keep track of peer arrivals and
departures. The tracker maintains a list of active peers in the
system. When a new peer joins in, it first contacts the tracker
for an initial peer list. Then the new peer makes connections
with peers on the returned list and starts to exchange signaling
information and video data with them. Through signaling,
peers exchange with their neighbors information about their
buffering progresses, contribution levels and neighbor lists.

iPASS adopts the state-of-art pull based data exchange
mechanism. A peer pulls video chunks from its neighbors by
sending download requests. Furthermore, to avoid contention
due to uncoordinated requests to the same peer, we introduce
pull tokensfor peers. Each peer periodically sends out pull
tokens to its neighbors to give them permissions to pull chunks
from it. The total number of tokens that one peer sends out
is determined by the number of chunks that it can serve in
each round. The number of tokens that a peer sends to a
particular neighbor is determined by the contribution level of
the neighbor, and is calculated by a distributed implementation
of the ATB pre-fetching algorithm.

Due to asynchronous pre-fetching, a peer may become out-
of-sync with its neighbors. Moreover, idle seeds and peers
lacking enough number of suppliers may turn to find com-
plementary neighbors. If so, to maintain the BPB peering, it
needs to update its neighbors. A peer will find new neighbors
by querying the tracker or searching through its neighbors’
neighbor lists.

B. BPB Peering Implementation

The BPB peering makes the structured mesh scalable,
robust, and also facilitates the support of VCR interactions.

1) New Peer Join. The key to BPB peering is to find peers
with close buffering progresses. To facilitate BPB peering, the
tracker sorts the list of active peers according to their arrival
times. When a new peer joins in, the tracker records its arrival
time and appends it to the end of the peer list. Then the tracker
will return the new peer with an initial peer list consisting of
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a number of random peers at the end of the list. Those peers
will be the suppliers for the new peer.

2) Dynamic BPB Peering. When there is no pre-fetching,
buffering on peers advances roughly at the same pace, namely
the playback rate. Peers who arrive close in time will remain
close in buffering progress. During the session, when a peer
needs to connect to new neighbors, either due to neighbor
departures or unsatisfactory peering connections, it can contact
the tracker for additional peers. The tracker can quickly search
through the sorted list to find peers with close buffering
progresses for the requesting peer. In addition, due to BPB
peering, a peer’s neighbors’ neighbors should also have close
buffering progresses with the peer. Without going to the
tracker, a peer can find new “close” neighbors in the neighbor
lists returned by its neighbors.

With pre-fetching, bufferings on peers advance at different
rates. A peer joins the system later can possibly download
video faster than its neighbors who arrived earlier and gain
larger buffering progress. Once this happens, the download
rate of the peer will be slowed down due to the lack of enough
suppliers. The peer should then triggerdynamic BPB peering
to find more suppliers satisfying the BPB peering criterion.
Fig. 3 shows a simple example of dynamic BPB peering.
Towards the goal of downloading the whole video, nodena

runs on the “express track” with higher download speed, while
its neighbors runs on the “local track” with lower download
speed. As time evolves, it catches up with the buffering

buffering progress

express

local
n1n2n3n4n5

na

n1n2n3n4n5

nanb nc

Fig. 3. Dynamic BPB peering

progress of its neighbors. To maintain its download rate, it
then connects with peern1 with larger buffering progress and
disconnects from peern5 with the smallest buffering progress.

To facilitate this dynamic BPB peering, a distributed so-
lution can be implemented as follows. Peers constantly ex-
change their buffering progresses with their neighbors. Due to
dynamic BPB buffering, there is a good chance that a peer,
even doing fast pre-fetching, can find peers ahead of it by
searching through the neighbor lists returned by its neighbors.
Then instead of requesting from the tracker, peers can request
complementary peer lists from neighbors and choose appro-
priate peers with close buffering progresses to connect with.
An alternative centralized solution is also possible, given a
tracker with powerful process capability. The tracker needs to
keep track of peers’ buffering progresses and help peers to
find new neighbors with close buffering progresses. This will
incur a large volume of signaling and processing overhead on
the tracker and peers.

3) VCR Interaction Support. In on-demand systems, users
can freely trigger VCR operations. Next, we will show how
to support VCR operations with BPB peering strategy.

