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Motivation

O Good to know how much bandwidth on a link
= network operators
= end users
O Limited access to detailed information
= topology: link capacity
= traffic load: SNMP summary (5 min.s)
O End-end probing with simple router support

= sender, w./w.o. receiver cooperation
= packet delay --> link bandwidth
= end-end and location

What do packet dispersion techniques
measure?

C. Dovrolis, P. Ramanathan,
D. Moore



Overview

0 Background: capacity and available bandwidth
O Dispersion of packet-pairs
Q Dispersion of packet-trains

O A capacity estimation methodology: pathrate

Definition of available bandwidth

O Maximum IP-layer throughput that a flow can get,
given cross traffic
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Q u;: utilization of link I
O Available bandwidth A limited by tight link +:

Definition of capacity

0 Maximum IP-layer throughput that a flow can get,
without any cross traffic
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O C;: capacity of linki(i=1,..,H)
O Path capacity C is limited by narrow link n:
C = ming w{C}=C,

Packet-pair Dispersion: Basic Idea

O Packet transmission time: A =L/C
0 Sent two packets back-to-back

U Measure dispersion A at receiver
O Estimate Cas C =L/A

Lc A=L/C

-

O But... cross traffic 'noise’ can affect the packet
dispersion




Creation of SCDR and PNCM modes

O Sub-Capacity Dispersion Range (SCDR)

= is caused by cross traffic interfering with packet pair

O Post-Narrow Capacity Modes (PNCM)

= are caused by back-to-back packet-pairs after narrow link
(first packet is adequately delayed)

Effect of cross traffic packet size

O Distinct cross traffic packet sizes cause SCDR local modes
O Common Internet traffic packet sizes: 40B, 5508, 15008
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Effect of cross traffic

O Cross-traffic causes local modes below (SCDR) and
above (PNCM) capacity mode (CM)
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O Heavier cross traffic load makes CM weaker

Effect of packet-pair size
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Packet-train dispersion Packet-train experiments

O What happens as we increase the packet-train length
N
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: : Pathrate: a capacity estimation
Packet-train experiments
methodology
O Range of measurements decreases and becomes unimodal Phase 1:
O Measurements tend to Asymptotic Dispersion Rate (ADR) (less
than C) = Perform many (2000) packet-pair experiments to form
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Phase 2:

Pathrate: a capacity estimation
methodology

Perform several packet-train experiments with certain N to
get B(N)

If bandwidth distribution not unimodal, increase N and
repeat previous step

Let N' be the minimum value of N such that B(N) is unimodal

Let [¢,¢1] be the range of the unique mode in B(N)

Estimate capacity as: C = min{m; € M|m; > ¢t}

Evaluation: CAIDA - ETH link

O Packet pair modes: M = {9,11,13,15.5,19.5,27.32 43}
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Example

O Packet-pair modes: M = {9,14,17,23,26,29,33,40,44 56,75,90}
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0 Examination of packet-pair and packet-train
techniques taking cross traffic into account

= Statistical filtering of packet-pair measurements does not
work
= Most common measurement range (mode) is not always the
capacity

SCDR

= Use of maximum size packets is not optimal
= Packet-trains lead to ADR estimation

U Develop a capacity estimation technique

+ Interfering cross traffic packets cause local modes or

+ Loaded post-narrow links also cause local modes (PNCM)



Pathload:

A measurement tool for end-to-end
available bandwidth

Manish Jain, Univ-Delaware
Constantinos Dovrolis, Univ-Delaware

Measuring per-hop available
bandwidth
0 Network managers are very interested in available

bandwidth

QO Can be measured at each link from router utilization
statistics

O MRTG graphs: 5-minute averages
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0 BUT, users do not normally see this data and it is not
end-to-end

Overview

O Self-Loading Periodic Streams (SLoPS) methodology
O Description of pathload

O Verification experiments

Major Idea

0 SLoPS analyzes One-Way Delays (OWDs) of packets

from sender S to receiver R

aowb: D A TRarr'ive'TSsend = Tar'r/'ve - Tsend +
Clock_Offset(S,R)

O Relative OWDs between successive packets: D; - D,,;

0 S and R do not have synchronized clocks.



Basic Idea

Experimental result: R > A case
Periodic Stream: K packets, size L bytes, rate R=L/T

T=L/R
«—

_ 0 K = 100 packets, A= 74Mbps, R=96Mbps, T=100us
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If R>A, OWDs gradudlly increase due to self-loading of stream

Experimental result: R < A case Experimental result: R ~ A case
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Iterative algorithm in SLoPS

