
On the Minimum Delay Peer-to-Peer Video Streaming:
how Realtime can it be?

Yong Liu
Electrical and Computer Engineering

Polytechnic University
Brooklyn, NY, 11201, USA

yongliu@poly.edu

ABSTRACT
P2P systems exploit the uploading bandwidth of individual peers
to distribute content at low server cost. While the P2P bandwidth
sharing design is very efficient for bandwidth sensitive applica-
tions, it imposes a fundamental performance constraint fordelay
sensitive applications:the uploading bandwidth of a peer cannot
be utilized to upload a piece of content until it completes the down-
load of that content.This constraint sets up a limit on how fast a
piece of content can be disseminated to all peers in a P2P system.
In this paper, we theoretically study the impact of this inherent de-
lay constraint and derive the minimum delay bounds for realtime
P2P streaming systems. We show that the bandwidth heterogene-
ity among peers can be exploited to significantly improve thedelay
performance of all peers. We further propose a simplesnow-ball
streamingalgorithm to approach the minimum delay bound in real-
time P2P video streaming. Our analysis suggests that the proposed
algorithm has better delay performance and more robust thanex-
isting tree-based streaming solutions. Insights brought forth by our
study can be used to guide the design of new P2P systems with
shorter startup delays.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications; C.2.4 [Distributed Sys-
tems]: Distributed Applications; C.4 [Performance of Systems]:
Design Studies

General Terms
Algorithm, Design, Performance

Keywords
Peer-to-Peer Streaming, Realtime, Delay Bound

1. INTRODUCTION
Video-over-IP applications have recently attracted a large num-

ber of users on the Internet. Youtube [13] alone hosted some45
terabytes of videos and attracted1.73 billion views by the end of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’07, September 23–28, 2007, Ausburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009 ...$5.00.

August2006. While Youtube employs content delivery networks
to stream video to end users, Peer-to-Peer (P2P) video streaming
solutions utilize the uploading bandwidth of end users to distribute
video content at low infrastructure cost. Several P2P streaming sys-
tems have been deployed to provide on-demand or realtime video
streaming over the Internet [2, 15, 9, 10]. While the initialsuc-
cesses of P2P streaming are impressive, compared with the tradi-
tional TV services provided by cable companies, all currentP2P
streaming systems suffer from longer video startup delays,namely,
the lag between a video object is chosen by a user and the ac-
tual playback starts on his/her screen. Our recent measurement
study [3] on a popular P2P streaming system showed that the play-
back delays range from tens of seconds to a couple of minutes.

In traditional server-client video streaming systems, thevideo
startup delay perceived by a client is determined by the delay and
bandwidth variations on the its connection with the server.P2P
systems exploit the uploading bandwidth of individual peers to dis-
tribute content at low server cost. While the P2P bandwidth sharing
design is very efficient for bandwidth sensitive applications, such
as file sharing, it imposes a fundamental performance constraint
for delay sensitive applications:the uploading bandwidth of a peer
cannot be utilized to upload a piece of content until it completes
the download of that content.This constraint sets up a limit on how
fast a piece of content can be disseminated to all peers.

In this paper, we theoretically study the impact of this inherent
delay constraint and derive the minimum delay bounds for realtime
P2P streaming systems. Our analytical results unveil the impact
of the bandwidth distribution among peers on their delay perfor-
mance. We show that the bandwidth heterogeneity among peers
can be exploited to improve the peers’ delay performance. Even
a very small percentage of super peers can significantly reduce
the video start-up delays for all peers. We further propose asim-
plesnow-ball streamingalgorithm to approach the minimum delay
bound in realtime P2P video streaming. The delay performance
of the proposed algorithm is compared with existing tree-based
streaming solutions. Our analysis indicates that the proposed snow-
ball streaming algorithm not only can achieve a close-to-optimum
delay performance, but also has the potential to do so in faceof
realistic network impairments, such as long propagation delays and
random bandwidth variations. The delay bounds derived in our
analysis can serve as delay performance benchmarks for various
proposed/deployed P2P streaming systems. Insights brought forth
by our study can be used to guide the design of new P2P streaming
systems with shorter start-up delays.

The paper is organized as follows. In Section 2, we provide
a short overview on the existing P2P streaming solutions. The
bounds on the delay for a single chunk dissemination is established
in Section 3 for both homogeneous and heterogeneous P2P net-

work environments. A snow-ball chunk dissemination algorithm is
introduced to achieve the delay bound for a single chunk dissemi-
nation. In Section 4, we show that the snow-ball chunk dissemina-
tion algorithm can be extended to a snow-ball streaming algorithm
to achieve the delay bounds in continuous video streaming. The
performance of the snow-ball algorithms under realistic network
environment is analyzed in Section 5. The paper is concludedwith
future works in Section 6.

2. BACKGROUND AND RELATED WORK
Existing P2P streaming solutions can be classified into the fol-

lowing categories.

2.1 Single-Tree Streaming
In a single-tree based approach, peers are organized into a tree

rooted at the server. Each peer receives the stream from its parent
peer and forward to its children peers. The fan-out degree ofa peer
is limited by its uploading bandwidth. An early example is Over-
cast [4]. One major drawback of single-tree approach is thatall the
leaf nodes don’t contribute their uploading bandwidth. They ac-
count for a large ratio of peers in the system. This largely degrades
the peer bandwidth utilization efficiency.

2.2 Multi-Tree Streaming
To solve the leaf nodes problem, Multi-Tree based approaches

have been proposed [1, 5]. In multi-tree streaming, the server di-
vides the stream intom sub-streams. Instead of one streaming tree,
m sub-trees are formed, one for each sub-stream. In a fully bal-
anced multi-tree streaming, the node degree of each sub-tree ism.
Each peer joins all sub-trees to retrieve sub-streams. Any peer is
positioned on an internal node in only one sub-tree and only up-
loads one sub-stream to itsm children peers in that tree. In each
of the remainingm − 1 sub-trees, the peer is positioned on a leaf
node and downloads a sub-stream from its parent peer. Figure1(a)
shows an example of two-tree streaming for7 peers.

For any tree-based streaming approach, a chunk is disseminate
in a hierarchical way. As illustrated in Figure 1(b), for am−degree
tree ofN peers, peer0 sends a chunk to itsm children peers at level
1, each of which then is responsible for disseminating the chunk in
its own subtree with(N − 1)/m peers (including themselves). In
terms of time, afterm transmissions by peer0, the task of dissem-
inating a chunk toN peers becomesm sub-tasks of disseminating
the chunk toN−1

m
peers.

0

1

43

2

65

3

4

10

5

62

S
stream 1 stream 2

(a) 7-nodes example

1 m

0

N−1

m

N−1

m

m

m m

(b) hierarchical view

Figure 1: Multi-Tree Based Streaming

2.3 Mesh-based Streaming
The management of streaming trees is challenging in face of fre-

quent peer churns. Mesh-based streaming systems are more ro-
bust against peer dynamics. Many recent P2P streaming systems

adopt mesh-based streaming approach [15, 8, 12, 6, 14]. In a mesh-
based system, there is no static streaming topology. Peers establish
and terminate peering relationship dynamically. A peer maydown-
load/upload video from/to multiple peers simultaneously.A recent
simulation study [7] suggests that mesh-based systems havesupe-
rior performance than tree-based solution. However, in practice,
the delay performance of mesh-based streaming is still not satis-
factory. Our analytical results indicate mesh-based systems have a
lower delay bound than that can be achieved by the optimal tree-
based systems. One important motivation of the study presented in
this paper is to provide some guidelines for the design of peering
strategies and chunk scheduling schemes in mesh-based streaming
systems.