• Fast-forward and Rewind. These two functions could be

fulfilled by playing one out ofv content segments, as-
suming that the fast-forward or rewind speed isv. Hence,
peers in fast-forward mode stop pre-fetching sequentially
and download one everyv segments. As peers may have
large download rate to pre-fetch content beyond its cur-
rent playback range, peers can fast-forward without extra
operations if the video content to be played has already
been pre-fetched. On the other hand, peers have to locate
new suppliers of the expected content in time when the
content is beyond the current buffering progress and has
not been downloaded yet. Unquestionably, peers can still
effectively search suppliers with larger buffering progress
along the structured mesh under dynamic BPB peering,
as illustrated in Fig. 3. As for the rewind function, peers
can certainly go back to playback what they have already
watched previously since the video content would be
stored in the cache. And peers can also conduct the BPB
peering in reverse direction to locate suppliers for missing
part, which has not been stored in cache due to previous
random seeks or fast-forward interactions.

• Pause and Resume. Pre-fetching actually decouples the
playback and download processes. In pause status, peers
can simply stop playback but keep downloading the
content, since the video content would be stored in the
cache. And the playback can be continued after the
resume command is requested.

• Random Seek. Peers can freely jump to any position of the
video to begin playback via the random seek interaction,
which calls for an indexing functionality of the system
so that a peer can efficiently locate suppliers far away in
time. As we discussed previously, a centralized solution
is possible with a powerful tracker, which keeps track
of peers’ buffering progress and returns information of
corresponding peers. In practice, we can set up multiple
landmarks of playback progress positions with equal
distance. When the buffering progress of a peer advances
and passes such a landmark, the peer would report to
the tracker with certain probabilityp. The system can
adjust the probability to control the overhead of the cross-
landmark signaling. In this way, the tracker can maintain
and always update such a list of peers who just pass
certain landmark playback positions. Whenever a peer
conducts a random seek operation and the position it
wants to jump to is too far away that the suppliers cannot
be located quickly just by searching neighbors’ peer list
along the mesh, it would inquiry the tracker about peers in
the list with associated landmark nearest to the position.
And then it would search suppliers along the structured
mesh via the returned peer as a portal. Finally, it would
establish new connections with peers with close buffering
progress corresponding to the specified position and tear
down old connections.

The video content stored in a peer’s cache might be dis-
continuous due to fast-forward and random seek interactions.
However, it could hardly cause data availability problem
in iPASS because peers exchange data only with neighbors
with close buffering progresses. On the other hand, content
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segments may have also been pre-fetched ahead of peers’
current buffering progress due to non-sequential playback with
VCR interactions. After the missing part in between being
downloaded, a peer adjust its buffering progress and buffer-
ing level to prevent duplicate download and incorrect token
distribution in incentive mechanism, which is based on the
buffering and contribution of peers. Fig. 4 illustrates how peer

pi bi

︸ ︷︷ ︸

τi pi bi (τi = 0)

p′i

Fig. 4. Adjustment of progress indicators

i adjusts these progress indicators at the moment of the finish
of the missing part download. The peer changes buffering
progressbi accordingly and locates appropriate suppliers via
dynamic BPB peering. Meanwhile, the playback progresspi

is replaced with avirtual playback progressindicatorp′i. And
the buffering levelτi is reset to zero by lettingp′i equal to
bi at that moment. Furthermore, the contribution levelci is
also set to zero. By such settings, we can prevent the dis-
turbance of the neighbors’ pull token distribution determined
by incentive mechanism. Then the peer would act as a new
peer in the incentive mechanism. Similarly, whenever peers
return to normal playback after any VCR interactions, the
contribution levels should be reset to zero. And if the content at
the new playback progress has been downloaded, the virtual
playback indicator would be exploited and set to the same
as the buffering progress. Especially, when users pause the
playback, a virtual playback indicator would keep moving and
the download process would not be interrupted.

C. Signaling between Neighbors

In iPASS, peers would frequently collect information from
their neighbors and exchange data availability usingbuffer-
maps. A buffer-map of a peer consists of a sequence of
binary bits, each of which indicates the availability of one
specific chunk on that peer. In live P2P streaming systems,
due to the synchronous peer playback, at any time instant,
the chunks that peers need to download fall into a small
moving window covering several minutes worth of video. The
buffer-map length can be kept short. In P2P file sharing, peers
randomly download different portions of files. Buffer-maps
have to indicate the data availability for the whole file. Similar
to file sharing, peers in VoD systems are asynchronous. It
is challenging to design VoD buffer-map to simultaneously
achieve high utilization and low system overhead.

