On the Minimum Delay Peer-to-Peer Video Streaming:
how Realtime can it be?

Yong Liu
Electrical and Computer Engineering
Polytechnic University
Brooklyn, NY, 11201, USA

yongliu@poly.edu

ABSTRACT

P2P systems exploit the uploading bandwidth of individuegrs
to distribute content at low server cost. While the P2P badidw
sharing design is very efficient for bandwidth sensitive liagp
tions, it imposes a fundamental performance constraintébay

sensitive applicationsthe uploading bandwidth of a peer cannot

be utilized to upload a piece of content until it completesdbwn-

load of that content.This constraint sets up a limit on how fast a
piece of content can be disseminated to all peers in a P2Engyst

In this paper, we theoretically study the impact of this irgmé de-
lay constraint and derive the minimum delay bounds for irealt

P2P streaming systems. We show that the bandwidth heterogen

ity among peers can be exploited to significantly improvedblay
performance of all peers. We further propose a sinsplew-ball

streamingalgorithm to approach the minimum delay bound in real-

time P2P video streaming. Our analysis suggests that tipoged
algorithm has better delay performance and more robustekan
isting tree-based streaming solutions. Insights brougtih toy our

August2006. While Youtube employs content delivery networks
to stream video to end users, Peer-to-Peer (P2P) videarstrga
solutions utilize the uploading bandwidth of end users stritiute
video content at low infrastructure cost. Several P2P stiegisys-
tems have been deployed to provide on-demand or realtire®vid
streaming over the Internet [2, 15, 9, 10]. While the inisak-
cesses of P2P streaming are impressive, compared withatiie tr
tional TV services provided by cable companies, all curfe?P
streaming systems suffer from longer video startup delzgsiely,
the lag between a video object is chosen by a user and the ac-
tual playback starts on his/her screen. Our recent measmtem
study [3] on a popular P2P streaming system showed that &ye pl
back delays range from tens of seconds to a couple of minutes.
In traditional server-client video streaming systems, \tueo
startup delay perceived by a client is determined by theydehal
bandwidth variations on the its connection with the serye2P
systems exploit the uploading bandwidth of individual jseterdis-
tribute content at low server cost. While the P2P bandwititviag

study can be used to guide the design of new P2P systems Withdesign is very efficient for bandwidth sensitive applicasipsuch

shorter startup delays.

Categories and Subject Descriptors

C.2.2 Network Protocols]: Applications; C.2.4Distributed Sys-
tems]: Distributed Applications; C.4Rerformance of Systems]:
Design Studies

General Terms
Algorithm, Design, Performance

Keywords

Peer-to-Peer Streaming, Realtime, Delay Bound

1. INTRODUCTION

Video-over-IP applications have recently attracted adargm-
ber of users on the Internet. Youtube [13] alone hosted stime
terabytes of videos and attractéd’3 billion views by the end of

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MM’'07, September 23-28, 2007, Ausburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009 ...$5.00.

as file sharing, it imposes a fundamental performance anstr
for delay sensitive applicationthe uploading bandwidth of a peer
cannot be utilized to upload a piece of content until it cozted
the download of that contenithis constraint sets up a limit on how
fast a piece of content can be disseminated to all peers.

In this paper, we theoretically study the impact of this nems
delay constraint and derive the minimum delay bounds fdtinea
P2P streaming systems. Our analytical results unveil thEadn
of the bandwidth distribution among peers on their delayquer
mance. We show that the bandwidth heterogeneity among peers
can be exploited to improve the peers’ delay performancesnEv
a very small percentage of super peers can significantlyceedu
the video start-up delays for all peers. We further proposera
ple snow-ball streamingilgorithm to approach the minimum delay
bound in realtime P2P video streaming. The delay performanc
of the proposed algorithm is compared with existing treseba
streaming solutions. Our analysis indicates that the megsnow-
ball streaming algorithm not only can achieve a close-tiroym
delay performance, but also has the potential to do so indéce
realistic network impairments, such as long propagatidaydeand
random bandwidth variations. The delay bounds derived in ou
analysis can serve as delay performance benchmarks fausari
proposed/deployed P2P streaming systems. Insights bréargi
by our study can be used to guide the design of new P2P strgamin
systems with shorter start-up delays.

The paper is organized as follows. In Section 2, we provide
a short overview on the existing P2P streaming solutionse Th
bounds on the delay for a single chunk dissemination is ksl
in Section 3 for both homogeneous and heterogeneous P2P net-

work environments. A snow-ball chunk dissemination altoni is
introduced to achieve the delay bound for a single chunlediss
nation. In Section 4, we show that the snow-ball chunk dissam
tion algorithm can be extended to a snow-ball streamingridlgo

to achieve the delay bounds in continuous video streamirfie T
performance of the snow-ball algorithms under realistitmoek
environment is analyzed in Section 5. The paper is concludéd
future works in Section 6.

2. BACKGROUND AND RELATED WORK

Existing P2P streaming solutions can be classified into dhe f
lowing categories.

2.1 Single-Tree Streaming

In a single-tree based approach, peers are organized inée a t
rooted at the server. Each peer receives the stream froraresip
peer and forward to its children peers. The fan-out degreepeter
is limited by its uploading bandwidth. An early example isebv
cast [4]. One major drawback of single-tree approach isatate
leaf nodes don't contribute their uploading bandwidth. yrae-
count for a large ratio of peers in the system. This largetyrades
the peer bandwidth utilization efficiency.

2.2 Multi-Tree Streaming

To solve the leaf nodes problem, Multi-Tree based appraache
have been proposed [1, 5]. In multi-tree streaming, theesediv
vides the stream intor sub-streams. Instead of one streaming tree,
m sub-trees are formed, one for each sub-stream. In a fully bal
anced multi-tree streaming, the node degree of each selistre.
Each peer joins all sub-trees to retrieve sub-streams. Aey s
positioned on an internal node in only one sub-tree and oply u
loads one sub-stream to its children peers in that tree. In each
of the remainingn — 1 sub-trees, the peer is positioned on a leaf
node and downloads a sub-stream from its parent peer. Flgaye
shows an example of two-tree streaming Tqueers.

For any tree-based streaming approach, a chunk is dissemina
in a hierarchical way. As illustrated in Figure 1(b), fora-degree
tree of N peers, peeb sends a chunk to it children peers at level
1, each of which then is responsible for disseminating theki
its own subtree wit{ N — 1) /m peers (including themselves). In
terms of time, aftern transmissions by peé, the task of dissem-
inating a chunk taV peers becomes: sub-tasks of disseminating
the chunk to®=1 peers.

streaml stream2

/w\

7‘~"L\f

I\

ﬂ. J ﬂ e
@@ © D © jm

(a) 7-nodes example (b) hlerarchical view

Figurel: Multi-Tree Based Streaming

2.3 Mesh-based Streaming

The management of streaming trees is challenging in faaeof f

adopt mesh-based streaming approach [15, 8, 12, 6, 14]. esh-m
based system, there is no static streaming topology. Psitslish
and terminate peering relationship dynamically. A peer a@yn-
load/upload video from/to multiple peers simultaneouslyecent
simulation study [7] suggests that mesh-based systemsshgee
rior performance than tree-based solution. However, ittae,
the delay performance of mesh-based streaming is still atig-s
factory. Our analytical results indicate mesh-based systeave a
lower delay bound than that can be achieved by the optimet tre
based systems. One important motivation of the study ptedém
this paper is to provide some guidelines for the design ofipge
strategies and chunk scheduling schemes in mesh-basathstge
systems.