Despite of P2P streaming systems’ popularity, few studies have
addressed their delay performance analytically. One related work
was presented in [11]. Authors of [11] studied the trade-offbe-
tween the server bandwidth cost, the maximum number of peers
that can be supported, and the maximum number of streaming hops
experienced by a peer. We study the optimal streaming strategy
when the server only plays a minimum role in video uploading.
The delay bounds obtained through our analysis is much tighter
than that predicted in [11], and can be achieved by the proposed
snow-ball streaming algorithm.

3. BOUND ON SINGLE CHUNK DISSEMI-
NATION

In P2P video streaming systems, video content is disseminated
in units ofchunks. One chunk is normally transmitted in multiple
packets [3]. Given a P2P system with a server andN peers, one
can ask the question:If the server generates a chunk of content at
timet = 0, how does one disseminate that chunk to allN peers in
the shortest time possible?The answer depends on the size of the
chunk, available bandwidth and the propagation delays among all
nodes in the system, including the server and all peers.

Without loss of generality, we can normalize the chunk size to
be one, and choose the video streaming rate as the bandwidth unit.
Consequently, the chunk transmission time on a unit bandwidth
link is 1 time unit, which equals to the chunk playback time. For
now, let’s assume the propagation delay between any two nodes
is dominated by the chunk transmission delay and thus can be ig-
nored. We will take propagation delays into account in Section 5.1
when the transmission delay becomes small. Without using P2P
dissemination, if the server has a bandwidth ofN , the server can
upload that chunk to all peers byt = 1. However, this is not a
scalable solution whenN is large. We are interested in the delay
performance when peers upload chunks among themselves.

3.1 Homogeneous case
We start with a homogeneous case where the server and all peers

have bandwidth of1. This corresponds to theTit-for-Tat case in
Bittorrent where peers upload roughly the same amount of data as
they download. We further assume that the server will uploadonly
one copy of the chunk to one peer and won’t participate the chunk
dissemination afterward.

3.1.1 Single-Tree Chunk Dissemination
Given the unit bandwidth on all peers, a peer can only have one

child. The only possible single-tree based streaming solution is a
chain: the server uploads the chunk to peer0, then peer0 uploads
it to peer1, and so on until peerN − 2 uploads it to peerN − 1.
The chunk propagates along the chain from the server to all peers
in timeN . The average delay is(N + 1)/2.

3.1.2 Multi-Tree Chunk Dissemination
If the multi-tree approach with degreem is employed, a chunk

propagates from the server to all peers along a sub-tree withnode
degree ofm. If there areN peers, the number of levels of each
subtree isK = ⌈logm(N(m − 1) + 1)⌉. The only peer at level0
downloads the chunk directly from the server, a peer at leveli then
uploads a video chunk tom children peers at leveli+1. LetNi be
the number of peers at leveli. ThenNi = mi, 0 ≤ i < K−1, and
NK−1 = N − mK−2. Since each peer/server only has uploading
bandwidth of1, if the uploading is done in parallel, all children
peers of one peer will receive the chunkm time slots after their
common parent receives the chunk. The peer at the top level can
always receive the chunk from the server after one time slot.For
parallel uploading, the peers at the very bottom level will receive
the chunk in(K − 1)m + 1 time slots. The average delay among
all peers is

D̄p(m) =
1

N

K−1
X

i=0

(im + 1)Ni (1)

WhenN is large, the average delay and the worst-case delay are
both of the form

Dp(m) = m logm N + o(1) =
m

log2 m
log2 N + o(1). (2)

The shortest delay is achieved at the degree

m∗ = argmin
m

Dp(m) = 3,

i.e., the server divides the stream into3 sub-streams, and feeds each
stream into one sub-tree with node degree of3. The minimum
delay, in both average and worst-case sense, is1.89 log2 N + o(1).

If the uploading is done sequentially, the first child peer will re-
ceive the chunk from its parent within1 time slot, and the last child
of a peer will receive the chunk afterm time slots. The longest
delay at leveli is still im + 1. Therefore the worst-case delay is
still (K −1)m+1. A degree of3 can achieve the minimum worst-
case delay of1.89 log2 N + o(1). The average delay at leveli is
(m+1)/2 time slots more than the average delay at leveli−1. The
peer at the top level can always receive the chunk from the server
after one time slot. We can calculate the average delay amongall
peers as

D̄s(m) =
1

N

K−1
X

i=0

(i(m + 1)/2 + 1)Ni.

Again, whenN is large, the average delay is

D̄s(m) =
m + 1

2
logm(N) + o(1) =

m + 1

2 log2 m
log2 N + o(1).

To minimize the average delay, the optimal degree is4, and the
minimum average delay is1.25 log2 N + o(1), which is less than
2/3 of the average delay of parallel uploading.

3.1.3 Snow-Ball Chunk Dissemination
For single chunk dissemination, peers only need to disseminate

one chunk, instead of a continuous stream of chunks. After down-
loading the chunk, a peer can keep uploading that chunk to other
peers until all peers receive it. This will largely reduce the chunk
dissemination time. The accumulation of the aggregate uploading
bandwidth for the chunk mimics the formation of a snow-ball.We
refer it as thesnow-ball chunk disseminationapproach. Figure 2(a)
illustrates the progress of snow-ball chunk disseminationfor eight
peers. An arc from nodei to nodej with a labelk represents peeri

(or the server) uploads the chunk to peerj in time slotk. The server
uploads the chunk to peer0 in time slot0. In time slot1, peer0
uploads the received chunk to peer1. In time slot2, both peer0
and peer1 will upload the chunk to peer2 and3 respectively. Peer
0, 1, 2, 3 will upload the chunk to peer4, 5, 6, 7 in time slot3. It
takes4 time slots for all peers to receive the chunk.

For general cases, the snow-ball approach disseminates a chunk
in a recursive way. As illustrated in Figure 2(b), after peer0 sends
a chunk to peer1, the task of disseminating a chunk toN peers
becomes two sub-tasks of disseminating the chunk toN

2
peers. Peer

0 continues to lead one sub-task, and peer1 becomes the leader for
the other sub-task. Even though the task splitting degree isonly
2, compared with degreem in Figure 1(b), it happens after only
1 chunk transmission, instead ofm transmissions in Figure 1(b).
We will show that the snow-ball branching is actually the fastest
branching process.

4

0

1

32

7

56

(1)

(2)

(2)

(3)

(3)

(3)

(3)

S (0)

(a) 8-nodes

0 1

0

N

2

N

2

(b) recursive view

Figure 2: Snow-ball Chunk Dissemination

Let x(i) denote the number of peers that have the chunk at the
beginning of time sloti. In time slot0, the server uploads the
chunk to one peer, therefore,x(1) = 1. Afterward, every peer with
the chunk will upload it to another peer in one time slot, we have
x(i) = 2∗x(i−1) = 2i−1. Therefore it takesK∗ = 1+⌈log2 N⌉
time slots for allN peers receive the chunk. One peer receives the
chunk after1 time slot,2i−2 peers receive the chunk afteri time
slots∀1 < i < K∗, andN − 2K∗−2 peers receive the chunk after
K∗ time slots. The average delay performance is

D̄ =
1

N

(

1 +

K∗−1
X

i=2

i2i−2 + K∗(N − 2K∗−2)

)

.