To address this issue, we define theinterested areaof a peer
as the range of chunks that the peer is currently downloading.
In the normal playback mode, peeri needs to retrieve chunks
in their current playback range[pi, pi +wrd]. Once all chunks
in the playback range have been retrieved, it enters into the
pre-fetch mode and starts to download chunks falling into its
pre-fetching window. Therefore, the interested area of a peer is
either its current playback range, if it is in the normal playback
mode, or the pre-fetching window, if it is in the pre-fetch

mode. Peers generate buffer-maps only for chunks in their
interested areas. Furthermore, peers could only send the buffer
maps to neighbors who have overlapping interested areas in
order to reduce the signalling overhead. In addition, peeri
sends to its neighbors the information on its buffering progress
bi, buffering levelτi, and contribution levelci.

D. Chunk Scheduling between Neighbors

Chunk scheduling determines the data flows among neigh-
bors. iPASS employs pull-based scheduling design. We let
ψ(i) denote the set of receivers of peeri. After obtaining
buffer-maps from its neighbors, a peer sends out pull requests
to download missing chunks from its neighbors who have
them. Due to distributed scheduling, peeri may receive
multiple requests from peers in its receiver setψ(i). Some of
the requests will be delayed or even disposed if peeri cannot
fulfill all of them in time. To avoid contention, we introduce
tokens to regulate pull requests from peers. Specifically, peer
i periodically sends tokens to peers in setψ(i) to give them
permission to pull data from it. The number of tokens that peer
i sends is determined by how many chunks it can serve within
each round. In the strategy without pre-fetching, the tokens of
peeri is randomly distributed to peers inψ(i). In the pre-fetch
mode, the token distribution should be conducted to maintain
normal playback on all peers and enable differentiated pre-
fetching based on peers’ contribution. The ATB pre-fetching
algorithm described in Section III-C is an ideal centralized
solution, which cannot be implemented in a large system.
Alternatively, we developed a distributed token distribution
algorithm to realize ATB pre-fetching.

Algorithm 1 : ATB Token Distribution on Peeri

input : τk, ck, ∀k ∈ ψ(i)
output: P (k): fraction of tokens to peerk
sum ← 01

t ← ∑
k∈ψ(i) ck/

∑
k∈ψ(i) τk2

for k ∈ ψ(i) do3

if τk ≤ wrd then ek ← max(wrd, ck/t)− τk + 14

else ek ← max(ck/t− τk, 1)5

sum ← sum + ek6

end7

for k ∈ ψ(i) do P (k) ← ek/sum8

The ATB token distribution algorithm is presented in Al-
gorithm 1. Instead of assessing a universal tax ratio based on
global information, peers deduce it locally based on informa-
tion exchange with their neighbors. The tax ratiot calculated
by peeri is the ratio between the aggregate buffering levels
and the aggregate contribution levels of peeri’s neighbors. The
target buffering level̄τk of a neighbork is its contribution level
ck divided by t. Then peeri determines theexpected tokens
ek to peerk asτ̄k−τk. ATB scheduling gives neighbors in the
normal playback mode priority in access tokens. If a neighbor
k’s buffer progressτk falls behind the playback buffering
thresholdwrd, peeri will give at leastwrd−τk tokens to peer
k so that it can download chunks in the playback range. After
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Fig. 5. Illustration of token distribution

calculatingek for all its neighbors, the peer can determine the
fraction of tokens for each neighbor in this round and then
assign tokens according to the distribution. Fig. 5 illustrates an
example of ATB token distribution, wherewrd is set to1. Peer
n has five neighbors and onlyn1, n2 andn3 are its receivers.
First, the tax ratio is calculated to bet = 2. Then, based on
the buffering level and contribution level, the expected number
of tokensek is calculated for each peer. Finally, the fractions
of tokens sent ton1, n2 andn3 are decided as0.5, 0.25 and
0.25, respectively.

After a peer receives pull tokens from all its neighbors, it
will decide which chunk is to be pulled from which neighbor.
Various chunk requesting algorithms in live streaming can
be applied. In a simplified manner, one can request missing
chunks randomly from the neighbors which hold the chunk
and also send the token. Tokens from a neighbor will be
disposed if the peer does not send pull request to that neighbor
in this round. This is to avoid disturbances to the efficiency
of scheduling in future rounds.

V. PERFORMANCEANALYSIS

In this section, we analyze the performance of iPASS
system. First we try to derive the upper bound of server cost
in iPASS system and then attempt to characterize the system
behavior at steady state with a fluid modeling based approach.

