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1 Capacity Model

We consider a generic multi-channel wireless network modeled by ahyper graphG = (V,H), whereV
is the set of nodes, andH is the set of broadcast links (potentially operating at different channels). Each
broadcast linkl ∈ H can be represented by ahyper-arcl = 〈i, J〉, with i ∈ V being the transmitter and
J ⊆ H the set of intended receivers withini’s broadcast range. To model selective broadcast and variable
range/rate broadcast from a transmitter, we allow one node to have multiple hyper-arcs, each of which has a
different subset of intended receivers. Due to interference between adjacent transmissions, not all broadcast
links can be activated simultaneously. LetziJ be the transmission rate on link〈i, J〉, andẐ be the set of
rate vectors that can be scheduled at any given time. Throughtime sharing between different rate vectors
in Ẑ, the feasible link rate region of the whole network can be characterized by the convex hull of̂Z,
Z , CH(Ẑ). For clarity of presentation, we start with a single multicast session consisting of a sources
and a set of receiversT ⊆ V . We will study the multiple multicast sessions case in Section 3. For a single
multicast session, we are interested in the following questions:

1. What is the highest rate at which the sources can multicast data to all receivers inT?

2. How do we achieve the highest rate through joint data coding, routing, and link scheduling?

It has been shown recently that the optimal multicast rate can be achieved through network coding in
general network topology. The problem can be cast into an information-flow based utility maximization.
Specifically, letrs be the multicast rate at sources, Us(·) be an increasing and strict concave utility function
of the multicast session. Let the transmission cost on link〈i, J〉 beCiJ(ziJ), whereCiJ(·) is an increasing
strict convex function. According to network coding theory, to achieve a multicast raters, it is necessary and
sufficient to establish an information flow froms to each receivert ∈ T , subject to the capacity constraints
on all wireless links in the network. As illustrated in Figure 1, letxt

iJj be the information flow for destination
t on broadcast link〈i, J〉 through relayj. Then the optimal multicast rate can be obtained by solving the
following problem.
Baseline Capacity Model: Primal Problem

max
{ziJ}∈Z,{xt

iJj
}
Us(rs) −

∑

〈i,J〉∈H

CiJ(ziJ ) (1)

subject to:
∑

j∈J xt
iJj ≤ ziJ , ∀〈i, J〉 ∈ H ∀t ∈ T, (2)

∑

〈i,J〉∈H,j∈J xt
iJj −

∑

〈m,I〉∈H|i∈I xt
mIi − rs1(i = s) ≥ 0, ∀t ∈ T, ∀i 6= t, (3)
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Figure 1: Multicast Information Flow over Multi-hop Wireless Network

where constraints (2) ensure the information flow through each broadcast link for each destination is bounded
below the scheduled link rate, and constraints (3) represent the information flow conservation on each node
for each destination. In the capacity model,rs corresponds to source rate control,z corresponds to link
scheduling,x corresponds to network coding based content scheduling androuting. In the model, if the
source multicast rate is fixed, the cross-layer scheduling is optimized for minimum network-wide transmis-
sion cost. To account for battery capacity on individual nodes, one can increase the link costCiJ(·) as
the battery life on nodei decreases. This way, the scheduling solution will lead to more balanced battery
consumption on all nodes.

When there is a set of sourcesS for the multicast session, rather than a single source, e.g., when the
same content is available at multiple nodes, one can augmentthe network by adding a virtual super source
s̄ and virtual no-cost infinite-bandwidth links〈s̄, si〉, ∀si ∈ S. Multicast from the setS in the original
network is equivalent to multicast from the single sources̄ in the augmented network. When there are
multiple multicast sessions in the network (unicast session can be treated as a single-source single-receiver
multicast),inter-session network codingcan potentially further improve the multicast efficiency ontop of
intra-session coding [1, 2]. However, the complexity of inter-session network coding is generally high.
As will be discussed in Section 3, without considering inter-session coding, the capacity model is readily
extended to multiple multicast/unicast sessions.