Despite of P2P streaming systems’ popularity, few studiegh
addressed their delay performance analytically. Oneaélatork
was presented in [11]. Authors of [11] studied the tradebef
tween the server bandwidth cost, the maximum number of peers
that can be supported, and the maximum number of streampg) ho
experienced by a peer. We study the optimal streaming gtrate
when the server only plays a minimum role in video uploading.
The delay bounds obtained through our analysis is muchetight
than that predicted in [11], and can be achieved by the pexpos
snow-ball streaming algorithm.

3. BOUND ON SINGLE CHUNK DISSEMI -
NATION

In P2P video streaming systems, video content is disseadnat
in units ofchunks One chunk is normally transmitted in multiple
packets [3]. Given a P2P system with a server Ahgeers, one
can ask the questiorf the server generates a chunk of content at
timet = 0, how does one disseminate that chunk taNalpeers in
the shortest time possiblePhe answer depends on the size of the
chunk, available bandwidth and the propagation delays gratin
nodes in the system, including the server and all peers.

Without loss of generality, we can normalize the chunk size t
be one, and choose the video streaming rate as the bandwaiitith u
Consequently, the chunk transmission time on a unit barttwid
link is 1 time unit, which equals to the chunk playback time. For
now, let’s assume the propagation delay between any twosnode
is dominated by the chunk transmission delay and thus cag-be i
nored. We will take propagation delays into account in $&ch.1
when the transmission delay becomes small. Without usirigy P2
dissemination, if the server has a bandwidthN\ofthe server can
upload that chunk to all peers ly= 1. However, this is not a
scalable solution wheiV is large. We are interested in the delay
performance when peers upload chunks among themselves.

3.1 Homogeneous case

We start with a homogeneous case where the server and al peer
have bandwidth ofl. This corresponds to th&t-for-Tat case in
Bittorrent where peers upload roughly the same amount af &t
they download. We further assume that the server will uptoag
one copy of the chunk to one peer and won't participate thakhu
dissemination afterward.

3.1.1 Single-Tree Chunk Dissemination

Given the unit bandwidth on all peers, a peer can only have one
child. The only possible single-tree based streaming ieolus a
chain: the server uploads the chunk to pgethen peef uploads
it to peerl, and so on until peeN — 2 uploads it to peeV — 1.

quent peer churns. Mesh-based streaming systems are more roThe chunk propagates along the chain from the server to atspe

bust against peer dynamics. Many recent P2P streamingnsyste

intime N. The average delay {gV + 1)/2.

3.1.2 Multi-Tree Chunk Dissemination

If the multi-tree approach with degree is employed, a chunk
propagates from the server to all peers along a sub-treenoidb
degree ofm. If there areN peers, the number of levels of each
subtree isK' = [log,, (N(m — 1) + 1)]. The only peer at leve)
downloads the chunk directly from the server, a peer at letredn
uploads a video chunk ta children peers at levél+- 1. Let N; be
the number of peers at levelThenN; = m*,0 < i < K —1, and
Ni_1 = N —m%~2, Since each peer/server only has uploading
bandwidth of1, if the uploading is done in parallel, all children
peers of one peer will receive the chunktime slots after their
common parent receives the chunk. The peer at the top lemel ca
always receive the chunk from the server after one time $iot.
parallel uploading, the peers at the very bottom level vetaive
the chunk in(K — 1)m + 1 time slots. The average delay among
all peers is

(im + 1)N; 1)

When N is large, the average delay and the worst-case delay are

both of the form
m

Dy(m) =mlog,, N +0o(1) = logs N +0(1). (2)

log, m
The shortest delay is achieved at the degree

m” =argmin D,(m) =3,

i.e., the server divides the stream iBteub-streams, and feeds each
stream into one sub-tree with node degree3ofThe minimum
delay, in both average and worst-case sense8fslog, N +o(1).

If the uploading is done sequentially, the first child pedi ne-
ceive the chunk from its parent withintime slot, and the last child
of a peer will receive the chunk aften time slots. The longest
delay at level is still im + 1. Therefore the worst-case delay is
still (K —1)m + 1. A degree of3 can achieve the minimum worst-
case delay ol.891og, N + o(1). The average delay at leveis
(m+1)/2 time slots more than the average delay at lével. The
peer at the top level can always receive the chunk from theeser
after one time slot. We can calculate the average delay amlbng
peers as

K-1

1 .
¥ > (i(m+1)/2 + 1)N;.

=0

D,(m)

Again, whenN is large, the average delay is

m—+1
2

_ om+1

D, =
(m) 2log, m

= log,,, (N) + o(1) log, N + o(1).
To minimize the average delay, the optimal degred,iand the
minimum average delay i525log, N + o(1), which is less than

2/3 of the average delay of parallel uploading.

3.1.3 Snow-Ball Chunk Dissemination

For single chunk dissemination, peers only need to dissamin
one chunk, instead of a continuous stream of chunks. Afteneo
loading the chunk, a peer can keep uploading that chunk &r oth
peers until all peers receive it. This will largely reduce tthunk
dissemination time. The accumulation of the aggregateaatihg
bandwidth for the chunk mimics the formation of a snow-bgle
refer it as thesnow-ball chunk disseminati@pproach. Figure 2(a)
illustrates the progress of snow-ball chunk disseminafioreight
peers. An arc from nodeto nodej with a labelk represents peer

(or the server) uploads the chunk to pgan time slotk. The server
uploads the chunk to peérin time slot0. In time slot1, peer0
uploads the received chunk to peerIn time slot2, both peer)
and peei will upload the chunk to peer and3 respectively. Peer
0, 1,2, 3 will upload the chunk to peet, 5,6, 7 in time slot3. It
takes4 time slots for all peers to receive the chunk.

For general cases, the snow-ball approach disseminatemé ch
in a recursive way. As illustrated in Figure 2(b), after pesends
a chunk to peet, the task of disseminating a chunk 26 peers
becomes two sub-tasks of disseminating the churﬂ’(feers. Peer
0 continues to lead one sub-task, and pekecomes the leader for
the other sub-task. Even though the task splitting degremlis
2, compared with degres: in Figure 1(b), it happens after only
1 chunk transmission, instead of transmissions in Figure 1(b).
We will show that the snow-ball branching is actually thetdéas
branching process.