To make the analysis tractable, we assume there are only
two types of peers in the following analysis. The two types
of peers have upload bandwidthua andub respectively,ua =
αr, ub = βr. And the node distributions of them arepa and
pb. The average peer bandwidth isū =

∑
uipi. The streaming

rate is r and the playback duration of the video file on the
channel isL. Without loss of generality, we assumēu > r,
given the fact that the streaming rate of current IPTV system
is commonly less than the average peer bandwidth.

A. Server Bandwidth Cost at Initial Startup Phase

During the initial startup phase, there is no seed in the
system. The server has to provide content to the leading peers,
who arrive at the system earliest, for their real-time playback
demand. The server is the only source which can provide the
content to the leading peers. As for the peers with smaller
playback progress, they can pull content from the preceding
peers. We are interested in how much server bandwidth is
needed in iPASS system given certain peer distributions.

Property 1: At the system initial startup phase, the server
bandwidth is required to boost up the system. The cost is

almost surely bounded and determined by the distribution of
the leading peers.

With BPB peering, peers can dynamically search the nearby
preceding peers for appropriate suppliers. Given a reasonably
large neighbor set size and rich system resources, peers can
always find suppliers sufficient for their basic real-time play-
back demand except the leading peers. The peer bandwidth
can be fully utilized by pre-fetching. The data flow backwards
from the peers with larger buffering progress. Therefore, the
aggregate bandwidth requirement of leading peers accounts
for the server cost during the initial startup phase. And the
distribution of the leading peers determines the amount of
aggregate demand from the server.

We try to find an upper bound for the server cost in the
following asymptotic way. We define asupply saferegion
formed by the leadingΓ number of peers. The probability
PΓ = P{the average bandwidth of the firstΓ peers is larger
than streaming rater}. If the average upload bandwidth of the
peers in supply safe region is larger than the streaming rate,
the server cost would be only incurred by the peers in the
supply safe region, which would be less thanΓr, the aggregate
bandwidth necessary for directly streaming to them.

Suppose the numbers of leading peers with typea and b
in the region arem andn, respectively, andm + n = Γ. We
assumemua + nub > Γr, which yields

m >
1− β

α− β
Γ,

where ua = αr and ub = βr. The arrivals of two type of
peers are assumed to be independent Poisson processes. Then
we obtain

PΓ =
∑

m> 1−β
α−β Γ

(
Γ
m

)
(pa)m(pb)Γ−m

= 1−
b 1−β

α−β Γc∑
m=0

(
Γ
m

)
(pa)m(pb)Γ−m

' 1−G

(b 1−β
α−β Γc − Γpa√

Γpapb

)
. (9)

Given a Γ which lets PΓ > 1 − ε with ε → 0, we can
almost be sure that the average bandwidth of leadingΓ peers
would be larger than the streaming rate. Letε = 0.05, with
95% confidence interval, the maximum server cost is bounded
by Γr. Assumepa = pb = 0.5 and α = 1.4, β = 0.8, the
average peer bandwidth is sightly larger than the steaming
rate (̄u = 1.1r), the value ofΓ needs only to be larger than
30. The cost is small considering thousands of peers would
join in typical IPTV systems.

In a resource rich system, the estimated bound for the
system initialization phase may also be applicable to other
system phases. Furthermore, peers that finish downloading
the whole video content and still stay at the system, would
become seeds to contribute. With the help from seeds, the
system would become self-sustained without any need for
server bandwidth. As to be presented in the simulation section,
the server cost in the simulations is almost bounded at the
initial phase and then drops to nearly zero as seeds appear.
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B. System Equilibrium State

To characterize the system behavior in steady state, Qiu
and Srikant [24] proposed a fluid modeling approach for file
sharing applications. Taking into account the heterogenous
peer types, our approach investigates the system from the
perspective of the resource balance.

To make the analysis tractable, we assume peers will
neither leave until the whole file is successfully downloaded
nor conduct VCR interactions. Peers have option to leave
immediately once they finish the downloading. And there are
altruistic peers who would stay at the system to contribute
until they finish the playback. We define theselfish ratioρo

to denote the probability of peers choosing to leave as soon
as they finish download the whole video.

Suppose when the system enters the stable state, the ex-
pected numbers of seeds areWa and Wb for type a and b,
respectively. For the peers with typesV = {a, b}, the expected
time needed to download the whole file are assumed to beT a

andT b. Let δi(x) denote the net contribution of a typei peer
to the system, who stays at the system for durationx. The
net contribution is determined by the contribution minus the
consumption due to video download, which yields

δi(x) = uix− rL.