2 Optimal Cross-layer Scheduling

The joint optimization problem has a concave objective function, linear constraints and a convex feasible
set forz andx. It is a convex optimization problem, and can be solved by thecorresponding dual problem
without duality gap. One way to formulate the dual problem isto introduce lagrange multipliers to relax
constraints (3). Letqt

i be the lagrange multiplier for the information flow conservation constraint on nodei
for destinationt (by default, we setqt

t = 0). Then the Lagrangian can be formulated as

L(rs, z,x,q) , U(rs)−
∑

〈i,J〉∈H

CiJ(ziJ )+
∑

t∈T

∑

i6=t

qt
i





∑

〈i,J〉∈H,j∈J

xt
iJj −

∑

〈m,I〉∈H|i∈I

xt
mIi − rs1(i = s)





(4)
The dual functionD(q) is by definition the maximization of the Lagrangian

D(q) , max
rs,z,x

L(rs, z,x,q) (5)
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subject to:z ∈ Z,
∑

j∈J

xt
iJj ≤ ziJ , ∀〈i, J〉 ∈ H, ∀t ∈ T (6)

Given multipliersq, the dual functionD(q) can be obtained by solving two sub-problems.
Source Rate Control Sub-problemS1:

S1(q) , max
rs≥0

U(rs) −
∑

t∈T

qt
srs. (7)

Link and Content Scheduling Sub-problemS2:

S2(q) , max
z,x

∑

t∈T

∑

i6=t

qt
i





∑

〈i,J〉∈H,j∈J

xt
iJj −

∑

〈m,I〉∈H|i∈I

xt
mIi



 −
∑

〈i,J〉∈H

CiJ(ziJ ) (8)

subject to:z ∈ Z,
∑

j∈J

xt
iJj ≤ ziJ , ∀〈i, J〉 ∈ H, ∀t ∈ T (9)

By changing the order of summation in (8), we have

S2(q) , max
z∈Z,

P

j∈J xt
iJj

≤ziJ

∑

t∈T

∑

〈i,J〉∈H,j∈J

(qt
i − qt

j)x
t
iJj −

∑

〈i,J〉∈H

CiJ(ziJ )

= max
z∈Z

∑

〈i,J〉∈H







∑

t∈T



 max
P

j∈J xt
iJj

≤ziJ

∑

j∈J

(qt
i − qt

j)x
t
iJj



 − CiJ(ziJ)







= max
z∈Z

∑

〈i,J〉∈H

{

∑

t∈T

[max
j∈J

(qt
i − qt

j)]
+ziJ − CiJ(ziJ )

}

= max
z∈Z

∑

〈i,J〉∈H

wiJziJ − CiJ(ziJ),

where the weight of broadcast link〈i, J〉 under multiplierq is

wiJ ,
∑

t∈T

[max
j∈J

(qt
i − qt

j)]
+ (10)

ThenD(q) = S1(q) + S2(q).
Due to the strong duality, we can obtain the primal optimum{z∗,x∗} by solving the dual optimiza-

tion D(q∗) = minq≥0 D(q). The dual optimization can be solved by the standard subgradient method.
Specifically,q∗ can be approached by the following iterative algorithm

q(k + 1) = [q(k) − h(k)ξ(k)]+, (11)

whereξ(k) is a subgradient of the dual functionD(·) atq(k), h(k) is the step size. Let{rs(k), z(k),x(k)}
be the optimizing variables solving (7) and (8) atq(k). One subgradient can be obtained as

ξt
i(k) =

∑

〈i,J〉∈H,j∈J

xt
iJj(k) −

∑

〈m,I〉∈H|i∈I

xt
mIi(k) − rs(k)1(i = s) (12)

To calculateξ(k), we have

Source Rate Control: rs(k) = argmax
rs

Us(rs) −
∑

t∈T

qt
srs, (13)

Link Scheduling: z(k) = argmax

z∈Z

∑

〈i,J〉∈H

wiJziJ − CiJ(ziJ ), (14)
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Information Flow Routing: The information flow variablesxt
iJj(k) can be calculated in the following

ways:

