
Packet Probing:

link capacity/available bandwidth

EL 933, Class4

Yong Liu

09/27/2005

Motivation

! Good to know how much bandwidth on a link
" network operators

" end users

! Limited access to detailed information
" topology: link capacity

" traffic load: SNMP summary (5 min.s)

! End-end probing with simple router support
" sender, w./w.o. receiver cooperation

" packet delay --> link bandwidth

" end-end and location

Papers Today

! C. Dovrolis, P.Ramanathan, D.Moore, "What Do Packet Dispersion

Techniques Measure?", Proc. IEEE/INFOCOM 2001.

 pathrate: www.pathrate.org/

! M. Jain, C. Dovrolis,!"Pathload: A Measurement Tool for End-to-end

Available Bandwidth”, Proceedings of the 3rd Passive and Active

Measurements (PAM) Workshop, March 2002.

 pathload:

http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/pathload.html

! N. Hu, L. Li, Z. Mao, P. Steenkiste, J. Wang, “Locating Internet

Bottlenecks: Algorithms, Measurements, and Implications”, Proc.

ACM/SIGCOMM, 2004.

 pathneck: http://www.cs.cmu.edu/~hnn/pathneck/

slides modified from authors’

What do packet dispersion techniques

measure?

C. Dovrolis, P. Ramanathan,

D. Moore

Overview

! Background: capacity and available bandwidth

! Dispersion of packet-pairs

! Dispersion of packet-trains

! A capacity estimation methodology: pathrate

Definition of capacity

! Ci: capacity of link i (i = 1, … , H)

! Path capacity C is limited by narrow link n:

C = mini=0…H {Ci} = Cn

! Maximum IP-layer throughput that a flow can get,
without any cross traffic

Definition of available bandwidth

! Maximum IP-layer throughput that a flow can get,

given cross traffic

! ui: utilization of link I

! Available bandwidth A limited by tight link t:

A = mini=0…H Ci(1 – ui) = Ct(1 – ut)

Packet-pair Dispersion: Basic Idea

! Packet transmission time:

! Sent two packets back-to-back

! Measure dispersion at receiver

! Estimate C as

! But… cross traffic ‘noise’ can affect the packet

dispersion

Creation of SCDR and PNCM modes

! Sub-Capacity Dispersion Range (SCDR)

" is caused by cross traffic interfering with packet pair

! Post-Narrow Capacity Modes (PNCM)

" are caused by back-to-back packet-pairs after narrow link
(first packet is adequately delayed)

Effect of cross traffic

! Cross-traffic causes local modes below (SCDR) and

above (PNCM) capacity mode (CM)

! Heavier cross traffic load makes CM weaker

Effect of cross traffic packet size

! Distinct cross traffic packet sizes cause SCDR local modes

! Common Internet traffic packet sizes: 40B, 550B, 1500B

Effect of packet-pair size

Packet-train dispersion

! Bandwidth estimate:

Packet-train experiments

! What happens as we increase the packet-train length

N

Packet-train experiments

! Range of measurements decreases and becomes unimodal

! Measurements tend to Asymptotic Dispersion Rate (ADR) (less

than C)

Pathrate: a capacity estimation

methodology

Phase 1:

" Perform many (2000) packet-pair experiments to form
distribution B

" Use packet sizes of about 800 bytes

" Determine local modes of distribution B

" Sequence of local modes in increasing order:

Pathrate: a capacity estimation

methodology

Phase 2:
" Perform several packet-train experiments with certain N to

get B(N)

" If bandwidth distribution not unimodal, increase N and
repeat previous step

" Let N’ be the minimum value of N such that B(N) is unimodal

" Let be the range of the unique mode in B(N)

" Estimate capacity as:

Example

! Packet-pair modes: M = {9,14,17,23,26,29,33,40,44,56,75,90}

Evaluation: CAIDA – ETH link

! Packet pair modes: M = {9,11,13,15.5,19.5,27.32,43}

Summary

! Examination of packet-pair and packet-train
techniques taking cross traffic into account
" Statistical filtering of packet-pair measurements does not

work

" Most common measurement range (mode) is not always the
capacity

• Interfering cross traffic packets cause local modes or
SCDR

• Loaded post-narrow links also cause local modes (PNCM)

" Use of maximum size packets is not optimal

" Packet-trains lead to ADR estimation

! Develop a capacity estimation technique

Pathload:
A measurement tool for end-to-end

available bandwidth

Manish Jain, Univ-Delaware

Constantinos Dovrolis, Univ-Delaware

Overview

! Self-Loading Periodic Streams (SLoPS) methodology

! Description of pathload

! Verification experiments

Measuring per-hop available

bandwidth
! Network managers are very interested in available

bandwidth

! Can be measured at each link from router utilization
statistics

! MRTG graphs: 5-minute averages

! BUT, users do not normally see this data and it is not
end-to-end

Major Idea

! SLoPS analyzes One-Way Delays (OWDs) of packets

from sender S to receiver R

! OWD: Di = TR
arrive-TS

send = Tarrive - Tsend +

Clock_Offset(S,R)

! Relative OWDs between successive packets: Di – Di+1

! S and R do not have synchronized clocks.

! Periodic Stream: K packets, size L bytes, rate R = L/T

! If R>A, OWDs gradually increase due to self-loading of stream

D1 D2 D3 D4

T= L/R

1 2 3 4

41 2 3

D1
D2

D3 D4

1 2 3 4

K=4
At sender

At receiver

when R>A

At receiver

when R<A

Basic Idea
Experimental result: R > A case

! K = 100 packets, A= 74Mbps, R=96Mbps, T=100µs

! K = 100 packets, A= 74Mbps, R=37Mbps,
T=100µs

Experimental result: R < A case

! K = 100 packets, A= 74Mbps, R=82Mbps,
T=100µs

Experimental result: R A case

Iterative algorithm in SLoPS

! At source: Send periodic stream n with rate R(n)

! At receiver: Measure OWDs Di for i=1…K

! At receiver: Check for increasing trend in OWDs and notify

source

! At source: if trend is :

increasing (i.e. R(n)>A), #repeat with R(n+1) < R(n)

 non-increasing (i.e. R(n)<A),# repeat with R(n+1)>R(n)

! Terminate if R(n+1) – R(n) < !: resolution of final estimate

Selection of L, T and K

! L can not be less than certain number of bytes

! L should not be greater than path MTU, to avoid fragmentation

! T should be small to complete transmission of stream before

context switch

! Large K may overflow the queue of the tight link when R > A

! Small K does not give enough samples to infer trend robustly

Use of Several Streams

! N streams allows us to examine N

consecutive times whether R > A or not

! Multiple streams, separated by silence period

allows queues in network to drain

measurement traffic

! Duration of a fleet:

How do we detect an increasing

trend?
!Pairwise Comparison Test (PCT):

"

" E[PCT]=0.5 , independent OWDs,

" PCT -> 1, when increasing trend

! Pairwise Difference Test (PDT):

"

" E[PDT]=0 for independent OWDs

" PDT -> 1 when increasing trend

Illustration of PCT and PDT metrics

!Infer increasing trend when PCT or PDT

trend # 1.0

PCT variation for 3 fleets

PDT variation for 3 fleets
Rate adjustment algorithm

Increasing trend :

Rmax = R(n)

R(n+1) = (Gmax + Rmax)/2

Non-increasing trend:

Rmin = R(n)

R(n+1) = (Gmax +Rmin)/2

Grey region & R(n) > Gmax:

Gmax = R(n)

 R(n+1) = (Gmax + Rmax)/2

Grey region & R(n) < Gmin:

Gmin = R(n)

R(n+1) = (Gmin + Rmin)/2

Grey region

 Rmax > A

Rmin < A

Gmax

Gmin

Terminate if:

Rmax – Rmin < !

 or

Gmax – Gmin < "

Other pathload features

! Clock skew between sender and receiver can distort

the relative OWD.