Let θs and θu represent the expected net contribution of
a selfish and unselfish peer, respectively. Then, we have
θs =

∑
i∈V piδi(T i) andθu =

∑
i∈V piδi(L). To balance the

system resource, the net contribution of peers should follow

ρoθs + (1− ρo)θu = 0,

which yields

ρo =
rL−∑

i∈V uipiL∑
i∈V uipi(T i − L)

. (10)

In light of the taxation incentive mechanism, the amount of
buffered future content corresponds to the peer’s contribution
so far. For a peer who accomplished the file download with
time T i, the amount of buffered content is(L− T i)r and the
amount of contribution isuiT

i. For the two types of peers
with homogenous taxation ratio among the system, we have

L− T a

L− T b
=

uaT a

ubT b
. (11)

With Equation(10)(11), we can deduce the expected peer file
download timeT a andT b provided with certainρo.

Next we discuss the impact ofρo on the number of seeds in
the system. We define thedummy nodeas the mirrors in the
system corresponding to those leave the system as soon as they
finish the video download. When one peer leaves the system
before the playback finishes, one corresponding dummy node
will be added to the system. These dummy nodes will stay
at the system without contribution until the playback finishes.
Let W i

f denote the subset of typei peers those accomplished
file downloading while still in playback at some time, which
includes the dummy nodes. AndW i

u denotes the subset of
type i peers, who are still in downloading process. Given that
the number of typei seeds isWi, we have

E[|W i
f |] = Wi/(1− ρo).

Suppose the peer arrival rate isλ. According to the Little’s
Law, the expected number of peers in current system isN =
λL. For typei peer, we have

|W i
f |+ |W i

u| = Npi.

Since peers of typei can finish downloading in expected
T i and peers have steady download speed when the system
is stable, the set ofW i

u and W i
f peers can be regarded

as the arrival peers in the time interval[0, T i] and [T i, L],
respectively. The expected degree of the sets should follow

|W i
f |

|W i
u|

=
L− T i

T i
. (12)

Hence, we obtain the expected number of seeds of typei in
the system

E[Wi] = (1− ρo)|W i
f |

= (1− ρo)
L− T i

L
Npi. (13)

We validate the above results from the perspective of seed
evolution and resource requirement. First, when the system
is stable, the rate of turning into seed and seed departure
should be equal. For typei node, there are|W i

u| number of
peers possibly turning to seeds and the expect time for this
process isT i. Then the rate for peers to become seeds can
be approximated by|W i

u|/T i. Similarly, the seed departure
rate can be denoted byWi/(L−T i). Taking into account the
selfish ratioρo, we obtain

(1− ρo)
∑

i∈V

|W i
u|

T i
=

∑

i∈V

Wi

L− T i
. (14)

The above equation holds true provided the calculated set
degree and seed number based on Equation (12)(13). Second,
the system should own enough resource to facilitate peers
accomplish file downloading in the specified time. For type
i node, the expected file download time needsT i, then the
average download rate would berL/T i. Therefore, we should
have

Nū−
∑

i∈V

ρo

1− ρo
Wiui =

∑

i∈V

rL

T i
|W i

u|. (15)

The left item denotes the summation of system resource
excluding that of the dummy nodes. The right item denotes
the current system demand, the product of peer number and
download rate. By replacing the number with Equation (13),
it is equivalent to Equation (10).

The above analysis provides several insights of the system
behavior:

1) The system has very good scalability. From Equation
(10)(11), we can observe that the average download time
T i is not related with either the peer arrival rate or the
aggregate number of online peers.

2) The system resource reduces asρo increases. From
Equation (10)(13), we can deduce that the download
time T i increases and the number of seedsWi decreases
correspondingly asρo increases.
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To represent the aggregate seed upload bandwidth, we
define the functionfb(ρo) in terms of the selfish ratio

fb(ρo) =
∑

i∈V

Wiui

=
∑

i∈V

(1− ρo)
L− T i

L
Npiui. (16)

Based on Equation (10)(11), we can deduce the aggregate
bandwidth of seeds. This suggests thatat equilibrium state,
the system can self-sustain itself without server bandwidth
if the selfish ratio satisfies the constraint,ρo < f−1

b (Γr).
Γr is the upper bound of the server resource demand in
terms of the Property 1. If the aggregate seed bandwidth
is larger than this demand, then no server bandwidth is
necessary. Figure 6 plots the aggregate seed bandwidth under
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Fig. 6. Aggregate seed bandwidth vs. selfish ratio

two different node bandwidth distribution with various selfish
ratios, wherepa = pb = 0.5, L = 1000, λ = 2. We can
observe asρo increases, the resource of seeds decrease. The
larger the average peer bandwidth, the more the corresponding
seed resource we will obtain. Whenρo < 0.85, the system
can sustain itself without server bandwidth givenua = 1.4r,
ub = 0.8r andΓ = 30.

