Packet Probing: link capacity/available bandwidth

EL 933, Class 4
Yong Liu
09/27/2005

Motivation

- Good to know how much bandwidth on a link
 - network operators
 - end users
- Limited access to detailed information
 - topology: link capacity
 - traffic load: SNMP summary (5 min.s)
- End-end probing with simple router support
 - sender, w./w.o. receiver cooperation
 - packet delay --> link bandwidth
 - end-end and location

Papers Today

 pathrate: www.pathrate.org/
 pathload: http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/pathload.html
 pathneck: http://www.cs.cmu.edu/~hnn/pathneck/

What do packet dispersion techniques measure?

C. Dovrolis, P. Ramanathan, D. Moore

slides modified from authors'
Overview

- Background: capacity and available bandwidth
- Dispersion of packet-pairs
- Dispersion of packet-trains
- A capacity estimation methodology: pathrate

Definition of capacity

- Maximum IP-layer throughput that a flow can get, without any cross traffic

Definition of available bandwidth

- Maximum IP-layer throughput that a flow can get, given cross traffic

Packet-pair Dispersion: Basic Idea

- Packet transmission time: \(\Delta = L/C \)
- Sent two packets back-to-back
- Measure dispersion \(\Delta \) at receiver
- Estimate \(C \) as \(C = L/\Delta \)

- But... cross traffic 'noise' can affect the packet dispersion

\(C_i \): capacity of link \(i (i = 1, \ldots, H) \)
Path capacity \(C \) is limited by narrow link \(n \):
\[
C = \min_{i=0,H} \{ C_i \} = C_n
\]
Creation of SCDR and PNCM modes

- **Sub-Capacity Dispersion Range (SCDR)**
 - is caused by cross traffic interfering with packet pair

- **Post-Narrow Capacity Modes (PNCM)**
 - are caused by back-to-back packet-pairs after narrow link (first packet is adequately delayed)

Effect of cross traffic packet size

- Distinct cross traffic packet sizes cause SCDR local modes
- Common Internet traffic packet sizes: 40B, 550B, 1500B

Effect of packet-pair size

- Heavier cross traffic load makes CM weaker
Packet-train dispersion

- Bandwidth estimate: \(\frac{(N-1)L}{\Delta(N)} \)

Packet-train experiments

- What happens as we increase the packet-train length \(N \)

 - Range of measurements decreases and becomes unimodal
 - Measurements tend to Asymptotic Dispersion Rate (ADR) (less than \(C \))

Pathrate: a capacity estimation methodology

Phase 1:

- Perform many (2000) packet-pair experiments to form distribution \(B \)
- Use packet sizes of about 800 bytes
- Determine local modes of distribution \(B \)
- Sequence of local modes in increasing order:
 \[M = \{m_1, m_2, \ldots, m_K\} \]
Pathrate: a capacity estimation methodology

Phase 2:
- Perform several packet-train experiments with certain \(N \) to get \(B(N) \)
- If bandwidth distribution not unimodal, increase \(N \) and repeat previous step
- Let \(N' \) be the minimum value of \(N \) such that \(B(N) \) is unimodal
- Let \([\zeta^-, \zeta^+] \) be the range of the unique mode in \(B(N) \)
- Estimate capacity as: \(\hat{C} = \min\{ m_i \in M | m_i > \zeta^+ \} \)

Example

- Packet-pair modes: \(M = \{9, 14, 17, 23, 26, 29, 33, 40, 44, 56, 75, 90\} \)

Evaluation: CAIDA - ETH link

- Packet pair modes: \(M = \{9, 11, 13, 15.5, 19.5, 27.32, 43\} \)

Summary

- Examination of packet-pair and packet-train techniques taking cross traffic into account
 - Statistical filtering of packet-pair measurements does not work
 - Most common measurement range (mode) is not always the capacity
 - Interfering cross traffic packets cause local modes or SCDR
 - Loaded post-narrow links also cause local modes (PNCM)
 - Use of maximum size packets is not optimal
 - Packet-trains lead to ADR estimation
- Develop a capacity estimation technique
Pathload: A measurement tool for end-to-end available bandwidth