©\(0) T
S N
) g N A

! \

NI N ANA
& 2"/ /N / \
. 7 /o N -
6 Za:@ /5N /5N

O b N L\

(a) 8-nodes (b) recursive view

Figure 2: Snow-ball Chunk Dissemination

Let z(4) denote the number of peers that have the chunk at the
beginning of time slot. In time slot0, the server uploads the
chunk to one peer, therefore(1) = 1. Afterward, every peer with
the chunk will upload it to another peer in one time slot, weeha
x(i) = 2%z(i—1) = 27, Therefore it taked(* = 1+ [log, N
time slots for alllV peers receive the chunk. One peer receives the
chunk afterl time slot,2°~2 peers receive the chunk aftetime
slotsV1 < i < K*, andN — 25" 2 peers receive the chunk after
K™ time slots. The average delay performance is

K*—1

=1 i—2 * K*—2
DN{H;ﬂ + K*(N -2)}.
If N = 25"~ the average delay i) = log, N + 4.

THEOREM 1. Inahomogeneous P2P streaming system, the snow-
ball chunk dissemination approach simultaneously aclsi¢ive min-
imum average peer delay and the minimum worst-case peey.dela

Proof: For arbitrary chunk dissemination approach;iét) denote
the number of peers that have the chunk at the beginning &f tim
slot . Since the server will upload the chunk to the first peer at
time slot0, we always have:(1) = 1. z(¢) is necessarily a non-
decreasing function of We define a peer delay functidn(k) as

the delay for thek-th peer to receive the chunk. Then the worst-
case peer delay i5(N) and the average delayE:,i\’:1 T(k)/N.
Given{z(i),7 > 1}, T'(k) can be calculated as

T(k) = min{i : (i) > k}, 1<k<N. (3)

Due to the homogeneous unit uploading bandwidth among peers
we always have (i+1) < 2z(i), i.e., a peer can at most upload the
chunk to another peer within one time slot. By inductief) <

2'=1. For the snow-ball approach;’ (i) = 2'~'. Therefore, for
any other chunk dissemination approaety) < x*(i),7 > 1. Let

T* (k) be the peer delay function for the snow-ball approach. Since
z(i) < x*(3),7 > 1, due to (3), we hav&™* (k) < T'(k),k > 1.
Therefore, the snow-ball chunk approach simultaneoudiyeses
the shortest average and worst-case chunk disseminatiay dm
Table 1 compares the delay performance of snow-ball chusk di
semination with tree-based and the optimal multiple-tpgee@ach:
For a system 01024 peers, if the transmission delay of a chunk is
0.2 second, it takes onlg seconds for the snow-ball approach to
complete chunk dissemination to all peers, while the detajexed

by the optimal multi-tree approach3s8 seconds. Since the single-
tree approach degrades to a chain, peers’ average delayuisdar
100 seconds.

In the snow-ball approach, peers who receive the chunk in the
k-th time slot upload the chunk fdt,,;, — k times, the peers who
receive the chunk in the last time slot (about half of the pegon’t
get a chance to upload the chunk to other peers. Their uplgadi
bandwidth can be utilized to upload other chunks in contirsuo
video streaming when multiple chunks are in transition $iame-
ously. We will further show in Section 4 that the snow-ballick
dissemination can be extendedstwow-ball continuous streaming
to continuously disseminate a stream of chunks and the wasst
delay for each chunk is still+ [log, N]. The snow-ball streaming
in Section 4 is designed in an optimal way such that the ujgad
bandwidth of all peers are fully utilized to achieve the migm
delay bound for each chunk.

3.1.4 Effect of Increasing Server Bandwidth

If the server bandwidth is increased frdnto C, we can divide
N peers intoC' clusters, and let the server upload the chunk to
one peer in each cluster within one time slot. Then, withichea
cluster, we can employ tree, multi-tree or snow-ball apginot
disseminate the chunk. For the chain approach, the delape&an
reduced by a factor af’. However, for both multi-tree and snow-
ball approach, the improvement is only a constant propoatito
log, C'. If the server participates in the snow-ball disseminagtain
each round, the server can upload the chunk'tpeers. Let:(k)
be the number of nodes (including the server) with the chutikea
beginning of time slok,

z(k)=2%2(k—1)+C—1= (2" —1)C +1.

The finish time isflog, (& + 1)]. The delay improvement is still
bounded by{log, C1.

3.1.5 Effect of Increasing Peer Bandwidth
Secondly, if we also increase the bandwidth of each peer from

upload toC' peers simultaneously, therefore,
(k) = (C+1)xz(k—1) = (C+1)*D,

The finish time isK min = [logo; N1+ 1.

In the previous calculation, we assume a peer uploads thechu
simultaneously ta” children peers. AlIC children peers will re-
ceive the chunk at the end of the time slot. From the study dfimu
tree approaches, we learned that sequential uploadingcteeve
better average delay performance than parallel uploadiMeycan
adopt sequential uploading in snow-ball approach. A pekraagls
the chunk toC' other peersequentially so that the peer receiving
the chunk first can immediately upload to other peers withait
for the next time-slot. The delay performance in this casects-
ally % This is because, with bandwidé and sequential
upload, each peer can finish the upload of one chunk witii
time slot. If we change the time unit to k¢C' of the original time
unit, the server and peer bandwidth becomese go back to the
homogeneous case in Section 3.1, all peers can receive th& ch
within [log, N + 1 small time slots, which ié%mﬂ original
time slots.

3.2 Heterogeneous Cases

In real network environment, different peers have diffetgpes
of network access, therefore, different uploading banttwiBirom
the study so far, the chunk dissemination delay is deteminiye
how quickly peers’ bandwidth can be utilized to upload therdh
We define the system-widgsable uploading bandwid¥(t) for
the chunk as the aggregate uploading bandwidth that canibe ut
lized to upload the chunk at any timeln the homogeneous case,
every peer has the same uploading bandwitift) is proportional
to the number of peers with the chunkt). The order at which
peers receive the chunk has no impact on lié@) grows over
time. However, in a heterogeneous environment, the ordeniah
peers receive the chunk determines the growth speéf{©f and
consequently the chunk dissemination delay. For the quioki
of U(t), the intuition is to upload the chunk to peers with large
uploading capacities first.

In this section, we study the impact of uploading bandwidit h
erogeneity among peers on the chunk dissemination delayby-s
ing several typical cases. It will become clear that the pger
loading bandwidth heterogeneity enables the snow-baltcau
to achieve a shorter chunk dissemination delay than the gemo
neous case.

3.2.1 Case 1: Super-peers and Free-riders
Suppose there ai¥/C super peers that can upload at rate>
1. All the remaining peers are free-riders and don't paréitgpin
the uploading. The chunk can be disseminated by the sndw-bal

1 to C, in the tree based approach, the server can simultaneouslyapproach to allV/C' super peers withih + & [log,(N/C)] time

upload toC' peers within one timeslot, and each peer can also up-
load toC peers within one timeslot. Therefore, we can construct
a streaming tree rooted at the server with node degree. ofhe
delay performance can be calculated in a similar way of th&iMu
Tree case. If parallel uploading is employed, both the @yeend
worst-case delay g (V) +o(1). If sequential uploading is em-
ployed, the worst case delay is stifig. (V) + o(1), the average
delay can be reduced ! log(N) + o(1).