VI. SIMULATION RESULTS

We use simulations to evaluate the performance of the
proposed peering and pre-fetching strategies.bpbp np and
ranp np refer to the BPB-peering and random peering strate-
gies without pre-fetching respectively.bpbp inc refers to our
iPASS strategy, the combination of the BPB-peering with ATB
pre-fetching. A random peering strategy with pre-fetching,
denoted byranp wp, is also developed to make the comparison
comprehensive.

A. Simulation Setup

We developed a packet-level event-driven simulator in C++
to study the performance of iPASS. Our simulator adopts the
simulator engine of [25] simulating the end-to-end latency in
terms of real-world latency measurement results. Two 4-CPU
servers are employed to accelerate the simulations.

We follow the common consumption that peer download
bandwidth is larger than the streaming rate and peer upload
bandwidth is the only bottleneck. Three DSL types of nodes
are assigned with upload bandwidth1Mbps, 384kbps and

TABLE I
NORMALIZED PEER AVERAGE BW AND THE CORRESPONDINGFRACTION

OF PEER TYPES

ρ Fraction of Peers ρ Fraction of Peers
(1M,384k,128k) (1M,384k,128k)

0.90 0.15, 0.39, 0.46 1.40 0.34, 0.52, 0.14
1.00 0.20, 0.40, 0.40 1.50 0.43, 0.38, 0.19
1.12 0.23, 0.46, 0.31 1.60 0.49, 0.36, 0.15
1.20 0.25, 0.53, 0.22 1.70 0.54, 0.32, 0.14
1.30 0.30, 0.50, 0.20 1.80 0.60, 0.30, 0.10

128kbps based on the measurement study [26]. The video
streaming rate is400kbps and each chunk has5 KB size.
We vary the fractions of three types of nodes to adjust the
normalized peer average bandwidth, as shown in Table I. In
the simulation, we use a single video with30mins length. One
single simulation round lasts for90mins to get a better view of
the system behavior. We believe that the video length and the
simulation duration are already long enough to demonstrate
the features of different strategies. The peer arrivals follow
a Poisson process with arriving rateλ = 1/4 per second.
The average number of online peers maintains around500
after the startup phase and there are around1, 500 peers
joining the system during the whole session. The default
number of neighbors of each peer is15. The size of the
playback buffering threshold and pre-fetching window are
both 4 seconds. Peers broadcast buffer-map messages every
0.5 second and the token number information is piggybacked
within the message. The server bandwidth cost consists of two
parts, due to the complementary pull from peers for missing
chunks and request scheduled from peers who receive the
tokens from server respectively. The number of tokens sent
out periodically from server corresponds to1Mbps. To make
the comparison fair, we generate the peer arrivals and upload
bandwidth configuration beforehand and use the same setting
to compare different strategies.

B. Numerical Results

We first show the performance of various strategies on
server bandwidth saving in thelinear viewingmode. Peers will
not leave the system before they finish the whole video play-
back. The results on differentiated pre-fetching are presented
next. Then we study the performance with batch peer joins and
early peer departures. At last, we compare the performance of
iPASS with other P2P VoD systems.

1) Effectiveness on server cost saving:The server band-
width saving is the most important performance metric to
evaluate the different P2P strategies.
•Server cost evolution illustration.We begin by showing the
evolution of server cost during one simulation session. Fig.
7(a) shows the instant aggregate user demand and the peer
bandwidth when the normalized average peer bandwidth(ρ)
equals to 1.3. There are no peers in the system at the
beginning. The first peer finished playback and leave the
system at1, 800 second. The time period[0, 1, 800] is the
system startup phase. Fig. 7(b) presents the instant server cost
under the different strategies. We can observe that the server
cost of random peering strategies increase almost linearly at
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Fig. 7. Server cost under different peering strategies