Manish Jain, Univ-Delaware
Constantinos Dovrolis, Univ-Delaware

Overview

Self-Loading Periodic Streams (SLoPS) methodology
Description of pathload
Verification experiments

Measuring per-hop available bandwidth

- Network managers are very interested in available bandwidth
- Can be measured at each link from router utilization statistics
- MRTG graphs: 5-minute averages

BUT, users do not normally see this data and it is not end-to-end

Major Idea

- SLoPS analyzes One-Way Delays (OWDs) of packets from sender S to receiver R
- OWD: \(D_i = T_{\text{arrive}}^{R} - T_{\text{send}}^{S} = T_{\text{arrive}} - T_{\text{send}} + \text{Clock_Offset}(S,R) \)
- Relative OWDs between successive packets: \(D_i - D_{i+1} \)
- S and R do not have synchronized clocks.
Basic Idea
- Periodic Stream: K packets, size L bytes, rate $R = L/T$
 - $T = L/R$
 - $K=4$
 - At sender
 - At receiver when $R > A$
 - At receiver when $R < A$

- If $R > A$, OWDs gradually increase due to self-loading of stream

Experimental result: $R > A$ case
- $K = 100$ packets, $A = 74$Mbps, $R = 96$Mbps, $T = 100\mu s$

Experimental result: $R < A$ case
- $K = 100$ packets, $A = 74$Mbps, $R = 37$Mbps, $T = 100\mu s$

Experimental result: $R \sim A$ case
- $K = 100$ packets, $A = 74$Mbps, $R = 82$Mbps, $T = 100\mu s$
Iterative algorithm in SLoPS

- At source: Send periodic stream \(n \) with rate \(R(n) \)
- At receiver: Measure OWDs \(D_i \) for \(i=1...K \)
- At receiver: Check for increasing trend in OWDs and notify source
- At source: if trend is:
 - increasing (i.e. \(R(n)>A \)), repeat with \(R(n+1) < R(n) \)
 - non-increasing (i.e. \(R(n)<A \)), repeat with \(R(n+1)>R(n) \)
- Terminate if \(R(n+1) - R(n) \rightarrow \omega \); resolution of final estimate

Selection of L, T and K

- \(L \) can not be less than certain number of bytes
- \(L \) should not be greater than path MTU, to avoid fragmentation
- \(T \) should be small to complete transmission of stream before context switch
- Large \(K \) may overflow the queue of the tight link when \(R > A \)
- Small \(K \) does not give enough samples to infer trend robustly

Use of Several Streams

- \(N \) streams allows us to examine \(N \) consecutive times whether \(R > A \) or not
- Multiple streams, separated by silence period allows queues in network to drain measurement traffic
- Duration of a fleet: \(U = N \times (K \times T + \Delta) \)

How do we detect an increasing trend?

- Pairwise Comparison Test (PCT):
 \[R_{pct} = \frac{\sum_{j=2}^{K} I(D_j>D_{j-1})}{K-1}, \quad 0 \leq R_{pct} \leq 1 \]
 \[\mathbb{E}[PCT]=0.5 \text{, independent OWDs,} \]
 \[\text{PCT} \rightarrow 1 \text{, when increasing trend} \]
- Pairwise Difference Test (PDT):
 \[R_{pdt} = \frac{\sum_{j=2}^{K} |D_j-D_{j-1}|}{\sum_{j=2}^{K} |D_j-D_{j-1}|} = \frac{D_K-D_1}{\sum_{j=2}^{K} |D_j-D_{j-1}|} \]
 \[\mathbb{E}[PDT]=0 \text{ for independent OWDs} \]
 \[\text{PDT} \rightarrow 1 \text{ when increasing trend} \]
Illustration of PCT and PDT metrics

- Infer increasing trend when PCT or PDT trend \(\neq 1.0 \)