Multi-Tree approach can still be utilized. Now all the updiozg
from a peer to its children can be accelerated by a fact6r.cfhe
delays can be reduced tgC of the unit bandwidth case. Then the
optimal degrees for parallel uploading and for sequenpiading
remain to be3 and4 respectively.

For the snow-ball algorithm, at each time slot, each peer can

slots. Since all super peers can aggregately upl§adopies of
the chunk within one time slot, they can upload the chunk & th
remaining(1 — 1/C)N free-riders inl — 1/C additional time slot.

The total delay is% + 2. In this case, the average
uploading bandwidth of peers afe = 1. If all peers have the
average uploading bandwidththe shortest delay idog, N +1,
which is aroundC' times of the heterogeneous case. This shows
that heterogeneity of peer uploading bandwidth helps redhe

chunk dissemination delay.

3.2.2 Case 2: Multi-level Bandwidth Hierarchy

In the previous case, peers form a two-level hierarchy alagr
to their uploading contribution. A fraction af/C super peers with
uploading bandwidtit” stay at the top level and feed video chunk

Table 1. Minimum Delay Achieved by Different Streaming Strategies for Homogeneous Case

Peer Delay| Single-Tree Multi-Tree, Parallel Multi-Tree, Sequential | Snow-ball Chunk
average Nl 1.891og, N 4 o(1), m=3 | 1.25log, N +o(1), m=4 | log, N + &
worst-case N 1.891log, N + o(1), m=3 | 1.891log, N + o(1), m=3 logy N +1

to the free-riders at the bottom level. In real network emwinent,
peers can be clustered based on the types of their netwoesscc
In this case, we extend the two-level hierarchy to accomieoda
multiple levels and show that even a very small percentagemér
peers can bootstrap the chunk dissemination.

Suppose there ard; super peers with bandwidify,, Ni N2
medium peers with bandwidt@'>s and N; N2 N3 slow peers with
bandwidthC's. To quickly disseminate the chunk to all peers, the
following chunk scheduling algorithm can be employed:

1. use the snow-ball algorithm to upload¥e super peers within
time 1 + &-[log, N1T;

. each of thoseV; super peers acts as a server with band-
width C; and uploads taV, other medium peers. As stud-
ied in Section 3.1.4, the uploading can finish within time

1+W, now N1 N2 medium peers have the chunk;

. each of thos&; N> medium peers acts as a server with band-
width C and uploads taVs other slow peers within time

1+ Loe2 /D] now Ny N, N slow peers have the chunk.
The total delay is

log, N1 log, (N2/C1) 4 log, (N3/C2)
Cl Oz C:i '

Without those super and medium peers, the fastest chunémndiiss
nation toN; N, N5 slow peers takes tlm‘e+ (log2 Ni+log, No+
log, N3).

This suggests that the existence of super peers (even ifya ver
small percentage) can dramatically reduce the chunk dissem
tion delay. For example, to disseminate a chunig2s = 2'°
peers with bandwidth need at least5 time slots. Meanwhile, if
N1 = Ny = N3 = 32, and01 =10,Cy =5,C3 =1, in other
words, 32 (only 0.1%) of them have bandwidth of0 and 1024
(only 3%, N»=32) of them have bandwidth &, the time to dis-
seminate a chunk to a3k peers is less thah.2 time slots. The
example can be easily extended to incorporate more3Hheavels.
Another insight obtained from this example is that: peecakhbe
organized into tiers according to their uploading bandwigieers
within each tier should help each other to obtain the churtkén
shortest possible time, then pass it down to the neighbdoingr
tier. This way, the delay of dissemination to the whole nekngan
be reduced.

3+

3.2.3 General Heterogeneous Case

For general heterogeneous cases, one can index peersiagcord
to the decreasing order of their uploading capacities. Ssgphe
sorted uploading capacities of peers aii¢; us, ...un. To derive
a lower bound on the shortest chunk dissemination times &t
low chunk stripping, namely, multiple peers can uploadedéht
portions of a chunk to the same peer simultaneously. If tise/ir
peers have the chunk at timegthe uploading to peét + 1 can fin-
ish by Ek , therefore the lower delay bound can be calculated

as

However, this is a loose bound. For example, for the homanesie
case, the bound ® = 1+ "' L <24 In(N — 2). We know
the shortest delay without chunk stripping is instéag log, N
In this section, we study several variations of the snow-&lgb-
rithm to accelerate the chunk dissemination in generalrbgée
neous cases.
Heterogeneous Parallel Snow-ball Approach:

Assume{u;} are all integers. let(k) be the number of peers
with the chunk at the beginning of time slot

1. Intime slot0, the server uploads the chunk to péex(1)=1;

2. In time slotk > 1, any peer with IDj, 1 < j < z(k)
uploads the chunk in parallel to peers with IDs fraitk) +

ST i tox(k) + 307w

w(k+1) = 2(k) + M u fo(k+1) < Nk =k +1,
go back to step 2; otherW|se flnlshes.

3.

This way, peers with larger uploading bandwidth will reeethe
chunk first and continuously upload the chunk to other peeti u
all peers receive the chunk. Let= (Zfil u;/N) be the average
uploading bandwidth among peers. Since peers are sorteddacc
ing to the decreasing order of their uploading capacitieshave

z(k)

+Zul>:c

By induction, we will haver (k) > (@+1)*~'. Therefore the finish
time is less tharflog; , ; N+ 1, which is the delay of the parallel
snow-ball approach in a system with homogeneous peer uplpad
bandwidth ofz as studied in Section 3.1.5. This again demonstrates
that snow-ball chunk dissemination approach has evenrlukdtay
performance when peers have heterogeneous uploading tokindw
In this approach, due to parallel uploading, peers recdiee t
chunk at the end of some time slot. Since we know sequential
uploading has superior delay performance than parallelaaihg,
we can also develop a sequential snow-ball approach fordgete
neous systems. After receive the chunk, a peer will contislyo
upload it to other peers one after another. Since peers Have d
ferent uploading bandwidth, the finish time of chunk uplogdby
different peers are no longer aligned. This makes it diffituco-
ordinate the uploading scheduling among peers. Here wdaeve
a greedy snow-ball scheduling algorithm to achieve shdayden
heterogeneous uploading.
Heterogeneous Sequential Snow-ball Approaéigain, index peers
in the decreasing order of their uploading capacities. Attane
instantt, let £/(t) be the ordered set of peers without the chunk,
andU (t) the ordered set of uploading peers. At any time, the sta-
tus of a peer iU (¢) can be in eithebusy meaning it is uploading
the chunk to some peer, ozady, meaning it is available for next
uploading.

o(k+1) =

1. Initialization: U(1) =
E(1)={2,---, N}

2. Choose the first pegiin the ordered sdt’ with statusready;
pick the first peey from the ordered sdt, let peer: upload

{1}, set peerl’s status toready,

the chunk to peef using its uploading bandwidtty;, set peer
i's status tdousy and remove peerfrom setE. Repeat this
step until either no peers areadyin U or E is empty;

3. After peeri completes the uploading to peetsadd; to U,
setj’s status taready, also set peei’s own status taeady
If Eis not empty yet, go back to step 2.

