EL736 Communications Networks II: Design and Algorithms

Class11: Multi-Hour and Multi-Layer Network Design
12/05/2007
Outline

- Multi-Hour Network Modeling & Design
 - uncapacitated
 - capacitated
 - robust routing

- Multi-Layer Networks
 - modeling
 - dimensioning
 - restoration
Time-of-Day Effect

- Traffic demand varies during hours of a day
- Variations not synchronized

Figure 11.2 Traffic Variation for a Selected Set of City Pairs During the Day for a 10-Node Network Spanning Continental U.S. (Time is on Eastern Time Zone in U.S.)
Multi-Hour Dimensioning

- how much capacities needed to handle demands at all times?
- rearrange routing when demand changes
- modular link dimensioning

Modular Links, Multi-Hour, Rearrangeable

- **indices**

 \[d = 1, 2, \ldots, D \quad \text{demands} \]

 \[t = 1, 2, \ldots, T \quad \text{traffic busy hours} \]

 \[p = 1, 2, \ldots, P_d \quad \text{allowable paths for flow realizing demand } d \]

 \[e = 1, 2, \ldots, E \quad \text{links} \]

- **constants**

 \[\delta_{edp} \quad = 1, \text{if link } e \text{ belongs to path } p \text{ realizing demand } d, 0 \text{ otherwise} \]

 \[h_{dt} \quad \text{volume of demand } d \text{ at time } t \]

 \[\xi_e \quad \text{cost of one capacity module on link } e \]

 \[M \quad \text{size of the link capacity module} \]

- **variables**

 \[x_{dpt} \quad \text{(non-negative) flow allocated to path } p \text{ of demand } d \]

 \[\text{at time } t \text{ (continuous non-negative)} \]

 \[y_e \quad \text{capacity of link } e \text{ expressed in number of modules (non-negative integer)} \]

- **objective**

 minimize \[F = \sum_e \xi_e y_e \]

- **constraints**

 \[\sum_p x_{dpt} = h_{dt}, \quad d = 1, 2, \ldots, D \quad t = 1, 2, \ldots, T \]

 \[\sum_d \sum_p \delta_{edp} x_{dpt} \leq M y_e, \quad e = 1, 2, \ldots, E \quad t = 1, 2, \ldots, T. \]
Multi-Hour Dimensioning

- unsplittable flows: one path each demand
- non-rearrangeable routing: don’t change routes over time

Modular Links, Multi-Hour, Non-Rearrangeable, Unsplittable

- indices
 - \(d = 1, 2, ..., D \) demands
 - \(t = 1, 2, ..., T \) traffic busy hours
 - \(p = 1, 2, ..., P_d \) allowable paths for flow realizing demand \(d \)
 - \(e = 1, 2, ..., E \) links

- constants
 - \(\delta_{edp} = 1 \), if link \(e \) belongs to path \(p \) realizing demand \(d \), 0 otherwise
 - \(h_{dt} \) volume of demand \(d \) at time \(t \)
 - \(\xi_e \) cost of one capacity module on link \(e \)
 - \(M \) size of the link capacity module

- variables
 - \(u_{dp} \) binary variable corresponding to the flow allocated to path \(p \) of demand \(d \)
 - \(y_e \) capacity of link \(e \) expressed in the number of modules (non-negative integer)

- objective
 - minimize \(F = \sum_e \xi_e y_e \)

- constraints
 - \(\sum_p u_{dp} = 1, \quad d = 1, 2, ..., D \)
 - \(\sum_d h_{dt} \sum_p \delta_{edp} u_{dp} \leq M y_e, \quad e = 1, 2, ..., E \quad t = 1, 2, ..., T. \)
Multi-Hour Routing

- link capacity fixed
- recalculate routing for each time t
- problem separable, optimal routing at each t

Multi-Hour, Rearrangeable, Capacitated

- indices
 - $d = 1, 2, ..., D$ demands
 - $t = 1, 2, ..., T$ time of the day index
 - $p = 1, 2, ..., P_d$ allowable paths for flow realizing demand d
 - $e = 1, 2, ..., E$ links

- constants
 - δ_{edp} = 1, if link e belongs to path p realizing demand d, 0 otherwise
 - h_{dt} volume of demand d at time t
 - ζ_{dpt} unit routing cost on path p for demand d in time window t
 - c_e capacity of link e