PCT variation for 3 fleets

Rate adjustment algorithm

- Increasing trend: \(R_{\text{max}} = R(n) \)
 \(R(n+1) = (G_{\text{max}} + R_{\text{max}})/2 \)

- Non-increasing trend:
 \(R_{\text{min}} = R(n) \)
 \(R(n+1) = (G_{\text{min}} + R_{\text{min}})/2 \)

Terminate if:

\[
R_{\text{max}} - R_{\text{min}} < \omega \\
\text{or} \\
G_{\text{max}} - G_{\text{min}} < \chi
\]
Other pathload features

- Clock skew between sender and receiver can distort the relative OWD.
- Clock skew not an issue in pathload due to small stream duration.
- Pathload aborts the fleet if:
 - stream encounters excessive loss (>10%)
 - a fraction of streams encounter moderate loss
- For default tool parameters, and avail-bw = 10 Mbps, pathload takes 12 seconds

Verification Approach

- Use paths from U-Delaware to Greek universities and U-Oregon.
- Routes through UDel, Abilene, Dante, GRnet
- MRTG graphs for all links in path report 5-min averages for avail-bw
- In 5-min interval, pathload runs W times, each for q_i secs
- 5-min average avail-bw R reported by pathload:
 \[R = \sum_{i=1}^{W} \frac{q_i}{300} \frac{R_{i}^{\max} + R_{i}^{\min}}{2} \]

Verification I

- Tight link: U-Ioannina to AUTH(C=8.2Mbps), w=1Mbps

Verification II

- Tight link: U-Oregon gigapop-Abilene(C=155Mbps), w=1 Mbps
Summary

- Avail-bw has estimation numerous application
- SLoPS: fast, accurate and non-intrusive measurement
- First release of pathload in Spring’02
- Examined avail-bw variability using pathload, and results published in a technical report,
- Future work: incorporate avail-bw estimation in transport, QOS and routing

Motivation

- Location is critical for intelligent networking

State of Art

- SNMP load data
 - Directly calculate the available bandwidth on each link
- Tomography
 - Congestion sharing among partially overlapped network paths
- Active probing tools
 - Pathchar, pipechar, Cartouche, BFind, STAB, DRPS
 - Measure each link or amplify the bottleneck
 - Large overhead/time or two-end control

Locating Internet Bottlenecks

Ningning Hu (CMU)
Li Erran Li (Bell Lab)
Zhuoqing Morley Mao (U. Mich)
Peter Steenkiste (CMU)
Jia Wang (AT&T)
Proposed Approach: Pathneck

- Pathneck is also an active probing tool, but with the goal of being easy to use:
 - Low overhead (i.e., in order of 10s-100s KB)
 - Fast (i.e., in order of seconds)
 - Single-end control
 - High accuracy

Available Bandwidth Estimation

- Packet train probing:
 - train_rate > a_bw \(\Rightarrow\) train_length increases
 - train_rate ≤ a_bw \(\Rightarrow\) train_length keeps same

- Current tools measure the train rate/length at the end nodes \(\Rightarrow\) end-to-end available bandwidth

- Locating bottlenecks needs the packet train length info from each link

Bottleneck & Available Bandwidth

Available bandwidth (a_bw): link capacity – link load

Probing Packet Train in Pathneck

- Load packets
 - Measurement packets are used to obtain location information
Transmission of RPT

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>R1</td>
<td>3</td>
<td>254</td>
<td>254</td>
<td>254</td>
<td>254</td>
<td>254</td>
<td>254</td>
<td>254</td>
</tr>
<tr>
<td>R2</td>
<td>3</td>
<td>253</td>
<td>253</td>
<td>253</td>
<td>253</td>
<td>253</td>
<td>253</td>
<td>253</td>
</tr>
<tr>
<td>R3</td>
<td>3</td>
<td>252</td>
<td>252</td>
<td>252</td>
<td>252</td>
<td>252</td>
<td>252</td>
<td>252</td>
</tr>
</tbody>
</table>

Gap values are the raw measurement.