If N = 2K∗−1, the average delay is:̄D = log2 N + 1
N

.

THEOREM 1. In a homogeneous P2P streaming system, the snow-
ball chunk dissemination approach simultaneously achieves the min-
imum average peer delay and the minimum worst-case peer delay.

Proof: For arbitrary chunk dissemination approach, letx(i) denote
the number of peers that have the chunk at the beginning of time
slot i. Since the server will upload the chunk to the first peer at
time slot0, we always havex(1) = 1. x(i) is necessarily a non-
decreasing function ofi. We define a peer delay functionT (k) as
the delay for thek-th peer to receive the chunk. Then the worst-
case peer delay isT (N) and the average delay is

PN
k=1 T (k)/N .

Given{x(i), i ≥ 1}, T (k) can be calculated as

T (k) = min{i : x(i) ≥ k}, 1 ≤ k ≤ N. (3)

Due to the homogeneous unit uploading bandwidth among peers,
we always havex(i+1) ≤ 2x(i), i.e., a peer can at most upload the
chunk to another peer within one time slot. By induction,x(i) ≤

2i−1. For the snow-ball approach,x∗(i) = 2i−1. Therefore, for
any other chunk dissemination approach,x(i) ≤ x∗(i), i ≥ 1. Let
T ∗(k) be the peer delay function for the snow-ball approach. Since
x(i) ≤ x∗(i), i ≥ 1, due to (3), we haveT ∗(k) ≤ T (k), k ≥ 1.
Therefore, the snow-ball chunk approach simultaneously achieves
the shortest average and worst-case chunk dissemination delay.
Table 1 compares the delay performance of snow-ball chunk dis-
semination with tree-based and the optimal multiple-tree approach:
For a system of1024 peers, if the transmission delay of a chunk is
0.2 second, it takes only2 seconds for the snow-ball approach to
complete chunk dissemination to all peers, while the delay achieved
by the optimal multi-tree approach is3.8 seconds. Since the single-
tree approach degrades to a chain, peers’ average delay is around
100 seconds.

In the snow-ball approach, peers who receive the chunk in the
k-th time slot upload the chunk forKmin − k times, the peers who
receive the chunk in the last time slot (about half of the peers) don’t
get a chance to upload the chunk to other peers. Their uploading
bandwidth can be utilized to upload other chunks in continuous
video streaming when multiple chunks are in transition simultane-
ously. We will further show in Section 4 that the snow-ball chunk
dissemination can be extended tosnow-ball continuous streaming
to continuously disseminate a stream of chunks and the worst-case
delay for each chunk is still1+⌈log2 N⌉. The snow-ball streaming
in Section 4 is designed in an optimal way such that the uploading
bandwidth of all peers are fully utilized to achieve the minimum
delay bound for each chunk.

3.1.4 Effect of Increasing Server Bandwidth
If the server bandwidth is increased from1 to C, we can divide

N peers intoC clusters, and let the server upload the chunk to
one peer in each cluster within one time slot. Then, within each
cluster, we can employ tree, multi-tree or snow-ball approach to
disseminate the chunk. For the chain approach, the delay canbe
reduced by a factor ofC. However, for both multi-tree and snow-
ball approach, the improvement is only a constant proportional to
log2 C. If the server participates in the snow-ball dissemination, at
each round, the server can upload the chunk toC peers. Letz(k)
be the number of nodes (including the server) with the chunk at the
beginning of time slotk,

z(k) = 2 ∗ z(k − 1) + C − 1 = (2k − 1)C + 1.

The finish time is⌈log2(
N
C

+ 1)⌉. The delay improvement is still
bounded by⌈log2 C⌉.

3.1.5 Effect of Increasing Peer Bandwidth
Secondly, if we also increase the bandwidth of each peer from

1 to C, in the tree based approach, the server can simultaneously
upload toC peers within one timeslot, and each peer can also up-
load toC peers within one timeslot. Therefore, we can construct
a streaming tree rooted at the server with node degree ofC. The
delay performance can be calculated in a similar way of the Multi-
Tree case. If parallel uploading is employed, both the average and
worst-case delay islogC(N)+o(1). If sequential uploading is em-
ployed, the worst case delay is stilllogC(N) + o(1), the average
delay can be reduced toC+1

2C
logC(N) + o(1).

Multi-Tree approach can still be utilized. Now all the uploading
from a peer to its children can be accelerated by a factor ofC. The
delays can be reduced to1/C of the unit bandwidth case. Then the
optimal degrees for parallel uploading and for sequential uploading
remain to be3 and4 respectively.

For the snow-ball algorithm, at each time slot, each peer can

upload toC peers simultaneously, therefore,

x(k) = (C + 1) ∗ x(k − 1) = (C + 1)(k−1).

The finish time isKmin = ⌈logC+1 N⌉ + 1.
In the previous calculation, we assume a peer uploads the chunk

simultaneously toC children peers. AllC children peers will re-
ceive the chunk at the end of the time slot. From the study of multi-
tree approaches, we learned that sequential uploading can achieve
better average delay performance than parallel uploading.We can
adopt sequential uploading in snow-ball approach. A peer uploads
the chunk toC other peerssequentially, so that the peer receiving
the chunk first can immediately upload to other peers withoutwait
for the next time-slot. The delay performance in this case isactu-
ally ⌈log2 N⌉+1

C
. This is because, with bandwidthC and sequential

upload, each peer can finish the upload of one chunk within1/C
time slot. If we change the time unit to be1/C of the original time
unit, the server and peer bandwidth becomes1, we go back to the
homogeneous case in Section 3.1 , all peers can receive the chunk
within ⌈log2 N⌉+ 1 small time slots, which is⌈log2 N⌉+1

C
original

time slots.

3.2 Heterogeneous Cases
In real network environment, different peers have different types

of network access, therefore, different uploading bandwidth. From
the study so far, the chunk dissemination delay is determined by
how quickly peers’ bandwidth can be utilized to upload the chunk.
We define the system-wideusable uploading bandwidthU(t) for
the chunk as the aggregate uploading bandwidth that can be uti-
lized to upload the chunk at any timet. In the homogeneous case,
every peer has the same uploading bandwidth.U(t) is proportional
to the number of peers with the chunkx(t). The order at which
peers receive the chunk has no impact on howU(t) grows over
time. However, in a heterogeneous environment, the order atwhich
peers receive the chunk determines the growth speed ofU(t), and
consequently the chunk dissemination delay. For the quick growth
of U(t), the intuition is to upload the chunk to peers with large
uploading capacities first.

In this section, we study the impact of uploading bandwidth het-
erogeneity among peers on the chunk dissemination delay by study-
ing several typical cases. It will become clear that the peerup-
loading bandwidth heterogeneity enables the snow-ball approach
to achieve a shorter chunk dissemination delay than the homoge-
neous case.

3.2.1 Case 1: Super-peers and Free-riders
Suppose there areN/C super peers that can upload at rateC >

1. All the remaining peers are free-riders and don’t participate in
the uploading. The chunk can be disseminated by the snow-ball
approach to allN/C super peers within1 + 1

C
⌈log2(N/C)⌉ time

slots. Since all super peers can aggregately uploadN copies of
the chunk within one time slot, they can upload the chunk to the
remaining(1−1/C)N free-riders in1−1/C additional time slot.
The total delay is⌈log2(N/C)⌉−1

C
+ 2. In this case, the average

uploading bandwidth of peers arēu = 1. If all peers have the
average uploading bandwidth1, the shortest delay is⌈log2 N⌉+1,
which is aroundC times of the heterogeneous case. This shows
that heterogeneity of peer uploading bandwidth helps reduce the
chunk dissemination delay.