• if ziJ(k) > 0 andmaxj∈J(qt
i(k) − qt

j(k)) > 0

1. letbt
i(k) , maxj∈J(qt

i(k) − qt
j(k)); andBt

i(k) = {j|qt
i(k) − qt

j(k) = bt
i(k)}

2. xt
iJj(k) = 0, if j /∈ Bt

i(k);

3. xt
iJj(k) = ziJ(k)

|Bt
i (k)|

, if j ∈ Bt
i(k);

• otherwise,xt
iJj(k) = 0, ∀j,∀t;

Follow the convergence theorem of subgradient methods, iflimk→∞ h(k) = 0 and
∑∞

k=1 h(k) = ∞, the
iterative algorithm converge to the dual optimumD(q∗), and the variables{rs(k), z(k),x(k)} converge to
the primal optimum{r∗s , z

∗,x∗}.

2.1 Physical Interpretation

In equation (11), if we fix the step size to beh(k) = h, defineQt
i(k) = qt

i(k)/h, then we have

Qt
i(k + 1) =







Qt
i(k) −





∑

〈i,J〉∈H,j∈J

xt
iJj(k) −

∑

〈m,I〉∈H|i∈I

xt
mIi(k) − rs(k)1(i = s)











+

(15)

ThenQt
i(k) is the the backlog of theinformation flow queueon nodei for destinationt. An information flow

queue is the counterpart of the per-destination queue on each node in the optimal cross-layer scheduling for
unicast flows [3].q(k) coordinates the scheduling at three layers:
Source Rate Control – Information Queue Backpressure
In equation (13), the source rate is regulated by the derivative of the multicast utility function and the
summation of the information queue back-pressure at the source over all its destinations. Recall for unicast,
each source only reacts to back-pressure from its associated single destination.
Link Scheduling – Maximum Information-Weight Matching (MIWM)
In equation (14), the link weight for a broadcast link〈i, J〉 is wiJ ,

∑

t∈T [maxj∈J(qt
i − qt

j)]
+, i.e., the

summation of the maximum differential queue length betweennodei and any neighbor in setJ over all des-
tinations. The link scheduling is calculated as the solution of the maximum information-weight matching
problem defined in (14). MIWM is different from the Maximum Weight Matching (MWM) policy for the
unicast case. In MWM, each link has one intended receiver, different flows to different destinations compete
for bandwidth on a link, and the urgency of activating a unicast link is measured by the maximum differential
queue length over all destinations. In multicast, one hyperlink can have multiple intended receivers. For a
destination, the urgency of activating a hyper link is measured by the maximum differential queue length for
the destination between the transmitter and its intended receivers. With perfect network coding, information
flows to different destinations in the same multicast session have no bandwidth conflict on a hyperlink. They
can be simultaneously carried by a hyperlink as long as theirindividual rates are smaller than the transmis-
sion rate of the hyperlink. In other words, activating a hyperlink can simultaneously benefit information
flows to different destinations in the same session. Consequently, for a single multicast session, a hyperlink
is weighted by the summation of the maximum differential queue lengths to all multicast destinations.
Routing – Greedy Information Flow
In unicast, when a link is activated, its link bandwidth is used to transmit the traffic for the destination
maximizing the differential queue length. In multicast, when a hyperlink is activated, its link bandwidth is
used to transmit information for all destinations with information backlog on the transmitter. If a broadcast
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link 〈i, J〉 is activated, for each destination, information only flows from nodei to the subset of neighbors
maximizing the differential queue length.