Choke Point Detection

Patheneck: the Algorithm

1. Probe the same destination 10 times

- **Confidence Threshold (conf)**
 - Set the minimum step change in the step function
 - To filter out the gap measurement noise
 - Default: conf ≧ 10% available bandwidth change

- **Detection Rate (d_rate)**
 - N probings for each destination
 - A hop must appear as a choke point for at least M times (d_rate ≧ M/N)
 - To select the most frequent choke point
 - Default: d_rate ≧ 5/10 = 50%

- **The last choke point is the bottleneck**
Output from Pathneck

- Bottleneck location (choke point locations)
- Upper or lower bound for the link available bandwidth
 - Gap value increase: probing rate is upper bound
 - Gap value unchanges: probing rate is lower bound
- IP level route
- RTT to each router along the path

Accuracy Evaluation

- Location measurement accuracy
 - Abilene experiments
 - Testbed experiments on Emulab (U. of Utah)
 - Construct different types of bottleneck scenarios using real traffic trace
- Bandwidth estimation accuracy
 - Internet experiments on RON (MIT)
 - Compare with IGI/PTR/Pathload

Accuracy Evaluation Results

- Location measurement accuracy (on Emulab)
 - 100% accuracy for capacity determined bottlenecks
 - 90% accuracy for load determined bottlenecks, mainly due to the dynamics of competing load
 - At most 30% error with reverse path congestion
- Bandwidth estimation accuracy (on RON)
 - Pathneck returns upper bound for the bottleneck available bandwidth
 - On RON: consistent with available bandwidth estimation tools

Please refer to the paper for more details

Properties

- Low overhead
 - 33.6KB each probing
- Fast
 - 5 seconds for each probing
 - (1-2 seconds if RTT is known)
- Single end control
- Over 70% of accuracy
Limitations

- Can not measure the last hop
 - Fixed recently (use ICMP ECHO packets for the last hop)
- ICMP packet generation time and reverse path congestion can introduce measurement error
 - They directly change the gap values
 - Considered as measurement noise
- Packet loss and route change will disable the measurements
 - Multiple probings can help
- Can not pass firewalls
 - Similar to most other tools

Measurement Methodology

- Probing sources
 - 58 probing sources (from PlanetLab & RON)
- Probing destinations
 - Over 3,000 destinations from each source
 - Covers as many distinct AS paths as possible
- 10 probings for each destination
 - conf \(\geq 10\% \), d_rate \(\geq 50\% \)

1. Bottleneck Distribution

- Common Assumption: bottlenecks are most likely to appear on the peering and access links, i.e., on Inter-AS links
- Identifying Inter/Intra-AS links
 - Only use AS# is not enough (Mao et al [SIGCOMM03])
 - We define Intra-AS links as links at least one hop away from links where AS# changes
 - Two types of Inter-AS links: Inter0-AS & Inter1-AS links
 - We identify a subset of the real intra-AS links

1. Bottleneck Distribution (cont.)

- Up to 40% of bottleneck links are Intra-AS
 - Consistent with earlier results [Akella et al IMC03]
2. Inference
- Help to reduce the measurement overhead
- 54% of inferences are successful for 12,212 paths with “enough information”

3. Avoidance: Overlay Routing
- Useful metric: the estimated bandwidth on S-S'-D is larger than those on S-D
- 53% of 63,440 overlay attempts are useful

3. Avoidance: Multihoming
- Method
 - Use multiple sources in the same region to simulate multihoming
 - Useful metric: if the bandwidth on the worst path can be improved by at least 50% by all other sources
- 78% of 42,285 multihoming attempts are useful

Conclusion
- Pathneck is effective and efficient in locating bottlenecks
- Up to 40% of bottleneck links are Intra-AS
- 54% of the bottlenecks can be inferred correctly
 - Overlay and multihoming can significantly improve the bandwidth performance
- Source code is available at http://www.cs.cmu.edu/~hnn/pathneck