0O At source: Send periodic stream n with rate R(n)
O At receiver: Measure OWDs D; for i=1.K

QO At receiver: Check for increasing trend in OWDs and notify
source

O At source: if trend is :
increasing (i.e. R(n)>A ), >repeat with R(n+1) < R(n)
non-increasing (i.e. R(n)<A ), repeat with R(n+1)>R(n)

O Terminate if R(n+1) - R(n) < w: resolution of final estimate

Use of Several Streams

O N streams allows us to examine N
consecutive times whether R > A or not

O Multiple streams, separated by silence period
allows queues in network to drain

measurement traffic

O Duration of a fleet: U = N x (K x T + A)

Selection of L, T and K

O L can not be less than certain number of bytes
O L should not be greater than path MTU, to avoid fragmentation

O T should be small to complete transmission of stream before

context switch
O Large K may overflow the queue of the tight link when R > A

O Small K does not give enough samples to infer trend robustly

How do we detect an increasing

trend?
UPairwise Comparison Test (PCT):

K I(D;>D;_q)
Rpey = =952 977072 0 < Rpey < 1

» E[PCT]=0.5, independent OWDs,
= PCT -> 1, when increasing trend
O Pairwise Difference Test (PDT):

K
" R — Zszg(Dj*Dj—l) — _ Dx=D
P > j=2ID;j=Dj_al  Yjo|Dj—Dj 1|

= E[PDT]=0 for independent OWDs
= PDT -> 1 when increasing trend



Tllustration of PCT and PDT metrics
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Rate adjustment algorithm

Increasing trend :

Rmax > A
Rmax = R(n)
Gmax = max max)
Grey region . R(_n+1) (.G + Rred/2
Gmm Non-increasing trend:
) Rmin = R(n)
Rmmn < A R(n+1) = (Gmex +Rmin)/2
Terminate if: Grey region & R(n) > Gmax:
Rmax_ Rmin < GMmox = R(n)
or R(n...l) = (Gmax+ Rmax )/2

Grey region & R(n) < Gmin:
Gmin = R(n)
R(n+1) = (GMin+ Rmin )/2

Gmax _ Gmin < X



Other pathload features

Q Clock skew between sender and receiver can distort
the relative OWD.
O Clock skew not an issue in pathload due to small

stream duration.

O Pathload aborts the fleet if :
= stream encounters excessive loss ( >10 %)

= a fraction of streams encounter moderate loss

O For default tool parameters, and avail-bw =~ 10 Mbps,
pathload takes 12 seconds

Verification I

O Tight link: U-Toannina to AUTH(C=8.2Mbps), w=1Mbps

U-loannina to AUTH
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Verification Approach

0 Use paths from U-Delaware to Greek universities and
U-Oregon.

0 Routes through UDel, Abilene, Dante, GRnet

0 MRTG graphs for all links in path report 5-min
averages for avail-bw

0 In 5-min interval, pathload runs W times, each for g;
secs

U 5-min average avail-bw R reported by pathload:
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Verification IT
O Tight link: U-Oregon gigapop-Abilene(C=155Mbps), w=1 Mbps
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Summary

0 Avail-bw has estimation numerous application
O SLoPS: fast, accurate and non-intrusive measurement
O First release of pathload in Spring'02

0 Examined avail-bw variability using pathload, and

results published in a technical report,

O Future work: incorporate avail-bw estimation in

transport,QOS and routing

Motivation
_ bottleneck

N

customerf—_ ISPA —— XISPB —server

Y

Q Location is critical for intelligent networking

Locating Internet Bottlenecks

Ningning Hu (cmu)

Li Erran Li (Bell Lab)
Zhuoging Morley Mao (U. Mich)
Peter Steenkiste (cmu)
Jia Wang (AT&T)

State of Art

O SNMP load data
= Directly calculate the available bandwidth on each link

O Tomography
= Congestion sharing among partially overlapped network paths

O Active probing tools
= Pathchar, pipechar, Cartouche, BFind, STAB, DRPS
= Measure each link or amplify the bottleneck
= Large overhead/time or two-end control



Proposed Approach: Pathneck

OPathneck is also an active probing tool, but
with the goal of being easy to use
* Low overhead (i.e., in order of 10s-100s KB)
= Fast (i.e., in order of seconds)
= Single-end control
= High accuracy

Available Bandwidth Estimation

O Packet train probing
* train_rate > a_bw = train_length increases
* train_rate < a_bw = train_length keeps same

O Current tools measure the train rate/length at the
end nodes = end-to-end available bandwidth