3 Multiple Multicast Sessions

When multiple multicast sessions overlap in time, they compete for the bandwidth available in the network.
The content scheduling, routing and link activation of concurrent sessions are tightly coupled. Our baseline
analysis can be extended to study the optimal sharing between them. Specifically, there is a setS of asyn-
chronous P2P sharing sessions. For a session, lets be the source, (for a session with multiple sources,s is
the virtual super-source), andTs be the set of active receivers of sources. Without loss of generality, we
assume there is no overlap between receiver sets of different sources. (If there is one node joins multiple
multicast sessions, we can generate multiple virtual nodes, each of which joins one session, and is connected
to the node with a infinite-bandwidth virtual link)

The optimal sharing between sessions can be formulated as:

max

{ziJ}∈Z,{x
(s,t)
iJj

}

∑

s∈S

Us(rs) −
∑

〈i,J〉∈H

CiJ(ziJ ) (16)

subject to
∑

j∈J x
(s,t)
iJj ≤ z

(s)
iJ ,

∑

s∈S z
(s)
iJ ≤ ziJ , ∀s ∈ S, ∀t ∈ Ts, ∀〈i, J〉 ∈ H (17)

∑

〈i,J〉∈H,j∈J x
(s,t)
iJj −

∑

〈m,I〉∈H|i∈I x
(s,t)
mIi − rs1(i = s) ≥ 0, ∀s ∈ S, ∀t ∈ Ts, ∀i 6= t, , (18)

wherex
(s,t)
iJj is the information flow from sources to its receivert on broadcast link〈i, J〉 through relayj,

z
(s)
iJ is the bandwidth share of sessions on 〈i, J〉. Similar to the single-session case in Section 1, the optimal

multi-session sharing can be obtained by a cross-layer scheduling policy.
Let qt

i be the lagrange multiplier for the information flow conservation constraint (18) on nodei for
destinationt (by default, we setqt

t = 0). Then the Lagrangian can be formulated as

Lm(r, z,x,q) ,
∑

s∈S

Us(rs)−
∑

〈i,J〉∈H

CiJ(ziJ )+
∑

t∈T

∑

i6=t

qt
i





∑

〈i,J〉∈H,j∈J

x
(s,t)
iJj −

∑

〈m,I〉∈H|i∈I

x
(s,t)
mIi − rs1(i = s)





(19)
The dual functionDm(q) is by definition the maximization of the Lagrangian

Dm(q) , max
r,z,x

Lm(r, z,x,q) (20)

subject to:
∑

j∈J

x
(s,t)
iJj ≤ z

(s)
iJ ,

∑

s∈S

z
(s)
iJ ≤ ziJ , z ∈ Z, ∀s ∈ S, ∀t ∈ Ts, ∀〈i, J〉 ∈ H (21)

Given multipliersq, the dual functionD(q) can be obtained by solving two sub-problems.
Source Rate Control Sub-problemSm

1 :

Sm
1 (q) , max

rs≥0
Us(rs) −

∑

t∈T

qt
srs. (22)

Link and Content Scheduling Sub-problemSm
2 :

Sm
2 (q) , max

z,x

∑

s∈S

∑

t∈Ts

∑

i6=t

qt
i





∑

〈i,J〉∈H,j∈J

x
(s,t)
iJj −

∑

〈m,I〉∈H|i∈I

x
(s,t)
mIi



 −
∑

〈i,J〉∈H

CiJ(ziJ) (23)
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subject to:
∑

j∈J

x
(s,t)
iJj ≤ z

(s)
iJ ,

∑

s∈S

z
(s)
iJ ≤ ziJ , z ∈ Z, ∀s ∈ S, ∀t ∈ Ts, ∀〈i, J〉 ∈ H (24)

By changing the order of summation in (23), we have

Sm
2 (q) , max

P

j∈J x
(s,t)
iJj

≤z
(s)
iJ

,
P

s∈S z
(s)
iJ

≤ziJ ,z∈Z

∑

s∈S

∑

t∈Ts

∑

〈i,J〉∈H,j∈J

(qt
i − qt

j)x
(s,t)
iJj −

∑

〈i,J〉∈H

CiJ(ziJ )

= max
z∈Z

∑

〈i,J〉∈H







max
P

s∈S z
(s)
iJ

≤ziJ

∑

s∈S

max
P

j∈J x
(s,t)
iJj

≤z
(s)
iJ

∑

t∈Ts





∑

j∈J

(qt
i − qt

j)x
(s,t)
iJj



 − CiJ(ziJ )