! Clock skew not an issue in pathload due to small

stream duration.

! Pathload aborts the fleet if :

" stream encounters excessive loss (>10 %)

" a fraction of streams encounter moderate loss

! For default tool parameters, and avail-bw # 10 Mbps,

pathload takes 12 seconds

Verification Approach

! Use paths from U-Delaware to Greek universities and

U-Oregon.

! Routes through UDel, Abilene, Dante, GRnet

! MRTG graphs for all links in path report 5-min

averages for avail-bw

! In 5-min interval, pathload runs W times, each for qi

secs

! 5-min average avail-bw R reported by pathload:

Verification I
! Tight link: U-Ioannina to AUTH(C=8.2Mbps), w=1Mbps

Verification II
! Tight link: U-Oregon gigapop-Abilene(C=155Mbps), w=1 Mbps

Summary

! Avail-bw has estimation numerous application

! SLoPS: fast, accurate and non-intrusive measurement

! First release of pathload in Spring’02

! Examined avail-bw variability using pathload, and

results published in a technical report,

! Future work: incorporate avail-bw estimation in

transport,QOS and routing

Locating Internet Bottlenecks

Ningning Hu (CMU)

Li Erran Li (Bell Lab)

Zhuoqing Morley Mao (U. Mich)

Peter Steenkiste (CMU)

Jia Wang (AT&T)

Motivation

ISP BISP Acustomer server$

Trouble shooting

Network

engineering

ISP DISP C

Multihoming

overlay

! Location is critical for intelligent networking

bottleneck
State of Art

! SNMP load data

" Directly calculate the available bandwidth on each link

! Tomography

" Congestion sharing among partially overlapped network paths

! Active probing tools

" Pathchar, pipechar, Cartouche, BFind, STAB, DRPS

" Measure each link or amplify the bottleneck

" Large overhead/time or two-end control

Proposed Approach: Pathneck

!Pathneck is also an active probing tool, but

with the goal of being easy to use

" Low overhead (i.e., in order of 10s-100s KB)

" Fast (i.e., in order of seconds)

" Single-end control

" High accuracy

Bottleneck & Available Bandwidth

R1 R2 R3 R4S D

80

120

500

45

5

available bandwidth (a_bw):

link capacity – link load

A B C D E

choke points

bottleneck

Available Bandwidth Estimation

! Packet train probing

" train_rate > a_bw % train_length increases

" train_rate ! a_bw % train_length keeps same

! Current tools measure the train rate/length at the

end nodes % end-to-end available bandwidth

! Locating bottlenecks needs the packet train length

info from each link

Probing Packet Train in Pathneck

Load packets

60 pkts, 500 B

TTL

255255255255

measurement

packets

measurement

packets

30 pkts, 60 B 30 pkts, 60 B

2 130301 2

! Load packets are used to measure available
bandwidth

! Measurement packets are used to obtain location
information

Recursive Packet Train (RPT)

Transmission of RPT
2551 2 3 4 4 3 2 1255 255 255 255

2541 2 3 3 2 1254 254 254 254

2531 2 2 1253 253 253 253

R1

S

R2

R3

0 0

0 0

0 0

2532 2253 253 253 2531 1

2521 1252 252 252 252

gap values are the

raw measurement

g1

g2

g3

Choke Point Detection

choke points

bottleneck point

hop #

gap

0

hop #

a_bw

1 2 3 4 5 6 7 8

Configuration Parameters
! Confidence Threshold (conf)

" Set the minimum step change in the step function

" To filter out the gap measurement noise

" Default: conf " 10% available bandwidth change

! Detection Rate (d_rate)