O Locating bottlenecks needs the packet train length
info from each link

Bottleneck & Available Bandwidth

500

available bandwidth (a_bw):

link capacity - link load

choke points

bottleneck

Probing Packet Train in Pathneck

Load packets

‘ 60 pkts, 500 B

TTL

Recursive Packet Train (RPT)

O Load packets are used to measure available
bandwidth

O Measurement packets are used to obtain location
information



Transmission of RPT
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gap values are the
raw measurement

Configuration Parameters

O Confidence Threshold (conf)
= Set the minimum step change in the step function
= To filter out the gap measurement noise
* Default: conf = 10% available bandwidth change

O Detection Rate (d_rate)
= N probings for each destination

= A hop must appear as a choke point for at least M times
(d_rate = M/N)

= To select the most frequent choke point
* Default: d_rate = 5/10 = 50%

Choke Point Detection

bottleneck point ‘

gaps

a_bw

Patheneck: the Algorithm

Probe the same destination 10 times

Q conf =10% filtering

For each probing, only pick the choke points which satisfy conf

= 10% threshold

O d_rate = 50% filtering

A hop must appear as a choke point in at least 5 times o be
selected

O The last choke point is the bottleneck



Output from Pathneck

U Bottleneck location (choke point locations)

O Upper or lower bound for the link available
bandwidth
= Gap value increase: probing rate is upper bound
= Gap value unchanges: probing rate is lower bound

O IP level route

ORTT to each router along the path

Accuracy Evaluation Results

O Location measurement accuracy (on Emulab)
= 100% accuracy for capacity determined bottlenecks

= 90% accuracy for load determined bottlenecks, mainly due to the
dynamics of competing load

= At most 30% error with reverse path congestion

O Bandwidth estimation accuracy (on RON)

= Pathneck returns upper bound for the bottleneck available
bandwidth

= On RON: consistent with available bandwidth estimation tools

Accuracy Evaluation

ULocation measurement accuracy
= Abilene experiments
= Testbed experiments on Emulab (U. of Utah)

+ Construct different types of bottleneck scenarios using
real traffic trace

L Bandwidth estimation accuracy

= Internet experiments on RON (MIT)
- Compare with IGI/PTR/Pathload

Properties

v'Low overhead
= 33.6KB each probing

v'Fast
= 5 seconds for each probing
® (1-2 seconds if RTT is known)

v'Single end control

v'Over 70% of accuracy



Limitations Measurement Methodology

X Can not measure the last hop O Probing sources
v’ Fixed recently (use ICMP ECHO packets for the last hop) = 58 probing sources (from PlanetLab & RON)

%X ICMP packet generation time and reverse path congestion can

introduce measurement error . . .
® They directly change the gap values d Pr'obmg destinations

= Considered as measurement noise = Qver 3,000 destinations from each source

= Covers as many distinct AS paths as possible
% Packet loss and route change will disable the measurements
® Multiple probings can help

A 10 probings for each destination

X Can not pass firewalls
ot pass f - conf = 10%, d_rate = 50%
= Similar to most other tools

1. Bottleneck Distribution 1. Bottleneck Distribution (cont.)
0 Common Assumption: bottlenecks are most likely i PRI o MR "
to appear on the peering and access links, i.e., on g sl o HHH |
Inter-AS links 5
E 06+ :
O Identifying Inter/Intra-AS links g Z: - o H 7
= Only use AS# is not enough (Mao et al [STGCOMMO3]) e I -_J.mu-af«-S
= We define Intra-AS links as links at least one hop away 0 5 10 15 20 25

from links where AS# changes Frabing soueced

= Two types of Inter-AS links: InterO-AS & Interl-AS
links O Up to 40% of bottleneck links are Intra-AS
* We identify a subset of the real intra-AS links = Consistent with earlier results [Akella et al IMCO03]




2. Inference
dHelp o reduce the measurement overhead

054% of inferences are successful for
12,212 paths with “enough information”

3. Avoidance: Multihoming

O Method
= Use multiple sources in the same region to simulate multihoming

= Useful metric: if the bandwidth on the worst path can be improved
by at least 50% by all other sources

Q 78% of 42,285 multihoming attempts are useful

3. Avoidance: Overlay Routing

QOUseful metric: the estimated bandwidth on S-
S'-D is larger than those on S-D

53% of 63,440 overlay attempts are useful

Conclusion

O Pathneck is effective and efficient in locating
bottlenecks

Up to 40% of bottleneck links are Intra-AS
54% of the bottlenecks can be inferred correctly

Overlay and multihoming can significantly improve the
bandwidth performance

O  Source code is available at
http://www.cs.cmu.edu/~hnn/pathneck