= max
z∈Z

∑

〈i,J〉∈H

{

max
P

s∈S z
(s)
iJ

≤ziJ

∑

s∈S

∑

t∈Ts

(

[max
j∈J

(qt
i − qt

j)]
+z

(s)
iJ

)

− CiJ(ziJ)

}

= max
z∈Z

∑

〈i,J〉∈H

{

max
P

s∈S z
(s)
iJ

≤ziJ

∑

s∈S

w
(s)
iJ z

(s)
iJ − CiJ(ziJ)

}

= max
z∈Z

∑

〈i,J〉∈H

wiJziJ − CiJ(ziJ ),

where the weight of broadcast link〈i, J〉 under multiplierq is

wiJ , max
s∈S

w
(s)
iJ , with w

(s)
iJ ,

∑

t∈Ts

[max
j∈J

(qt
i − qt

j)]
+ (25)

ThenDm(q) = Sm
1 (q) + Sm

2 (q).
Due to the strong duality, we can obtain the primal optimum{z∗,x∗} by solving the dual optimization

Dm(q∗) = minq≥0 Dm(q). The dual optimization can be solved by the standard subgradient method.
Specifically,q∗ can be approached by the following iterative algorithm

q(k + 1) = [q(k) − h(k)ξ(k)]+, (26)

whereξ(k) is a subgradient of the dual functionDm(·) atq(k), h(k) is the step size. Let{r(k), z(k),x(k)}
be the optimizing variables solving (22) and (23) atq(k). One subgradient can be obtained as

ξt
i(k) =

∑

〈i,J〉∈H,j∈J

x
(s,t)
iJj (k) −

∑

〈m,I〉∈H|i∈I

x
(s,t)
mIi (k) − rs(k)1(i = s) (27)

To calculateξ(k), we have

Source Rate Control: rs(k) = argmax
rs

Us(rs) −
∑

t∈T

qt
srs, (28)

Link Scheduling: z(k) = argmax

z∈Z

∑

〈i,J〉∈H

wiJziJ − CiJ(ziJ ), (29)

Information Flow Routing: The information flow variablesx(s,t)
iJj (k) can be calculated in the following

ways:

• if ziJ(k) > 0, let SiJ(k) = {s|w
(s)
iJ (k) = wiJ(k)}, thenz

(s)
iJ = 0, if s /∈ SiJ(k); z

(s)
iJ = ziJ(k)

|SiJ (k)| , if

s ∈ SiJ(k), for ∀t ∈ Ts, let bt
i(k) , maxj∈J(qt

i(k) − qt
j(k)), if bt

i(k) > 0, then

1. letBt
i(k) = {j|qt

i(k) − qt
j(k) = bt

i(k)}
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2. x
(s,t)
iJj (k) = 0, if j /∈ Bt

i(k);

3. x
(s,t)
iJj (k) =

z
(s)
iJ

(k)

|Bt
i (k)|

, if j ∈ Bt
i(k);

• Otherwise,x(s,t)
iJj (k) = 0, ∀j,∀s,∀t;

With multiple multicast sessions, when a broadcast link〈i, J〉 is activated, its link bandwidth is equally

shared between all sessions maximizing the information link weightw(s)
iJ . Within each session, similar to

the single multicast session case, for each destination, information only flows from nodei to the subset of
neighbors maximizing the differential queue length.

Follow the convergence theorem of subgradient methods, iflimk→∞ h(k) = 0 and
∑∞

k=1 h(k) = ∞,
the iterative algorithm converge to the dual optimumDm(q∗), and the variables{r(k), z(k),x(k)} converge
to the primal optimum{r∗, z∗,x∗}.

The current analysis assumes there is no content coding cross different sessions. As demonstrated in [2],
inter-session network coding can provide additional gain.We will investigate the adoption of inter-session
coding in future our analysis and designs.
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