3.2.2 Case 2: Multi-level Bandwidth Hierarchy
In the previous case, peers form a two-level hierarchy according

to their uploading contribution. A fraction of1/C super peers with
uploading bandwidthC stay at the top level and feed video chunk

Table 1: Minimum Delay Achieved by Different Streaming Strategies for Homogeneous Case
Peer Delay Single-Tree Multi-Tree, Parallel Multi-Tree, Sequential Snow-ball Chunk

average N+1
2

1.89 log2 N + o(1), m=3 1.25 log2 N + o(1), m=4 log2 N + 1
N

worst-case N 1.89 log2 N + o(1), m=3 1.89 log2 N + o(1), m=3 log2 N + 1

to the free-riders at the bottom level. In real network environment,
peers can be clustered based on the types of their network access.
In this case, we extend the two-level hierarchy to accommodate
multiple levels and show that even a very small percentage ofsuper
peers can bootstrap the chunk dissemination.

Suppose there areN1 super peers with bandwidthC1, N1N2

medium peers with bandwidthC2 andN1N2N3 slow peers with
bandwidthC3. To quickly disseminate the chunk to all peers, the
following chunk scheduling algorithm can be employed:

1. use the snow-ball algorithm to upload toN1 super peers within
time1 + 1

C1
⌈log2 N1⌉;

2. each of thoseN1 super peers acts as a server with band-
width C1 and uploads toN2 other medium peers. As stud-
ied in Section 3.1.4, the uploading can finish within time
1+ ⌈log2(N2/C1)⌉

C2
, nowN1N2 medium peers have the chunk;

3. each of thoseN1N2 medium peers acts as a server with band-
width C2 and uploads toN3 other slow peers within time
1+ ⌈log2(N3/C2)⌉

C3
, nowN1N2N3 slow peers have the chunk.

The total delay is

3 +
log2 N1

C1
+

log2 (N2/C1)

C2
+

log2 (N3/C2)

C3
.

Without those super and medium peers, the fastest chunk dissemi-
nation toN1N2N3 slow peers takes time1+ 1

C3
(log2 N1+log2 N2+

log2 N3).
This suggests that the existence of super peers (even if a very

small percentage) can dramatically reduce the chunk dissemina-
tion delay. For example, to disseminate a chunk to32k = 215

peers with bandwidth1 need at least15 time slots. Meanwhile, if
N1 = N2 = N3 = 32, andC1 = 10, C2 = 5, C3 = 1, in other
words, 32 (only 0.1%) of them have bandwidth of10 and1024
(only 3%, N2=32) of them have bandwidth of5, the time to dis-
seminate a chunk to all33k peers is less than5.2 time slots. The
example can be easily extended to incorporate more than3 levels.
Another insight obtained from this example is that: peers should be
organized into tiers according to their uploading bandwidth, peers
within each tier should help each other to obtain the chunk inthe
shortest possible time, then pass it down to the neighboringlower
tier. This way, the delay of dissemination to the whole network can
be reduced.

3.2.3 General Heterogeneous Case
For general heterogeneous cases, one can index peers according

to the decreasing order of their uploading capacities. Suppose the
sorted uploading capacities of peers are:u1, u2, ...uN . To derive
a lower bound on the shortest chunk dissemination time, let’s al-
low chunk stripping, namely, multiple peers can upload different
portions of a chunk to the same peer simultaneously. If the first k
peers have the chunk at timet, the uploading to peerk + 1 can fin-
ish by 1

P

k
j=1

uj
, therefore the lower delay bound can be calculated

as

D̂ = 1 +

N−1
X

i=1

1
Pi

j=1 uj

.

However, this is a loose bound. For example, for the homogeneous
case, the bound iŝD = 1 +

PN−1
i=1

1
i
≤ 2 + ln(N − 2). We know

the shortest delay without chunk stripping is instead1 + log2 N .
In this section, we study several variations of the snow-ball algo-
rithm to accelerate the chunk dissemination in general heteroge-
neous cases.
Heterogeneous Parallel Snow-ball Approach:

Assume{ui} are all integers. letx(k) be the number of peers
with the chunk at the beginning of time slotk.

1. In time slot0, the server uploads the chunk to peer1. x(1)=1;

2. In time slotk ≥ 1, any peer with IDj, 1 ≤ j ≤ x(k),
uploads the chunk in parallel to peers with IDs fromx(k) +
Pj−1

i=1 ui to x(k) +
Pj

i=1 ui;

3. x(k +1) = x(k) +
Px(k)

i=1 ui. If x(k + 1) < N , k = k + 1,
go back to step 2; otherwise finishes.

This way, peers with larger uploading bandwidth will receive the
chunk first and continuously upload the chunk to other peers until
all peers receive the chunk. Letū = (

PN
i=1 ui/N) be the average

uploading bandwidth among peers. Since peers are sorted accord-
ing to the decreasing order of their uploading capacities, we have

x(k + 1) = x(k) +

x(k)
X

i=1

ui ≥ x(k) + x(k)ū = (ū + 1)x(k).

By induction, we will havex(k) ≥ (ū+1)k−1. Therefore the finish
time is less than⌈logū+1 N⌉+ 1, which is the delay of the parallel
snow-ball approach in a system with homogeneous peer uploading
bandwidth of̄u as studied in Section 3.1.5. This again demonstrates
that snow-ball chunk dissemination approach has even better delay
performance when peers have heterogeneous uploading bandwidth.

In this approach, due to parallel uploading, peers receive the
chunk at the end of some time slot. Since we know sequential
uploading has superior delay performance than parallel uploading,
we can also develop a sequential snow-ball approach for heteroge-
neous systems. After receive the chunk, a peer will continuously
upload it to other peers one after another. Since peers have dif-
ferent uploading bandwidth, the finish time of chunk uploading by
different peers are no longer aligned. This makes it difficult to co-
ordinate the uploading scheduling among peers. Here we develop
a greedy snow-ball scheduling algorithm to achieve short delays in
heterogeneous uploading.
Heterogeneous Sequential Snow-ball Approach:Again, index peers
in the decreasing order of their uploading capacities. At any time
instantt, let E(t) be the ordered set of peers without the chunk,
andU(t) the ordered set of uploading peers. At any time, the sta-
tus of a peer inU(t) can be in eitherbusy, meaning it is uploading
the chunk to some peer, orready, meaning it is available for next
uploading.

1. Initialization: U(1) = {1}, set peer1’s status toready;
E(1) = {2, · · · , N};

2. Choose the first peeri in the ordered setU with statusready,
pick the first peerj from the ordered setE, let peeri upload

the chunk to peerj using its uploading bandwidthui, set peer
i’s status tobusy, and remove peerj from setE. Repeat this
step until either no peers arereadyin U or E is empty;

3. After peeri completes the uploading to peersj, addj to U ,
setj’s status toready, also set peeri’s own status toready.
If E is not empty yet, go back to step 2.

However, due to the misalignment of the finish time of uploading
events, this algorithm cannot guarantee to achieve the minimum
delay. For example, for a system with5 peers, if peer1’s uploading
bandwidth is 10, other peer uploading capacities are1, 1, 1, 1.
When peer1 finishes the upload to peer2, peer1 will upload the
chunk to peer3, and peer2 will upload the chunk to peer4. Then
peer4 will receive the chunk after1.1 time slots. However, if we
just let peer1 upload the chunk to all other peers, every peer can
get the chunk by0.4 time slots. It is possible to develop an optimal
uploading schedule for peers by carefully calculating the finish time
instants for all possible upload combinations for all peers. We skip
the discussion here.