the startup phase as the number of peers increases, then the
curves oscillate closely with the instant peer average band-
width. However, for BPB-peering strategies, it is interesting
to observe that the server cost increases in a short period and
maintains almost constant at the startup phase. Peers join the
system early have limited data to share with each other. The
server has to stream data to them directly. When more peers
get into the system, peers start to download data from each
other. When the startup phase is over, the server cost drops
nearly to zero inbpbp inc strategy. Later simulation results
show that a certain amount of peers evolve into seeds can
take the place of the server. Without pre-fetching,bpbp np
is also sensitive to the average peer upload bandwidth. It
successfully controls the server cost at low level. We can
find whenρ = 1.3, in the comparison of original streaming
solution without P2P support, the random-peering without pre-
fetching strategy (ranp np) can save at least around75%
server bandwidth. The saving can be improved to85% with
pre-fetching. With BPB-peering, thebpbp np can enhance the
saving further to around95%. Moreover,bpbp inc can sustain
the system without server cost after the startup phase.
•Performance with various peer distribution. Next we

examine the server cost savings with different normalized peer
average bandwidth. Fig. 8(a) shows the average server cost
after the first50 mins. As the system resource increases, the
cost of all strategies drops.bpbp np andbpbp inc both achieve
most bandwidth saving. Especiallybpbp inc can sustain itself
without server whenρ > 1.2. The system does not need server
bandwidth with the assistance of seeds.The BPB-peering can
effectively improve the scheduling efficiency, which results in
more server bandwidth saving.Pre-fetching enables peers to
download future content with extra bandwidth, thus reduces
the possibility of data pull from the server in the future. The
ranp wp strategy with pre-fetching can also work without
server whenρ = 1.8. When the normalized average bandwidth

is 0.9, bpbp np slightly outperformsbpbp inc. We believe this
is because that pre-fetching potentially impairs some peers’
normal playback when the whole system is in a bandwidth
resource deficit status. This disadvantage can be conquered in
iPASS by giving more preference to neighbors who haven’t
fill up the playback window during the scheduling.

Although bpbp np and bpbp inc perform closely in terms
of server bandwidth saving, pre-fetching ofbpbp inc produces
seeds in the system. Fig. 8(c) illustrates the number of seeds
during the simulation with normalized bandwidth equal to1.5.
It is very impressive that forbpbp inc the seed number can
even reach nearly40% of all peers. In contrast, the ineffec-
tiveness of random peering leads to fewer number of seeds
in ranp wp. Seeds make the system resource allocation more
flexible and thus more robust to peer dynamics. Furthermore,
seeds can completely take the place of the server.

Peers only exchange the interested area information, which
is efficient to keep the overhead low. Fig.8(b) shows the
control traffic throughput compared with data traffic. The
overhead contributes less than5% percentage for all cases. As
the resource increases, the exchange between peers become
more effective with large enough bandwidth, which leads to
less control overhead in return. The same phenomena can be
observed between random peeing and BPB-peering strategies,
because the latter is more effective than the former.

2) Impact of Differentiated Pre-fetching:To study the dif-
ferentiated pre-fetching of peers, we collect the following peer
information: the time to finish the whole video download
and the amount of contribution at the moment of finish
downloading. Fig. 9(a) plots the correlation between peer’s
download rate and contribution level asρ = 1.4. The crosses
closely scatter along the linear fitting line, which indicates
larger contribution peers can finish download faster. Due to
the limited simulation duration, the system does not enter
the equilibrium state. That is the reason why the crosses do
not form a strictly linear line. Peers in the deficit region are
believed to be among the earliest batch of peers which can
hardly find other suppliers to maintain the deserved down-
load rate although they contribute a lot. As more and more
peer become seeds, the download time of all peers decrease
correspondingly. But the peers with larger contribution still
finish sooner. The contributions of peers are limited by their
upload bandwidth. Fig. 9(b) plots the cumulative distribution
of the seeding timeof different types of peers, which is
defined as the duration from the time a peer finishes video
downloading till its departure. The peers with zero seeding
time are not counted. We can observe that larger bandwidth
peers get longer seeding time. Peers with1Mbps bandwidth
have average seeding time of18.6% of the video length, while
the average seeding time for peers with384kbps and128kbps
are 9.9% and 6.3% respectively. Differentiated pre-fetching
enlarges the seed capability further by encouraging peers with
larger bandwidth to become seeds earlier.

When the average peer bandwidth increases, peers can
averagely spend less time to accomplish the whole file down-
load. Meanwhile, due to the increased number and prolonged
seeding time of seeds, peers would expect to contribute less to
finish downloading. Fig. 9(c) presents the average download
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Fig. 9. Impact of differentiated pre-fetching on peer download time

time and amount of corresponding contribution level of peers.