- variables
 - x_{dpt} flow allocated to path p of demand d at time t (continuous non-negative)

- objective
 - minimize $F = \sum_d \sum_p \zeta_{dpt} x_{dpt}$

- constraints
 - $\sum_p x_{dpt} = h_{dt}, \quad d = 1, 2, ..., D \quad t = 1, 2, ..., T$
 - $\sum_d \sum_p \delta_{edp} x_{dpt} \leq c_e, \quad e = 1, 2, ..., E \quad t = 1, 2, ..., T$.
Extension: robust routing under with multiple Traffic Matrices (TM)

- **multiple Traffic Matrices**
 - *dynamic traffic*: demands between routing update period
 - *estimation error*: possible traffic demands

- **Robust routing**: single set of routes achieving good performance under all possible TMs
 - routing reconfiguration too expensive
 - routing: link-path, node-link, destination based, link weight based
 - performance measure
 - good average performance
 - bounded worst-case performance
 - trade-off between two

- **References**
 - “On Optimal Routing with Multiple Traffic Matrices”,
 - “Optimal Routing with Multiple Traffic Matrices: Tradeoff between Average Case and Worst Case Performance”,
 ftp://gaia.cs.umass.edu/pub/Zhang05_tradeofftr.pdf
Multi-Layer Networks

- Traffic vs. Transport Networks
- Technology Example

Cost Component
- cross-layer connection
- physical connection
Dimensioning at two Resource Layers

- demand layer
 - demand between pairs of users
 - to be carried by traffic network

- traffic network layer
 - set of logical links
 - realize each demand through flow allocation
 - capacity of each link realized by transport layer

- transport network layer
 - set of physical links
 - realize each logical link capacity through flow allocation

- dimensioning: how much capacity needed on each logical/physical link?

![Diagram showing two resource layers with demand, traffic network, and transport network layers, along with equations for flow allocation and link capacity constraints.](image-url)
Two-Layer Dimensioning (continuous case)

- **indices**

 \[
 d = 1, 2, \ldots, D \quad \text{demands}
 \]

 \[
 p = 1, 2, \ldots, P_d \quad \text{candidate paths in upper layer for flows realizing demand } d
 \]

 \[
 e = 1, 2, \ldots, E \quad \text{links of upper layer}
 \]

 \[
 q = 1, 2, \ldots, Q_e \quad \text{candidate paths in lower layer for flows realizing link } e
 \]

 \[
 g = 1, 2, \ldots, G \quad \text{links of lower layer}
 \]

- **constants**

 \[
 h_d \quad \text{volume of demand } d
 \]

 \[
 \delta_{edp} = 1 \text{ if link } e \text{ of upper layer belongs to path } p \text{ realizing demand } d; \quad 0, \text{ otherwise}
 \]

 \[
 \xi_e \quad \text{unit cost of link } e \text{ of upper layer}
 \]

 \[
 \gamma_{geq} = 1 \text{ if link } g \text{ of lower layer belongs to path } q \text{ realizing link } e \text{ of upper layer}; \quad 0, \text{ otherwise}
 \]

 \[
 \kappa_g \quad \text{unit cost of link } g \text{ of lower layer}
 \]

- **variables**

 \[
 x_{dp} \quad \text{(non-negative continuous) flow allocated to path } p \text{ realizing volume of demand } d
 \]

 \[
 y_e \quad \text{(non-negative continuous) capacity of upper layer link } e
 \]

 \[
 z_{eq} \quad \text{(non-negative continuous) flow allocated to path } q \text{ realizing capacity of link } e
 \]

 \[
 u_g \quad \text{(non-negative continuous) capacity of lower layer link } g
 \]

- **objective**

 minimize \(F = \sum_e \xi_e y_e + \sum_g \kappa_g u_g \)

- **constraints**

 \[
 \sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D
 \]

 \[
 \sum_d \sum_p \delta_{edp} x_{dp} \leq y_e, \quad e = 1, 2, \ldots, E
 \]

 \[
 \sum_q z_{eq} = y_e, \quad e = 1, 2, \ldots, E
 \]

 \[
 \sum_e \sum_q \gamma_{geq} z_{eq} \leq u_g, \quad g = 1, 2, \ldots, G.
 \]
Two-Layer Dimensioning (continuous/Integral)