4. SNOW-BALL STREAMING
In single chunk dissemination, any peer can be utilized to upload

the chunk after it has downloaded the chunk. In continuous stream-
ing, one new chunk is generated every time slot. When the server
capacity is less thanN , one chunk cannot be disseminated to all
pees within one time slot. Therefore, there will be more thanone
chunk in transition at any given time. IfK∗ is the minimum trans-
mission delay for a single chunk, there will be at leastK∗ chunks
in transition at any given time. If the chunk scheduling is not set
up appropriately, some chunks cannot be disseminated to allpeers
within K∗ time slots.

4.1 Homogeneous Environment
In this section, we show that, for the homogeneous case, it is

possible to set up a chunk schedule such that all chunks can bedis-
seminated to all peers within the minimum delay time. In the snow-
ball chunk dissemination approach, the server uploads the chunk
to the first peer at time slot0. Before the beginning of time slot
K∗ = ⌈log2(N)⌉+1, all N peers will receive the chunk. Letφ(j)
be the number of peers that have the chunk at the beginning of time
slot j and will upload that chunk in time slotj. We have

φ(j) =

8

>

<

>

:

2j−1 1 ≤ j ≤ K∗ − 2

N − 2⌈log2(N)⌉−1 j = K∗ − 1

0 j ≥ K∗

We callΦ∗ , {φ(j) : j = 1 · · ·K∗ − 1} thesnow-ball chunk
dissemination profile.

THEOREM 2. For a homogeneous P2P streaming system, there
exists a continuous streaming schedule such that all chunksin the
stream will be disseminated to all peers with the shortest delay K∗

achieved by the snow-ball algorithm for single chunk dissemina-
tion.

Proof: Without loss of generality, the server uploads chunki ≥ 0
to some peer at time sloti. Let yi(k) be the number of peers that
have chunki and will upload chunki to other peers at time slotk.
For any feasible schedule, we should have

P∞
i=0 yi(k) ≤ N,∀k,

i.e., at any time slot the aggregate uploading bandwidth forall
chunks is at mostN , andyi(k+1) ≤ 2∗yi(k), i. e., each peer can
upload to at most one peer within any time slot. A streaming sched-
ule can achieve the optimal delayK∗ for each chunk if and only

if each chunk can be uploaded according to the snow-ball chunk
dissemination profileΦ∗ after it is uploaded to some peer by the
server, i. e.,

yi(k) =

(

φ(k − i) (i + 1) ≤ k < i + K∗

0 otherwise

It can be verified that such a schedule satisfies the feasibility con-
straints:

∞
X

i=0

yi(k) =
k−1
X

i=k−K∗+1

yi(k) =
K∗−1
X

j=1

φ(j) = N − 1

andyi(k + 1) ≤ 2 ∗ yi(k).
To complete the proof, for each time slot, we need to construct

a uploading schedule for all active chunks. LetS be the set of all
peers. Denote bySi(k) the set of peers that have chunki at the
beginning of time slotk and will upload the chunk to|Si(k)| other
peers without chunki in the time slot. To follow the optimal dis-
semination profileΦ∗, it is sufficient to have at each time slotk
|Si(k)| = yi(k) and{Si(k), i ≥ 0} are pairwise disjoint (since
each peer can only upload one chunk in one time slot). We call the
previous condition the sufficient conditionΛ to achieve the mini-
mum delay streaming. We complete the proof of the theorem by
constructing a chunk uploading schedule for each time slot through
inductions:
Initial condition: The server uploads chunk0 to peer0 in time
slot 0. Therefore, at the beginning of time slot1, S0(1) = {0},
andSi(1) = ∅, i > 0. It can be easily verified that the sufficient
conditionΛ is satisfied at the beginning of time slot1.
Induction: If at the beginning of time slotk ≥ 1, the conditionΛ
is satisfied, we can construct a schedule in time slotk, such thatΛ
is still satisfied at the beginning of time slotk + 1.

At the beginning of time slotk, according toΛ, ko = max(k −
K∗+1, 0) is the ID of the oldest chunk that needs to be uploaded in
time slotk. ThenSi(k) = ∅, ∀i < ko,∀i ≥ k; and{Si(k), ko ≤
i < k} are pairwise disjoint,|Si(k)| = yi(k). Define a setF(k) =
S −∪k−1

i=ko
Si(k), i.e., the set of peers that don’t need to upload any

chunk at the beginning of time slotk. The following scheduling
will guarantee theΛ condition is still satisfied at the beginning of
time slotk + 1.
I. If k1 = k − K∗ + 1 ≥ 0, chunkk1 will be uploaded for the last
time in slotk. Since the chunk has been uploaded1+

PK∗−2
i=1 φ(i)

times by the server and peers in the previousK∗−1 time slots, only
φ(K∗ − 1) peers don’t have it. Let all peers in setSk1

(k) upload
chunkk1 to those peers and finish the upload of chunkk1. Peers in
Sk1

(k) can be used to upload other chunks in time slotk + 1. We
setF(k) = F(k) ∪ Sk1

(k). Then|F(k)| ≥ φ(K∗ − 1).
II. If k2 = k − K∗ + 2 ≥ 0, chunkk2 will be uploaded for the
second-to-last time in slotk. According toΦ∗, φ(K∗ − 2) peers
in setSk2

(k) will upload chunkk2 to other peers that don’t have
chunkk2. In addition, the schedule should guarantee that there will
beφ(K∗ − 1) peers available in time slotk + 1 to upload chunk
k2.

If φ(K∗ − 1) ≤ φ(K∗ − 2), let each peer inSk2
(k) upload

chunkk2 to any peer without chunkk2, then pickφ(K∗− 1) peers
out of Sk2

(k) to form the set of peers to upload chunkk2 in next
time slot, i.e.,Sk2

(k + 1). Other peers inSk2
(k) can be used to

upload other chunks in time slotk + 1. We setF(k) = F(k) ∪
Sk2

(k) − Sk2
(k + 1). We have|F(k)| ≥ φ(K∗ − 2)

If φ(K∗ − 1) > φ(K∗ − 2), from step 1,|F(k)| ≥ φ(K∗ − 1),
we can take a subsetM(k) of φ(K∗ − 1) − φ(K∗ − 2) peers
out of F(k), and letφ(K∗ − 1) − φ(K∗ − 2) peers inSk2

(k)
upload chunkk2 to peers inM(k). Remaining peers inSk2

(k)

then upload chunkk2 to arbitrary peers without chunkk2. Now
peers inM(k) are ready to upload chunkk2 in time slotk + 1,
therefore, we setSk2

(k + 1) = Sk2
(k)∪M(k); F(k) = F(k)−

M(k). We also have|F(k)| ≥ φ(K∗ − 2).
III. Let k3 = max(k − K∗ + 3, 0). Any chunki, i ∈ [k3, k − 1],
needs to be uploaded toφ(k − i) peers by peers in setSi(k). We
have

k−1
X

i=k3

|Si(k)| ≤
K∗−3
X

j=1

φ(j) = φ(K∗ − 2) − 1 ≤ |F(k)| − 1. (4)

Then∀i ∈ [k3, k − 1], take a subsetUi(k) of |Si(k)| peers out of
F(k), let all peers inSi(k) upload chunki to peers inUi(k), and
setSi(k + 1) = Si(k) ∪ Ui(k), F(k) = F(k) − Ui(k). At the
end, due to (4), we will have|F(k)| ≥ 1.
IV. The server uploads chunkk to some peermk in F(k), and set
Sk(k + 1) = {mk}.