However, due to the misalignment of the finish time of uplogdi
events, this algorithm cannot guarantee to achieve thenmoimi
delay. For example, for a system wiitpeers, if peet’s uploading
bandwidth is 10, other peer uploading capacities laré, 1, 1.
When peerl finishes the upload to peér peerl will upload the
chunk to peeB, and peee will upload the chunk to peet. Then
peer4 will receive the chunk aftet.1 time slots. However, if we
just let peerl upload the chunk to all other peers, every peer can
get the chunk by.4 time slots. Itis possible to develop an optimal
uploading schedule for peers by carefully calculating thisffitime
instants for all possible upload combinations for all pe&vs skip
the discussion here.

4. SNOW-BALL STREAMING

In single chunk dissemination, any peer can be utilized toag
the chunk after it has downloaded the chunk. In continuaesst-
ing, one new chunk is generated every time slot. When theeserv
capacity is less thaV, one chunk cannot be disseminated to all
pees within one time slot. Therefore, there will be more thaa
chunk in transition at any given time. K™ is the minimum trans-
mission delay for a single chunk, there will be at leAst chunks
in transition at any given time. If the chunk scheduling i$ set
up appropriately, some chunks cannot be disseminated peeaitbs
within K™ time slots.

4.1 Homogeneous Environment

if each chunk can be uploaded according to the snow-ballkchun
dissemination profiled* after it is uploaded to some peer by the
server, i. e.,

(i+1)<k<i+K*
0 otherwise

It can be verified that such a schedule satisfies the feadgibdn-
straints:

Su= Y wk= Y 6G)=N-1
i—0 i=k—K* 41 =1

andy; (k + 1) < 2 x y; (k).

To complete the proof, for each time slot, we need to construc
a uploading schedule for all active chunks. ISebe the set of all
peers. Denote by; (k) the set of peers that have chuinkt the
beginning of time slok and will upload the chunk t@S; (k)| other
peers without chunk in the time slot. To follow the optimal dis-
semination profiled*, it is sufficient to have at each time slbt
|Si(k)| = yi(k) and{S;(k),i > 0} are pairwise disjoint (since
each peer can only upload one chunk in one time slot). Welwall t
previous condition the sufficient conditiok to achieve the mini-
mum delay streaming. We complete the proof of the theorem by
constructing a chunk uploading schedule for each time lsiotigh
inductions:
Initial condition: The server uploads churikto peer0 in time
slot 0. Therefore, at the beginning of time sibtSyo(1) = {0},
andS;(1) = 0,7 > 0. It can be easily verified that the sufficient
conditionA is satisfied at the beginning of time slot
Induction: If at the beginning of time sldt > 1, the conditionA
is satisfied, we can construct a schedule in time s|auch thatA
is still satisfied at the beginning of time slot}- 1.

At the beginning of time slok, according ta\, k, = max(k —
K*+1,0) is the ID of the oldest chunk that needs to be uploaded in

In this section, we show that, for the homogeneous case, it is time slotk. ThenS;(k) = 0, Vi < ko, Vi > k; and{S;(k), ko <

possible to set up a chunk schedule such that all chunks cdis-be
seminated to all peers within the minimum delay time. In thes
ball chunk dissemination approach, the server uploads hhakc
to the first peer at time sldt. Before the beginning of time slot
K* = [log,(N)]+1, all N peers will receive the chunk. Lé{(j)
be the number of peers that have the chunk at the beginningef t
slot 7 and will upload that chunk in time slgt We have

271 1<j<K*—2
() = { N —2Mlos2M1=1 45— g
0 Jj=zK*

We call®* 2 {¢(j) : j = 1--- K* — 1} thesnow-ball chunk
dissemination profile

THEOREM 2. For a homogeneous P2P streaming system, there
exists a continuous streaming schedule such that all chimtte
stream will be disseminated to all peers with the shortekstyd& ™
achieved by the snow-ball algorithm for single chunk disaam
tion.

Proof: Without loss of generality, the server uploads chunk 0

to some peer at time slot Let y; (k) be the number of peers that
have chunk and will upload chunk to other peers at time slét
For any feasible schedule, we should h&vg°® yi(k) < N,Vk,
i.e., at any time slot the aggregate uploading bandwidthafbr
chunks is at mosWV, andy; (k+1) < 2xy;(k), i. e., each peer can
upload to at most one peer within any time slot. A streamitgde
ule can achieve the optimal deldy™ for each chunk if and only

i < k} are pairwise disjoint,S; (k)| = y:(k). Define a sef (k) =

S— Uf;klo&(k), i.e., the set of peers that don’t need to upload any
chunk at the beginning of time slé The following scheduling
will guarantee the\ condition is still satisfied at the beginning of
time slotk + 1.

I.If k1 =k — K* +1 > 0, chunkk; will be uploaded for the last
time in slotk. Since the chunk has been upIoade;dZiK:*f2 (1)
times by the server and peers in the previéiis—1 time slots, only
#(K* — 1) peers don't have it. Let all peers in s&t, (k) upload
chunkk; to those peers and finish the upload of chiénkPeers in
Sk, (k) can be used to upload other chunks in time &lat 1. We
setF (k) = F(k) U Sk, (k). Then|F(k)| > ¢(K* —1).

. If ke = k— K"+ 2 > 0, chunkk. will be uploaded for the
second-to-last time in sldt. According to®*, ¢(K™* — 2) peers

in setSy, (k) will upload chunkk; to other peers that don't have
chunkks,. In addition, the schedule should guarantee that there will
be (K™ — 1) peers available in time sldt + 1 to upload chunk

k2

If (K* —1) < ¢(K* — 2), let each peer iS5y, (k) upload
chunkk, to any peer without chunks, then pickp (K™ — 1) peers
out of Sk, (k) to form the set of peers to upload chukkin next
time slot, i.e., Sk, (k + 1). Other peers irSy, (k) can be used to
upload other chunks in time slét+ 1. We setF(k) = F(k) U
Sko (k) — Sky (k + 1). We have F (k)| > ¢(K™ — 2)

If p(K* —1) > ¢(K* —2), from step 1| F (k)| > ¢(K* —1),
we can take a subse¥(k) of p(K* — 1) — ¢(K™ — 2) peers
out of F(k), and letgp(K* — 1) — ¢(K™* — 2) peers inSy, (k)
upload chunkk, to peers inM (k). Remaining peers iy, (k)

then upload chunk: to arbitrary peers without chunkz. Now
peers inM(k) are ready to upload churk in time slotk + 1,
therefore, we sei, (k + 1) = Sk, (k) UM(k); F(k) = F(k) —
M(k). We also haveF (k)| > ¢(K* — 2).