- **indices**
 - \(d = 1, 2, \ldots, D \) demands
 - \(p = 1, 2, \ldots, P_d \) candidate paths in upper layer for flows realizing demand \(d \)
 - \(e = 1, 2, \ldots, E \) links of upper layer
 - \(q = 1, 2, \ldots, Q_e \) candidate paths in lower layer for flows realizing link \(e \)
 - \(g = 1, 2, \ldots, G \) links of lower layer

- **constants**
 - \(h_d \) volume of demand \(d \)
 - \(\delta_{cdp} \) = 1 if link \(e \) of upper layer belongs to path \(p \) realizing demand \(d \); 0, otherwise
 - \(M \) size of the link capacity module in upper layer
 - \(\xi_e \) cost of one \((M\text{-module})\) capacity unit of link \(e \) of upper layer
 - \(\gamma_{geq} \) = 1 if link \(g \) of lower layer belongs to path \(q \) realizing link \(e \) of upper layer; 0, otherwise
 - \(N \) size of link capacity module in lower layer
 - \(\kappa_g \) cost of one \((N\text{-module})\) capacity unit of link \(g \) of lower layer

- **variables**
 - \(x_{dp} \) (non-negative continuous) flow allocated to path \(p \) realizing volume of demand \(d \)
 - \(y_e \) (non-negative integral) \(M\)-module capacity of upper layer link \(e \)
 - \(z_{eq} \) (non-negative integral) flow allocated to path \(q \) realizing capacity of link \(e \)
 - \(u_g \) (non-negative integral) capacity of lower layer link \(g \)

- **objective**
 - minimize \(F = \sum_e \xi_e y_e + \sum_g \kappa_g u_g \)

- **constraints**
 - \(\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \)
 - \(\sum_d \sum_p \delta_{cdp} x_{dp} \leq M y_e, \quad e = 1, 2, \ldots, E \)
 - \(\sum_q z_{eq} = y_e, \quad e = 1, 2, \ldots, E \)
 - \(\sum_e M \sum_q \gamma_{geq} z_{eq} \leq N u_g, \quad g = 1, 2, \ldots, G \).
Allocation with Two Layers of Resources

- lower layer capacities fixed
- upper layer capacities variable

LP: A2I/CF/BR/CC

Two-Layer Allocation Problem

indices
- \(d = 1, 2, \ldots, D \) demands
- \(p = 1, 2, \ldots, P_d \) candidate paths in upper layer for demand \(d \)
- \(e = 1, 2, \ldots, E \) links of upper layer
- \(q = 1, 2, \ldots, Q_e \) candidate paths in lower layer for flows realizing link \(e \)
- \(g = 1, 2, \ldots, G \) links of lower layer

constants
- \(h_d \) volume of demand \(d \)
- \(\delta_{epd} = 1 \) if link \(e \) of upper layer belongs to path \(p \) realizing demand \(d \); 0, otherwise
- \(\gamma_{eq} = 1 \) if link \(g \) of lower layer belongs to path \(q \) realizing link \(e \) of upper layer; 0, otherwise
- \(c_g \) capacity of lower layer link \(g \)

variables (all non-negative continuous)
- \(x_{dp} \) flow allocated to path \(p \) realizing volume of demand \(d \)
- \(y_e \) capacity of upper layer link \(e \)
- \(z_{eq} \) flow allocated to path \(q \) realizing capacity of link \(e \)

constraints

\[
\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \quad (12.1.7a)
\]

\[
\sum_d \sum_p \delta_{epd} x_{dp} \leq y_e, \quad e = 1, 2, \ldots, E \quad (12.1.7b)
\]

\[
\sum_q z_{eq} = y_e, \quad e = 1, 2, \ldots, E \quad (12.1.7c)
\]

\[
\sum_e \sum_q \gamma_{eq} z_{eq} \leq c_g, \quad g = 1, 2, \ldots, G. \quad (12.1.7d)
\]
Two-Layer Mixed Dimensioning Allocation Problem

- lower layer capacities fixed
- upper layer link cost, lower layer routing cost

Constants
- h_d: volume of demand d
- δ_{epd}: 1 if link e of upper layer belongs to path p realizing demand d; 0, otherwise
- γ_{geq}: 1 if link g of lower layer belongs to path q realizing link e of upper layer; 0, otherwise
- c_g: capacity of lower layer link g
- M: size of the link capacity module in upper layer
- ξ_e: cost of one (M-module) capacity unit of link e of upper layer
- ζ_{eq}: unit routing cost in the lower layer