Following the previous scheduling steps, the sufficient condition
Λ will be satisfied at the beginning of time slotk + 1.
Conclusion: There exists a schedule such that all chunks can be
disseminated with snow-ball chunk dissemination profileΦ∗ and
achieve the optimal delayK∗.
Figure 3 illustrates an example of snow-ball streaming in a system
with 8 peers. We use a sequence of6 subfigures to show the snow-
ball chunk schedules among all peers within6 consecutive time
slots. Blocks represent chunks and circles represent peers. For
time slotk, a white chunk beside a peer is the chunk that the peer
has and will be uploaded to another peer within that time slot. An
arc from peeri to j indicates peeri uploads its chunk to peerj. A
black chunk beside a peer indicates the server will inject that chunk
to the peer in time slotk. Chunk0 is uploaded to all peers by the
end of time slot3 and chunk1 is uploaded to all peers by the end of
time slot4. The example shows that all chunks can be disseminated
to all peers3 time slots after it is injected by the server.

4.2 Heterogeneous Environment
For heterogeneous case, the delay bound for single chunk dis-

semination cannot always be achieved in streaming. For example,
if the server’s upload capacity is1, and7 peers’ upload capacities
are2, 1, 1, 1, 1, 1, 0, a single chunk dissemination can be done in
3 time slots. However, no streaming algorithm can achieve this. If
peer0 is still uploading chunk0 at timeslot2, chunk1 cannot be
uploaded according to the greedy chunk profileΦ∗. In this case, the
first peer with bandwidth2 becomes the scheduling bottle-neck for
adjacent chunks. For the two special heterogeneous cases consid-
ered in Section 3.2, we are able to prove the existence of snow-ball
streaming to achieve the minimum chunk dissemination delayfor
all chunks.

THEOREM 3. For a P2P streaming system withN/C super
peers and(1−1/C)N free-riders, there exists a continuous stream-
ing schedule such that all chunks in the stream will be disseminated
to all peers within a delay of⌈log2(N/C)⌉

C
+ 2 time slots.

Proof: The idea is to first make sure all chunks can be streamed to
all super peers within1 + 1

C
⌈log2(N/C)⌉ time slots. Then super

peers will upload to free-riders whenever they have spare band-
width. To achieve this, we change the time unit to1/C of the
original time slot. Measured in the new time slot, the servergen-
erates one new chunk everyC time slots. Suppose server only has
uploading capacity of1, and uploads chunki to some super peer
by the end of time slotC(i + 1). For time slotk, let yi(k) be
number of super peers uploading chunki to other super peers. To
achieve the minimum streaming delay among all super peers, let

K∗ = ⌈log2(N/C)⌉, we need

yi(k) =

(

φ(k − C(i + 1)) C(i + 1) + 1 ≤ k ≤ C(i + 1) + K∗

0 otherwise

Let i1(k) = ⌈k−K∗

C
⌉ − 1 andi2(k) = ⌊k−1

C
⌋ − 1, yi(k) > 0 iff

i1(k) ≤ i ≤ i2(k). Then

∞
X

i=0

yi(k) =

i2(k)
X

i=i1(k)

φ(k − C(i + 1)) < N/C − 1

andyi(k + 1) ≤ 2 ∗ yi(k). According to Theorem2, there exists a
streaming schedule such that all super peers can receive thechunk
within 1+ 1

C
⌈log2(N/C)⌉ time slots. In addition, it can be shown

that

C−1
X

j=0

∞
X

i=0

yi(k+j) =

C−1
X

j=0

i2(k+j)
X

i=i1(k+j)

φ(k+j−C(i+1)) = N/C−1.

In other words, in anyC consecutive time slots, the aggregate num-
ber of uploading to super peers equals the number of super peers
minus one. Since all super peers can uploadN times inC time
slots (one original time slot), therefore, we have(1 − 1/C)N + 1
spare super peer uploading available everyC time slots. After all
super peers get chunki at time slotC(i+1)+K∗, in the following
C time slots, any super peer that is not responsible for uploading
new chunks to other super peers can be utilized to upload chunk
i to a free-rider, and all free-riders can get the chunk by timeslot
C(i + 1) + K∗ + C. The achieved streaming delay is2C + K∗

sub-time slots, which is⌈log2(N/C)⌉

C
+ 2 original time slots.

We list the chunk schedule for a system with8 super-peers and8
free-riders in Table 2. Super-peers are indexed from0 to 7, each
super peer has uploading capacity of2, free-riders are labeled from
a to h. A tuple (x, y) at row i columnj means super peeri will
upload chunkx to peery in time slotj. A chunk is uploaded to all
super peers first, then it will be uploaded to all free-riderswithin
one additional round. The overall chunk dissemination delay is 3.5
time slots.

Table 2: Schedule between Super-peers and Free-riders
ID 1 1.5 2 2.5 3 3.5 4 4.5 5
0 0, 1 0, 2 0, 4 0, a 2, 1 2, 2 2, 4 2, a 4, 1
1 0, 3 0, 5 0, b 2, 3 2, 5 2, b
2 0, 6 0, c 0, g 1, a 2, 6 2, c 2, g
3 0, 7 0, d 0, h 1, b 2, 7 2, d 2, h
4 0, e 1, 0 1, c 1, g 2, e 3, 0
5 0, f 1, 1 1, d 1, h 2, f 3, 1
6 1, 4 1, 2 1, e 3, 4 3, 2
7 1, 6 1, 5 1, 3 1, f 3, 6 3, 5 3, 3

COROLLARY 4. If peers in a streaming system form aM -level
hierarchy with

Qi
k=1 Nk peers on leveli with uploading capac-

ity of Ci, (Ci > Ci+1 ≥ 1), there exists a continuous streaming
schedule such that chunks can be streamed to all peers with a delay
of M +

PM
j=1

⌈log2(Ni/(Ci−1−1))⌉

Ci
, whereC0 = 2.

Proof: We can construct the chunk scheduling iteratively. Peers
at level1 pick (C1 − 1)N1 peers from level2 as their free-riders.
Construct a streaming schedule at level1 according to theorem 3
such that(C1 − 1)N1 peers from level2 will receive all chunks
with delay2 + log2(N1)

C1
. Then each of those peers can lead the

1

0

4

62

7

53

1

0

(a) Time 1

1

0

4

62

7

53

1 2

0

0

(b) Time 2

1

0

4

62

7

53

0

1

1 3

2

0

0

0

(c) Time 3

1

0

4

62

7

53

1

1

1 3

2

4

1

2

(d) Time 4

1

0

4

62

7

53

5

3

2 3

2

4

2

2

(e) Time 5

1

0

4

62

7

53

5

3

3 3

3

4

6

4

(f) Time 6

Figure 3: Evolution of Chunk Scheduling of Snow-ball Streaming among 8 Peers

snow-ball streaming toN2/(C1 − 1) peers at level2 and(C2 −

1)N2/(C1 − 1) free-riders from level3, by time3 + log2(N1)

C1

+
log2(N2/(C1−1))

C2

, (C2 − 1)N1N2 peers at level3 will receive the
chunk. They continue to do snow-ball streaming from level3 to 4.
The process can continue until all peers at the bottom level receive
the chunk.