3) Robustness against System Dynamics:Simulations in
previous sections assume peers are in linear viewing mode
and only leave the system after they finish their playback.
We now study the system’s performance under different peer
churn models. We start with the flash-crowd scenario where
a batch of peers joins the system at the same time. As
ρ = 1.5, 100 peers, almost20% of the maximum number of
online peers, suddenly join the system simultaneously around
3, 600 second. Fig. 10(a) shows the server cost evolution.
Pre-fetching prevents the bandwidth cost ofranp wp from
jumping up significantly. However, there are big jumps in both
non-pre-fetching schemesranp np andbpbp np. At the same
time, bpbp inc is highly robust against batch peer arrivals.
There is only a small pulse in the server cost after the batch
arrival. The server cost quickly goes back to zero afterward.

As an incentive in iPASS, peers are allowed to leave the
system after they finish downloading the whole video. In that
case, it cannot continue to stay as a seed to serve others. To
verify the impact, we assume all peers are selfish and they will
leave the system as soon as they finish the downloading. The
system performance under this assumption is plotted in Fig.
10(a) using the curve denoted asbpbp inc2. The performance
is close to bpbp inc. The peak value of the pulse due to
batch join at around3, 600 second is also less thanbpbp np
and the pulse soon disappears as time evolves. The adaptive
taxation scheme subsidizes large peers’ bandwidth for small
peers. Therefore the system still benefits a lot from the large
peers’ contribution before they finish the whole download.

Different from the linear viewing scenario, peers may
also leave the system without finishing playback. We also
study the impact on the system performance due to peer
early departures. In this simulation, the peer lifetime follows
a Weibull distribution. With Weibull distribution parameters
(1400, 4), peers leave the session gradually starting from
the 271th second. And there are only5.7% peers who will
watch the whole video without early departure. Fig.10(b)
shows the average server cost under various peer bandwidth
distributions. The server cost of all strategies decreases almost
half compared with Fig.8(a). This is because the number of
simultaneously online peers decreases due to the early peer
departures. But the relative performance order among different
strategies remains similar. Thebpbp inc still achieves the best
performance, and no server cost is needed whenρ > 1.4.

We also examine the system performance when users con-
duct VCR interactions, in particular, fast-forward. After the
system startup phase (the first1, 800 seconds),10% of the
new joining users are randomly picked to conduct the fast-
forward operations until they leave the system. Fig. 10(c)
presents the instant server cost at various fast-forward speeds
whenρ = 1.3. Because peers randomly connect to others with
ranp wp strategy, part of the peer neighbors may have far
large buffering progress and can serve them always. The VCR
interactions do not bring much impact, and the peak value of
server cost only increases by around23% compared with that
in Fig. 7(b) without VCR interactions. With dynamic BPB
support, bprp inc always maintains low server bandwidth
cost. When those peers fast-forward faster with4x speed,
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Fig. 10. System performance under various peer dynamic scenarios

the number and demand of online fast-forward peers decrease
accordingly, which leads to the decrease of server cost.

4) Comparisons with other VoD Systems:Without detailed
system implementation and parameter settings, we cannot
conduct head-to-head comparisons between iPASS and other
P2P VoD systems. We qualitatively compare iPASS with
some known mesh-based P2P VoD systems using performance
numbers reported by the authors. Simulations of BiTos[10]
assume all users arrive at almost the same time. They are
not comparable with common asynchronous peer simulation
setting. In PONDER[9] system, the server cost saving can
reach95% whenρ = 2.9. In [8], even the best approach with
network coding cannot let chunk delivery ratio exceed70%.
The saving in BASS[18] can only reach34% with their own
setting. The results are all simulated in linear viewing scenario.
While in iPASS, the system can sustain itself without server
whenρ > 1.2. Moreover, with early departure, the system can
also sustain itself whenρ > 1.4 with only 5.7% linear viewing
peers.

VII. C ONCLUSION

In this paper, we present the design of iPASS, a novel mesh-
based P2P VoD system. iPASS achieves high peer bandwidth
utilization at low system maintenance cost by adopting a
dynamic buffering-progress-based peering strategy. To pro-
vide incentives for peer uploading, iPASS employs a differ-
entiated pre-fetching design that enables peers with higher
contributions pre-fetch content at higher speed. We further
demonstrated that pre-fetching on peers can be coordinated
by an adaptive taxation algorithm to simultaneously maintain
system-wide QoE and provide service differentiations among
peers with different contributions. We provided a performance
analysis on the server cost bound and system behavior in
steady state. Through detailed packet-level simulations, we
showed that iPASS can efficiently offload server and achieve
the desired balance between the system-wide QoE and service
differentiations among heterogeneous peers.
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