Il. Let ks = max(k — K* + 3,0). Any chunks, i € [ks, k — 1],
needs to be uploaded ¥k — ¢) peers by peers in s&; (k). We
have

k—1 K*-3
DSBS 3 6) = oK = 2) 1< |F(k) - 1. (4)

ThenVi € [ks3, k — 1], take a subse¥; (k) of |S;(k)| peers out of

F(k), let all peers inS; (k) upload chunk to peers iri4; (k), and

setSi(k + 1) = Si(k) UlUi(k), F(k) = F(k) — Us(k). At the

end, due to (4), we will havgr (k)| > 1.

IV. The server uploads churikto some peern,, in F(k), and set
Following the previous scheduling steps, the sufficienttion

A will be satisfied at the beginning of time slot+ 1.

K* = [log,(N/C)], we need

() = JoE—CGE+D) CG+D+1<k<ClE+1) + K"
0 otherwise

Let 21

(k Landiz(k) = |52] — 1, ya(k) > 0iff
ir(k) <

) = [5251 -
i <i2(k). Then
oo iz (k)

> ¢(k—C(i+1)) <N/C—1

i=iy (k)

<

i=0

andy; (k + 1) < 2xy;(k). According to Theorer, there exists a
streaming schedule such that all super peers can receivohiing

within 14 & [log, (N/C)] time slots. In addition, it can be shown
that

-1 oo C—1 iz(k+j)
Z Sowilk+i) =" > ¢(k+j—C(i+1)) = N/C-1.
3=0 i=0 3=0 i=i1 (k+7)

Conclusion: There exists a schedule such that all chunks can be In other words, in any’ consecutive time slots, the aggregate num-

disseminated with snow-ball chunk dissemination prahbiteand
achieve the optimal delak(™. []
Figure 3 illustrates an example of snow-ball streaming igpstesn
with 8 peers. We use a sequenceésaubfigures to show the snow-
ball chunk schedules among all peers witliirtonsecutive time
slots. Blocks represent chunks and circles represent .péeos

ber of uploading to super peers equals the number of supes pee
minus one. Since all super peers can upldadimes inC' time
slots (one original time slot), therefore, we hate— 1/C)N + 1
spare super peer uploading available ev@rtime slots. After all
super peers get churlat time slotC'(i + 1) + K™, in the following

C time slots, any super peer that is not responsible for ujmgad

time slotk, a white chunk beside a peer is the chunk that the peer new chunks to other super peers can be utilized to uploadkchun

has and will be uploaded to another peer within that time ot
arc from peet to 5 indicates peef uploads its chunk to peer A
black chunk beside a peer indicates the server will injett¢hunk
to the peer in time slok. Chunko0 is uploaded to all peers by the
end of time sloB and chunkl is uploaded to all peers by the end of

i to a free-rider, and all free-riders can get the chunk by tioé
C(i+ 1)+ K* + C. The achieved streaming delay2€' + K*
sub-time slots, which iél‘)gz’(CL/Cﬂ + 2 original time slots. m
We list the chunk schedule for a system wilsuper-peers and
free-riders in Table 2. Super-peers are indexed ffota 7, each

time slot4. The example shows that all chunks can be disseminated super peer has uploading capacity@pfree-riders are labeled from

to all peers3 time slots after it is injected by the server.

4.2 Heterogeneous Environment

a to h. A tuple (z,y) at row: columnj means super peerwill
upload chunke to peery in time slotj. A chunk is uploaded to all
super peers first, then it will be uploaded to all free-rideithin

For heterogeneous case, the delay bound for single chunk dis one additional round. The overall chunk disseminationydisia.5

semination cannot always be achieved in streaming. For jgleam
if the server’s upload capacity is and7 peers’ upload capacities
are2,1,1,1,1,1,0, a single chunk dissemination can be done in
3 time slots. However, no streaming algorithm can achiew tlfi
peer0 is still uploading chunl0 at timeslot2, chunk1 cannot be
uploaded according to the greedy chunk prdfife In this case, the
first peer with bandwidtl? becomes the scheduling bottle-neck for
adjacent chunks. For the two special heterogeneous cassislco
ered in Section 3.2, we are able to prove the existence of-fradiw
streaming to achieve the minimum chunk dissemination diglay
all chunks.

THEOREM 3. For a P2P streaming system witN/C super
peersand1—1/C)N free-riders, there exists a continuous stream-
ing schedule such that all chunks in the stream will be digsated
to all peers within a delay ow + 2 time slots.

time slots.

Table 2: Schedule between Super-peersand Freeriders

D| 1 |15 2 | 25| 3 (35| 4 [45]| 5
0]0,1(0,2|/0,4|{0,a|2,1(2,2]|2,4[2,a]4,1
1 0,3/0,5/0,b 2,312,5(2,b

2 0,6|0,c|0,g|lal26|2c|2g
3 0,7/0,d{0,h|1,b[27]2d]|2h
4 0,e|1,0|1,c|149]|2¢e€e|30
5 of|1,1]1,d|[1,h]2,f[|31
6 1,41 1,2 1,e 3,413,2
7 1,61,5(1,3]|1,f[3,6]3,5](3,3

COROLLARY 4. If peers in a streaming system form\a-level

Proof: The idea is to first make sure all chunks can be streamed to hierarchy with[T, _, Ny peers on levef with uploading capac-

all super peers withifi + & [log,(N/C)] time slots. Then super
peers will upload to free-riders whenever they have sparal-ba
width. To achieve this, we change the time unitltC' of the
original time slot. Measured in the new time slot, the segesm-
erates one new chunk evefytime slots. Suppose server only has
uploading capacity of, and uploads chunkto some super peer
by the end of time sloC(i + 1). For time slotk, let y;(k) be
number of super peers uploading churtlo other super peers. To
achieve the minimum streaming delay among all super peetrs, |

ity of C;, (C; > Ci41 > 1), there exists a continuous streaming
schedule such that chunks can be streamed to all peers wittag d

of M+ 30, w whereCy = 2.

Proof: We can construct the chunk scheduling iteratively. Peers
at levell pick (C1 — 1)N; peers from levep as their free-riders.
Construct a streaming schedule at levedccording to theorem 3
such that(Cy — 1)N; peers from level will receive all chunks

with delay2 + % Then each of those peers can lead the

(d) Time 4

(e) Time5

?/\i@
@\@/@‘a

(c) Time 3

\
[C
“/”
6

() Time 6

Figure 3: Evolution of Chunk Scheduling of Snow-ball Streaming among 8 Peers

snow-ball streaming tdV2/(C1 — 1) peers at leve and (Cs —
1)N2/(Cy — 1) free-riders from leveB, by time3 + M +

logy (N2 /(©1=1) (€, — 1) N1 N> peers at leves will receive the
chunk. %hey contlnue to do snow-ball streaming from I&ved 4.

The process can continue until all peers at the bottom |evdive
the chunk. []

5. ANALYSISIN REALISTIC SETTING

In this section, we analyze the performance of the propased-s
ball algorithms in realistic P2P network settings.