5. ANALYSIS IN REALISTIC SETTING
In this section, we analyze the performance of the proposed snow-

ball algorithms in realistic P2P network settings.

5.1 Impact of Propagation Delays
From the analysis in the previous section, using smaller chunks

in video streaming leads to smaller chunk transmission delay, con-
sequently smaller dissemination latency. However, as the transmis-
sion delay getting smaller, the propagation delay will playa more
important role. We still use the transmission time of a chunkas
the time unit. Now suppose the propagation delay isP = d − 1
time slots (d ≥ 2). The time between a sender begins to upload the
chunk and the receiving peer gets the whole chunk isd time slots.
For the multi-tree approach, if parallel uploading is employed, the
chunk transmission delay from a peer to all its children increases
from m to d + m − 1, the delay performance ism+d−1

log2 m
log2 N ;

if sequential uploading is employed, the worst case delay isstill
m+d−1
log2 m

log2 N , and the average delay is2d+m−1
2 log2 m

log2 N .
Again, denote byx(k) the number of peers with the chunk at the

beginning of time slotk. All the chunks received right before the
beginning of time slotk were sent out at the beginning of time slot
k − d. Therefore we have

x(k) = x(k − 1) + x(k − d).

x(k) is a Fibonacci series with time lagd (d = 2 is the standard

Fibonacci series). We can solvex(k) by taking Z-Transform:

X(z) =
Z−1

1 − Z−1 − Z−d
,→ x(k) ∼ αk

∗ ,

whereα∗ is the largest root of1 − Z−1 − Z−d. The finish time is
approximatelylogα∗

N , which isln 2/ ln α∗ times of the snow ball
delay without propagation delay. We plot the evolution of chunk
dissemination at different propagation delays in Figure 4.Among
them,P = 0 corresponds to the case when the propagation delay
is ignored as studied in Section 3. As predicted by the Z-transform

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

10
10

Time Steps

N
um

be
r

of
 P

ee
rs

P=0
P=1
P=2
P=3
P=4

Figure 4: Chunk dissemination speed at different propagation
delays.

analysis, the number of peers with the chunk grows exponentially
after the first few time steps. For any propagation delay, theexpo-
nential growth rate, i.e., the slope of the curve in semi-logplot, is
determined by the dominating root ofX(z). We compare the delay
performance of multi-tree based strategies and the snow ball strat-
egy in Table 3. The delay performance is measured in the unit of
the average delay of snow-ball approach when there is no propaga-

tion delay. For parallel multi-tree strategy, we compute the optimal
node degree that minimizes the average and worst-case delayat
different propagation delays. For sequential multi-tree strategy, the
node degree is optimized for the average delay and the associated
worst-case delay is also calculated. As propagation delay increases,
delay performance of all three strategies degrades. In addition, the
optimal node degrees of multi-tree strategies also increase and a
peer will spend more time to upload the same chunk to all its chil-
dren. This makes it closer to the uploading philosophy of snow-ball
streaming:a peer should keep uploading the same chunk until all
peers have it.

Table 3: Minimum Delay Achieved by Different Streaming
Strategies with Propagation Delays

Prop. M-Tree, Para. M-Tree, Seq. Snow
Delay degree delay degree average worst Ball

0 3 1.89 4 1.25 2.0 1.0
1 4 2.5 5 1.723 2.584 1.44
2 4 3.0 6 2.127 3.095 1.813
3 5 3.445 7 2.493 3.562 2.15
4 6 3.869 8 2.833 4.0 2.465

More generally, if the delays among peers are heterogeneous
with distribution (pi, ∆i), 1 ≤ i ≤ M , i.e., a chunk uploaded
by a peer at the beginning of time slotk will be received by a peer
before the beginning of time slotk + ∆i with probability pi, we
have, in average sense,

x(k) = x(k − 1) +

M
X

i=1

pix(k − ∆i),

The average number of peers that receive the chunk in time slot k
can be calculated as:

X(z) =
Z−1

1 −
PM

i=1 piZ−∆i

.

Again, whenk is large,x(k) grows exponentially.

5.2 Impact of Bandwidth Variations
In previous sections, we assume that peers have constant up-

loading bandwidth and a chunk transmission completes in constant
time: in sequential transmission, a chunk can be transmitted from a
peer to another peer in one time slot, in parallel transmission with
degreem, a peer can transmit a chunk simultaneously tom chil-
dren inm time slots. Due to network traffic variations, the available
bandwidth on a connection between two peers varies over time.
Consequently, the transmission time of a chunk is not constant. In
this section, we investigate the robustness of different streaming
strategies against the randomness in chunk transmissions.

For the clarity of presentation, we assume all transmissiondelays
are independent and follow the same distribution. We introduce
random variableτ s for sequential transmission time, withE[τ s] =
1 andV ar[τ s] = σ2; them-parallel transmission time isτp, with
E[τp] = m andV ar[τp] = mσ2.

For the chain-based approach, if peer0 receives the chunk from
the server at time0, the time for thei-th peer to receive the chunk
is

Pi
j=1 τi, whereτi is the transmission delay from peeri− 1 to i.

And {τi} are i.i.d following the distribution ofτ s. The worst-case
delayDc

N is the time for peerN to receive the chunk:

E[Dc
N] = N, V ar[Dc

N] = Nσ2.

The average delay among all peers is

D̄c =
1

N

N
X

j=1

j
X

i=1

τi =
1

N

N
X

j=1

(N + 1 − j)τi.

Then we have

E[D̄c] =
N + 1

2
; V ar[D̄c] =

1

N2

N
X

k=1

k2σ2 ∼
Nσ2

3
.

This suggests that, in a chain topology, the impact of the random-
ness of individual chunk transmission on the average and worst-
case chunk delay performance of all peers is proportional tothe
number of peersN in the chain.

For the parallel multi-tree approach, all peers at the bottom level
will receive the chunk afterlogm N independent parallel chunk
transmissions. Then we have for worst-case delay:

E[Dp
N] = m logm N, V ar[Dp

N] = m logm Nσ2.

For the sequential multi-tree approach, there is one peer atthe bot-
tom level that will receive the chunk afterm logm N independent
sequential chunk transmissions. We have for worst-case delay:

E[Ds
N] = m logm N, V ar[Ds

N] = m logm Nσ2.

Therefore the mean and variance of the worst-case delay for multi-
tree based approaches are proportional tom logm N .

We can calculate the mean and variance of the average delay
performance for multi-tree based approaches using recursions. As
illustrated in Figure 1(b), am-degree tree ofN peers consists of
the single peer at level0 andm sub-trees, each of which is rooted
at a level1 peer and has(N − 1)/m peers. Denote byW(N) the
aggregate chunk delay of all peers in am-degree tree withN peers
after the root peer receives the chunk. Assume peer0 received the
chunk at timet = 0, let tj be the time when peerj at level 1
receives the chunk. We have

W(N) =

m
X

j=1

„

N − 1

m
tj + Wj

„

N − 1

m

««

, (5)

where the first term indicates the delay of peerj contributes to the
delays of all peers in its sub-tree, the second term is the aggregate
delay to disseminate the chunk in thej-th subtree. For the parallel
multi-tree approach,{tj} is just the parallel transmission time from
peer0 to j. They follow the distribution ofτp. For the sequential
multi-tree approach,tj =

Pj
i=1 τi, whereτi is the transmission

delay from peer0 to peeri, following the distribution ofτ s.
The average delay of all peers is simplȳD(N) = W(N)/N .