" N probings for each destination

" A hop must appear as a choke point for at least M times

(d_rate " M/N)

" To select the most frequent choke point

" Default: d_rate " 5/10 = 50%

Patheneck: the Algorithm

1. Probe the same destination 10 times

! conf " 10% filtering
For each probing, only pick the choke points which satisfy conf

" 10% threshold

! d_rate " 50% filtering
A hop must appear as a choke point in at least 5 times to be

selected

! The last choke point is the bottleneck

Output from Pathneck

!Bottleneck location (choke point locations)

!Upper or lower bound for the link available
bandwidth
" Gap value increase: probing rate is upper bound

" Gap value unchanges: probing rate is lower bound

!IP level route

!RTT to each router along the path

Accuracy Evaluation

!Location measurement accuracy

" Abilene experiments

" Testbed experiments on Emulab (U. of Utah)

• Construct different types of bottleneck scenarios using

real traffic trace

!Bandwidth estimation accuracy

" Internet experiments on RON (MIT)

• Compare with IGI/PTR/Pathload

Accuracy Evaluation Results

! Location measurement accuracy (on Emulab)

" 100% accuracy for capacity determined bottlenecks

" 90% accuracy for load determined bottlenecks, mainly due to the

dynamics of competing load

" At most 30% error with reverse path congestion

! Bandwidth estimation accuracy (on RON)

" Pathneck returns upper bound for the bottleneck available

bandwidth

" On RON: consistent with available bandwidth estimation tools

Please refer to the paper for more details

Properties
&Low overhead

" 33.6KB each probing

&Fast
" 5 seconds for each probing

" (1-2 seconds if RTT is known)

&Single end control

&Over 70% of accuracy

Limitations

$ Can not measure the last hop

& Fixed recently (use ICMP ECHO packets for the last hop)

$ ICMP packet generation time and reverse path congestion can
introduce measurement error

" They directly change the gap values

" Considered as measurement noise

$ Packet loss and route change will disable the measurements

" Multiple probings can help

$ Can not pass firewalls

" Similar to most other tools

Measurement Methodology

! Probing sources
" 58 probing sources (from PlanetLab & RON)

! Probing destinations
" Over 3,000 destinations from each source

" Covers as many distinct AS paths as possible

! 10 probings for each destination
" conf $ 10%, d_rate $ 50%

1. Bottleneck Distribution
! Common Assumption: bottlenecks are most likely

to appear on the peering and access links, i.e., on

Inter-AS links

! Identifying Inter/Intra-AS links

" Only use AS# is not enough (Mao et al [SIGCOMM03])

" We define Intra-AS links as links at least one hop away

from links where AS# changes

" Two types of Inter-AS links: Inter0-AS & Inter1-AS

links

" We identify a subset of the real intra-AS links

1. Bottleneck Distribution (cont.)

!Up to 40% of bottleneck links are Intra-AS
" Consistent with earlier results [Akella et al IMC03]

2. Inference

!54% of inferences are successful for

12,212 paths with “enough information”

S DR RR R R

&

&
& &

& &

!Help to reduce the measurement overhead
3. Avoidance: Overlay Routing

S

S’

D

5050

10

!Useful metric: the estimated bandwidth on S-

S’-D is larger than those on S-D

!53% of 63,440 overlay attempts are useful

3. Avoidance: Multihoming

S1

DS2

S3

10

50

20

! Method

" Use multiple sources in the same region to simulate multihoming

" Useful metric: if the bandwidth on the worst path can be improved

by at least 50% by all other sources

! 78% of 42,285 multihoming attempts are useful

Conclusion

! Pathneck is effective and efficient in locating
bottlenecks

1. Up to 40% of bottleneck links are Intra-AS

2. 54% of the bottlenecks can be inferred correctly

3. Overlay and multihoming can significantly improve the
bandwidth performance

! Source code is available at
http://www.cs.cmu.edu/~hnn/pathneck