5.1 Impact of Propagation Delays

From the analysis in the previous section, using smallenk$fiu
in video streaming leads to smaller chunk transmissionydeta-
sequently smaller dissemination latency. However, ag #mesmis-
sion delay getting smaller, the propagation delay will phasnore
important role. We still use the transmission time of a chask
the time unit. Now suppose the propagation delayis= d — 1
time slots ¢ > 2). The time between a sender begins to upload the
chunk and the receiving peer gets the whole chunktime slots.
For the multi-tree approach, if parallel uploading is engpld, the
chunk transmission delay from a peer to all its children éases
from m to d + m — 1, the delay performance i%*g‘j—;} log, N

if sequential uploading is employed, the worst case delastilis

’{g;iml log, N, and the average deIay%ﬁngl log, N

Again, denote by:(k) the number of peers with the chunk at the
beginning of time slok. All the chunks received right before the
beginning of time slok were sent out at the beginning of time slot
k — d. Therefore we have

z(k) =z(k—1) + z(k — d).

z(k) is a Fibonacci series with time lag(d = 2 is the standard

Fibonacci series). We can solwék) by taking Z-Transform:

271
Z-d’

1-7-1_7-4d — x(k) ~ af,

X(z) =
whereo. is the largest root of — Z~' — Z~<. The finish time is
approximatelylog,, N, which isln 2/ In o, times of the snow ball
delay without propagation delay. We plot the evolution ofirck
dissemination at different propagation delays in Figurérhong
them, P = 0 corresponds to the case when the propagation delay
is ignored as studied in Section 3. As predicted by the Zsftam

[

[
TTTVOD

i
Ladbis

Number of Peers

15 20 25 30
Time Steps

Figure 4: Chunk dissemination speed at different propagation
delays.

analysis, the number of peers with the chunk grows expaaignti
after the first few time steps. For any propagation delaygetpo-
nential growth rate, i.e., the slope of the curve in semiptmg, is
determined by the dominating root &f(z). We compare the delay
performance of multi-tree based strategies and the sndvstoat-
egy in Table 3. The delay performance is measured in the @nit o
the average delay of snow-ball approach when there is n@apesp

tion delay. For parallel multi-tree strategy, we computaptimal
node degree that minimizes the average and worst-case delay
different propagation delays. For sequential multi-tieategy, the
node degree is optimized for the average delay and the assdci
worst-case delay is also calculated. As propagation detagases,
delay performance of all three strategies degrades. Iniaddthe
optimal node degrees of multi-tree strategies also inereasl a
peer will spend more time to upload the same chunk to all its ch
dren. This makes it closer to the uploading philosophy ofshall
streaming:a peer should keep uploading the same chunk until all
peers have it.

Table 3: Minimum Delay Achieved by Different Streaming
Strategies with Propagation Delays

Prop. M-Tree, Para. M-Tree, Seq. Snow
Delay || degree]| delay || degree| average| worst || Ball
0 3 1.89 4 1.25 2.0 1.0
1 4 2.5 5 1.723 | 2584 || 1.44
2 4 3.0 6 2.127 | 3.095| 1.813
3 5 3.445 7 2.493 | 3.562| 2.15
4 6 3.869 8 2.833 | 4.0 || 2.465

The average delay among all peers is

Then we have

E[D.] = N+1

5 Var[D.] =

1 & No?
= LM
k=1

This suggests that, in a chain topology, the impact of thdoan
ness of individual chunk transmission on the average andtwor
case chunk delay performance of all peers is proportionéheo
number of peergV in the chain.

For the parallel multi-tree approach, all peers at the botavel
will receive the chunk aftetog,, N independent parallel chunk
transmissions. Then we have for worst-case delay:

E[D%] =mlog,, N, Var[D%]=mlog,, No°.

For the sequential multi-tree approach, there is one pabediot-
tom level that will receive the chunk aftet log,, N independent
sequential chunk transmissions. We have for worst-casg/del

E[D%] = mlog,, N, Var[Dy]=mlog, No>.

More generally, if the delays among peers are heterogeneousTherefore the mean and variance of the worst-case delaytti-m

with distribution (p;, A;),1 < i < M, i.e., a chunk uploaded
by a peer at the beginning of time slowill be received by a peer
before the beginning of time sldt + A; with probability p;, we
have, in average sense,

M
z(k)=z(k—1)+ Zplm(k’ - Ay),

i=1

The average number of peers that receive the chunk in tinié slo
can be calculated as:

271

X(2)= ———— —
1- Zizl DiZ R

Again, whenk is large,xz(k) grows exponentially.

5.2 Impact of Bandwidth Variations

In previous sections, we assume that peers have constant up

loading bandwidth and a chunk transmission completes istaon
time: in sequential transmission, a chunk can be transurfitten a
peer to another peer in one time slot, in parallel transmisgiith
degreem, a peer can transmit a chunk simultaneouslyrtahil-
dren inm time slots. Due to network traffic variations, the available

bandwidth on a connection between two peers varies over. time

Consequently, the transmission time of a chunk is not catsta
this section, we investigate the robustness of differergasting
strategies against the randomness in chunk transmissions.

For the clarity of presentation, we assume all transmissébays
are independent and follow the same distribution. We intced
random variable-® for sequential transmission time, wifjr°] =
landVar[r®] = o%; them-parallel transmission time is”, with
E[r?] = m andVar[r?] = mo?.

For the chain-based approach, if peeeceives the chunk from
the server at time, the time for thei-th peer to receive the chunk
is > _, 7i, wherer; is the transmission delay from peier 1 to i.
And {7;} are i.i.d following the distribution of°. The worst-case
delay D$; is the time for peelV to receive the chunk:

E[D%] =N, Var[D%] = No°.

tree based approaches are proportionaktog,,, N.

We can calculate the mean and variance of the average delay
performance for multi-tree based approaches using rengsiAs
illustrated in Figure 1(b), an-degree tree ofV peers consists of
the single peer at levél andm sub-trees, each of which is rooted
at a levell peer and ha§N — 1)/m peers. Denote byV(N) the
aggregate chunk delay of all peers imadegree tree withiv peers
after the root peer receives the chunk. Assume peeceived the
chunk at timet = 0, lett; be the time when peef at level 1
receives the chunk. We have

i <Nn:1tj+wj (Nn_z 1))

=1

W(N) =

©)

where the first term indicates the delay of pgeontributes to the
delays of all peers in its sub-tree, the second term is thecggte
delay to disseminate the chunk in tji¢h subtree. For the parallel
multi-tree approachit; } is just the parallel transmission time from

peer0 to j. They follow the distribution of-?. For the sequential
multi-tree approachi; = »~7_, 7;, wherer; is the transmission
delay from peeb to peer:, following the distribution ofr*.