It can be verified that for both parallel and sequential multi-tree,
E[D̄p(N)] andE[D̄s(N)] are the same as the deterministic case.
Based on (5), we also calculate the varianceV ar[D̄p,s(N)] recur-
sively:

V ar[D̄p(N)] ≈
m

m − 1
σ2, V ar[D̄s(N)] ≈

Pm
j=1 j2

m(m − 1)
σ2 (6)

In both cases, the impact of the variability of individual transmis-
sions on the average delay performance isindependentof the num-
ber of peers. And the average delay variancewon’t diminishesas
N grows. This is due to the variability at the first few transmission
steps will affect almost all peers.

In the snow-ball approach, a peer will keep uploading a chunk
until all peers have the chunk. Within one time period, a peerhas
more bandwidth will upload to more peers than a peer with less
bandwidth. Over time, the workload of the same peer is naturally
adaptive to its bandwidth: upload more if it has more bandwidth;

upload less if its bandwidth reduces. As for the recursive view in
Figure 2(b), due to the workload self-adaptiveness, the number of
peers in each subtree is no longerN

2
. What remains to be true is

that the uploading in both subtrees will finish around the same time.
To further illustrate, let’s assume the chunk transmissiontime

between two peers follows exponential distribution with mean 1.
Denote byδk the time interval between the time instants when the
k-th and thek + 1-th peer receive the chunk.δ1 is the transmission
time from peer0 to peer1, it is an exponential random variable
with rate1. For k ≥ 2, due to the memoryless property of ex-
ponential distribution,δk follows an exponential distribution with
ratek. Therefore the worst case delay isDN =

PN
k=1 δk, which

follows a hyper-exponential distribution. We have

E[DN] =
N

X

k=1

1

k
< 1 + lnN, V ar[DN] =

N
X

k=1

1

k2
< 2

The expected chunk dissemination finish time is onlyln 2 = 69.3%
of the deterministic case. Due to the constant bounded delayvari-
ance, for largeN , snow-ball approach has better delay performance
in random case than in the deterministic case. Similarly, wecan
calculate the average delay performance as

E[D̄] =
N

X

k=1

N − k + 1

Nk
<

1 + ln N

N
+ ln N (7)

V ar[D̄] =

N
X

k=1

„

N − k + 1

Nk

«2

<

N
X

k=1

1

k2
< 2 (8)

Again, the average delay performance is better than the determinis-
tic case. This result is somehow counter-intuitive at the first sight.
The study in Section 3.2 shows thatthe bandwidth heterogeneity
among peers will reduce the chunk dissemination delay.The re-
sult obtained here can be considered as atemporalheterogeneity
result, i.e.,the peer bandwidth variations over time will also re-
duce the chunk dissemination delay.To bridge these two results,
we can consider an artificial example: for a continuous streaming
amongN peers over time period ofT , divide T into two halves,
if in the first half peer0 to peerN

2
− 1 have bandwidth of2, peer

N
2

to peerN − 1 have no bandwidth; in the second half, peer0

to peerN
2
− 1 have bandwidth of0, peer N

2
to peerN − 1 have

bandwidth of2. The average bandwidth of all peers are just1. Ac-
cording to Theorem 3, the streaming delay of0.5 log2 N +1.5 can
be achieved in both halves, while the minimum delay for the deter-
ministic case when every peer always has uploading bandwidth of
1 is log2 N + 1.

6. CONCLUSION AND FUTURE WORK
In this paper, we analytically study the delay performance of

P2P streaming systems. We derive delay bounds that can serve
as delay benchmarks for proposed/deployed P2P streaming sys-
tems. Through our analysis, we quantify the impact of the band-
width distribution among peers on their delay performance.In-
sights brought forth by our study can be used to guide the de-
sign of new P2P streaming systems with shorter start-up delays.
A snow-ball streaming algorithm is proposed to achieve a close-to-
optimum delay performance in various P2P network environment.
Our preliminary analysis indicates that the snow-ball streaming al-
gorithm is robust to network impairments, such as long propagation
delays and random bandwidth variations. The next step is to imple-
ment the proposed snow-ball algorithm in a distributed mesh-based
streaming system. We will test its performance in real network en-
vironment and compare it with the theoretical bounds predicted by

our analysis here. Another direction for future work is to extend the
delay performance analysis to take into consideration other factors,
such as peer churns, geographic locality of peers and correlations
among individual chunk transmissions, etc.

Acknowledgments
The author thanks anonymous reviewers for their valuable com-
ments. The author also thanks Chao Liang for his input. This work
is partially supported by NSF grant CNS-0519998.

7. REFERENCES
[1] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M.,

NANDI , A., ROWSTRON, A., AND SINGH, A. SplitStream:
High-bandwidth multicast in cooperative environments. In
Proceedings of ACM SOSP(2003).

[2] CHU, Y.-H., G.RAO, S.,AND ZHANG, H. A case for end
system multicast. InProceedings of ACM SIGMETRICS
(2000).

[3] HEI, X., L IANG , C., LIANG , J., LIU , Y., AND ROSS, K. W.
A measurement study of a large-scale p2p iptv system.IEEE
Transactions on Multimedia(November 2007).

[4] JANNOTTI , J., GIFFORD, D. K., JOHNSON, K. L.,
KAASHOEK, M. F., AND O’TOOLE, JR., J. W. Overcast:
Reliable multicasting with an overlay network. In
Proceedings of Operating Systems Design and
Implementation(2000), pp. 197–212.

[5] K OSTIŃC, D., RODRIGUEZ, A., ALBRECHT, J.,AND

VAHDAT, A. Bullet: High bandwidth data dissemination
using an overlay mesh. InProceedings of ACM Symposium
on Operating Systems Principles(2003).

[6] M AGHAREI, N., AND REJAIE, R. Prime: Peer-to-peer
receiver-driven mesh-based streaming. InProceedings of
IEEE INFOCOM(2007).

[7] M AGHAREI, N., REJAIE, R., AND GUO, Y. Mesh or
multiple-tree: A comparative study of live p2p streaming
approaches. InProceedings of IEEE INFOCOM(2007).

[8] PAI , V., KUMAR , K., TAMILMANI , K., SAMBAMURTHY ,
V., AND MOHR, A. Chainsaw: Eliminating trees from
overlay multicast. InThe Fourth International Workshop on
Peer-to-Peer Systems(2005).

[9] PPLIVE. PPLive Homepage.
http://www.pplive.com.

[10] PPSTREAM. PPStream Homepage.
http://www.ppstream.com.

[11] SMALL , T., LIANG , B., AND L I , B. Scaling laws and
tradeoffs in peer-to-peer live multimedia streaming. In
Proceedings of the 14th annual ACM international
conference on Multimedia(2006), pp. 539–548.

[12] VENKATARAMAN , J. C. V.,AND FRANCIS, P. Multi-tree
unstructured peer-to-peer multicast. InProceedings of 5th
International Workshop on Peer-to-Peer Systems(2006).

[13] YOUTUBE. Youtube Homepage.
http://www.youtube.com.

[14] ZHANG, M., ZHAO, L., TANG, J. L. Y., AND YANG, S. A
peer-to-peer network for streaming multicast through the
internet. InProceedings of ACM Multimedia(2005).

[15] ZHANG, X., L IU , J., LI , B., AND YUM , T.-S. P.
DONet/CoolStreaming: A data-driven overlay network for
live media streaming. InProceedings of IEEE INFOCOM
(2005).