The average delay of all peers is simgy(N) = W(N)/N.
It can be verified that for both parallel and sequential rivéte,
E[D,(N)] and E[D;(N)] are the same as the deterministic case.
Based on (5), we also calculate the variah@e [D, s(N)] recur-
sively:

Yt
g

Var[D,y(N)] =~ m

2 N ~
——o® Var[D«(N)] = ®)
In both cases, the impact of the variability of individuarismis-
sions on the average delay performandadependenof the num-
ber of peers. And the average delay varianmm't diminishesas
N grows. This is due to the variability at the first few transsios
steps will affect almost all peers.

In the snow-ball approach, a peer will keep uploading a chunk
until all peers have the chunk. Within one time period, a feer
more bandwidth will upload to more peers than a peer with less
bandwidth. Over time, the workload of the same peer is nliyura

adaptive to its bandwidth: upload more if it has more bandwid

upload less if its bandwidth reduces. As for the recursieswin
Figure 2(b), due to the workload self-adaptiveness, thebaurof
peers in each subtree is no Iong@ér What remains to be true is
that the uploading in both subtrees will finish around theestime.

To further illustrate, let's assume the chunk transmisgiore
between two peers follows exponential distribution withameé.
Denote byd,, the time interval between the time instants when the
k-th and thek + 1-th peer receive the chunk;, is the transmission
time from peer0 to peerl, it is an exponential random variable
with rate1. Fork > 2, due to the memoryless property of ex-
ponential distributiong,, follows an exponential distribution with
ratek. Therefore the worst case delaylisy = Zszl dx, which
follows a hyper-exponential distribution. We have

N

E[DN] =)

N
1 1
k:1E<1+lnN, Var[Dn] = E ?<2

k=1

The expected chunk dissemination finish time is dnly = 69.3%

of the deterministic case. Due to the constant bounded delidy
ance, for largeV, snow-ball approach has better delay performance
in random case than in the deterministic case. Similarlycame
calculate the average delay performance as

N
— N-k+1 1+InN
ED] =) < +InN (7)
— Nk N
N 2 N
— N-k+1 1
k=1 k=1

Again, the average delay performance is better than therdistis-
tic case. This result is somehow counter-intuitive at thet Sight.
The study in Section 3.2 shows thaie bandwidth heterogeneity
among peers will reduce the chunk dissemination delEye re-
sult obtained here can be considered asmaporalheterogeneity
result, i.e.,the peer bandwidth variations over time will also re-
duce the chunk dissemination delako bridge these two results,
we can consider an artificial example: for a continuous sifeg
amongN peers over time period d&f, divide T into two halves,
if in the first half peer0 to peer% — 1 have bandwidth o2, peer
% to peerN — 1 have no bandwidth; in the second half, péer
to peery — 1 have bandwidth o, peerZ to peerN — 1 have
bandwidth of2. The average bandwidth of all peers are jusfc-
cording to Theorem 3, the streaming delaydflog, N + 1.5 can
be achieved in both halves, while the minimum delay for therde
ministic case when every peer always has uploading bankwefdt
lislog, N + 1.

6. CONCLUSION AND FUTURE WORK

In this paper, we analytically study the delay performante o

P2P streaming systems. We derive delay bounds that can serve

as delay benchmarks for proposed/deployed P2P stream@g sy
tems. Through our analysis, we quantify the impact of thedban
width distribution among peers on their delay performante-

sights brought forth by our study can be used to guide the de-

sign of new P2P streaming systems with shorter start-upyslela
A snow-ball streaming algorithm is proposed to achieve aeho-
optimum delay performance in various P2P network envirartme
Our preliminary analysis indicates that the snow-ballestring al-
gorithm is robust to network impairments, such as long pgagian
delays and random bandwidth variations. The next step mpe-
ment the proposed snow-ball algorithm in a distributed rzesed
streaming system. We will test its performance in real netvem-
vironment and compare it with the theoretical bounds ptediby

our analysis here. Another direction for future work is tteexd the
delay performance analysis to take into considerationrdétogors,
such as peer churns, geographic locality of peers and atime$
among individual chunk transmissions, etc.

Acknowledgments

The author thanks anonymous reviewers for their valuabta-co
ments. The author also thanks Chao Liang for his input. Tioikw
is partially supported by NSF grant CNS-0519998.

7.
(1]

REFERENCES

CASTRO, M., DRUSCHEL, P., KERMARREGC, A.-M.,
NANDI, A., ROWSTRON A., AND SINGH, A. SplitStream:
High-bandwidth multicast in cooperative environments. In
Proceedings of ACM SOSR003).

CHU, Y.-H., G.Ra0, S.,AND ZHANG, H. A case for end
system multicast. lProceedings of ACM SIGMETRICS
(2000).

HEl, X., LIANG, C., LIANG, J., Liu, Y., AND Ross K. W.
A measurement study of a large-scale p2p iptv systBfRE
Transactions on MultimediéNovember 2007).

JANNOTTI, J., GFFORD, D. K., JOHNSON, K. L.,
KAASHOEK, M. F.,AND O'TOOLE, Jr., J. W. Overcast:
Reliable multicasting with an overlay network. In
Proceedings of Operating Systems Design and
Implementatior{2000), pp. 197-212.

KoOSTINC, D., RODRIGUEZ, A., ALBRECHT, J.,AND
VAHDAT, A. Bullet: High bandwidth data dissemination
using an overlay mesh. Rroceedings of ACM Symposium
on Operating Systems Principl€2003).

MAGHAREI, N., AND REJAIE, R. Prime: Peer-to-peer
receiver-driven mesh-based streamingPceedings of
IEEE INFOCOM(2007).

MAGHAREI, N., REJAIE, R.,AND GUO, Y. Mesh or
multiple-tree: A comparative study of live p2p streaming
approaches. IRroceedings of IEEE INFOCONR0Q7).

Pal, V., KUMAR, K., TAMILMANI , K., SAMBAMURTHY,
V., AND MOHR, A. Chainsaw: Eliminating trees from
overlay multicast. InThe Fourth International Workshop on
Peer-to-Peer Systenf8005).

PPLivE. PPLive Homepage.

http://ww. pplive.com

PP S REAM. PPStream Homepage.

http://ww. ppst ream com

SMALL, T., LIANG, B., AND LI, B. Scaling laws and
tradeoffs in peer-to-peer live multimedia streaming. In
Proceedings of the 14th annual ACM international
conference on Multimedig2006), pp. 539-548.
VENKATARAMAN , J. C. V.,AND FRANCIS, P. Multi-tree
unstructured peer-to-peer multicast Rroceedings of 5th
International Workshop on Peer-to-Peer Systéa06).
YouUTUBE. Youtube Homepage.

http://ww. yout ube. com

ZHANG, M., ZHAO, L., TANG, J. L. Y.,AND YANG, S. A
peer-to-peer network for streaming multicast through the
internet. InProceedings of ACM Multimedig@005).
ZHANG, X., LIu, J., L, B.,AND YuUM, T.-S. P.
DONet/CoolStreaming: A data-driven overlay network for
live media streaming. IRroceedings of IEEE INFOCOM
(2005).

(2]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