Variables
- x_{dp}: (non-negative continuous) flow allocated to path p realizing volume of demand d
- y_e: (non-negative integral) capacity of upper layer link e
- z_{eq}: (non-negative integral) flow allocated to path q realizing capacity of link e

Objective
- minimize $\sum_e \xi_e y_e + \sum_q \zeta_{eq} z_{eq}$

Constraints
- $\sum_p x_{dp} = h_d$, $d = 1, 2, \ldots, D$
- $\sum_d \sum_p \delta_{epd} x_{dp} \leq M y_e$, $e = 1, 2, \ldots, E$
- $\sum_q z_{eq} = y_e$, $e = 1, 2, \ldots, E$
- $\sum_e \sum_q \gamma_{geq} z_{eq} \leq c_g$, $g = 1, 2, \ldots, G$.
Extension to More than Two Layers

- Example: IP/MPLS/SONET
- Link at layer k+1 is demand for layer k
- Demand considered the top layer
- Joint dimensioning across all layers
- Generalized shortest path allocation rule
 - At layer k, allocate a layer k+1 demand (link l^{k+1}) to its cheapest path p^k
 - Set link weight at layer k+1 for l^{k+1} using length of p^k at layer k
 - Repeat until find the shortest paths for all demands
Extension: joint optimal routing and capacity design in upper layer

- **Routing:** given demands, link capacities, find the best flow allocation
- **Capacity allocation:** normally done in coarser time scale
- **Exception in wireless/sensor network**
 - no well-defined link capacity
 - links from same node share resource: spectrum, power, timeslot
 - link capacities be adjusted along with routing
- **Joint optimization of rate control, routing and resource allocation**
Multi-Layer Networks for Restoration Design

- Upon failures, path restorations can be done
 - in both upper and lower layers
 - low layer only
 - upper layer only
- Example: IP/SONET
 - upon failure: IP Re-routing/SONET reconfiguration
 - time-scale difference
 - transit loss of link capacity in IP layer
 - transit loss of packets for demands

FIGURE 12.5 Two-Layer Networks with Failures
Two-Layer Restoration Dimensioning with Unrestricted Flow Reconfiguration

- capacity dimensioning to handle all possible failure states
- arbitrary flow reconfiguration at both layers

indices
- \(d = 1, 2, \ldots, D \): demands
- \(p = 1, 2, \ldots, P_d \): candidate paths in upper layer for flows realizing demand \(d \)
- \(e = 1, 2, \ldots, E \): links of upper layer
- \(q = 1, 2, \ldots, Q_e \): candidate paths in lower layer for flows realizing link \(e \)
- \(g = 1, 2, \ldots, G \): links of lower layer
- \(v = 1, 2, \ldots, V \): nodes of upper layer
- \(s = 1, 2, \ldots, S \): failure-demand states (situations) (including the normal state)

constants
- \(h_d \): volume of demand \(d \)
- \(a_{ve} \): 1 if link \(e \) is incident with node \(v \); 0, otherwise
- \(\delta_{edp} \): 1 if link \(e \) of upper layer belongs to path \(p \) realizing demand \(d \); 0, otherwise
- \(\gamma_{geq} \): 1 if link \(g \) of lower layer belongs to path \(q \) realizing link \(e \) of upper layer; 0, otherwise
- \(\zeta_v \): unit cost of the capacity of node \(v \) of upper layer (termination cost and switching cost)
- \(\kappa_g \): unit cost of link \(g \) of lower layer
- \(\chi_{ds} \): demand coefficient of demand \(d \) in state \(s \), \(h_{ds} = \chi_{ds} h_d \)
- \(\beta_{vs} \): binary availability coefficient of node \(v \) of upper layer in state \(s \) (\(\beta_{vs} \in \{0, 1\} \))
- \(\alpha_{gs} \): fractional availability coefficient of link \(g \) of lower layer in state \(s \) (\(0 \leq \alpha_{gs} \leq 1 \))
Two-Layer Restoration Dimensioning with Unrestricted Flow Reconfiguration

- **variables** (all variables are continuous and non-negative)
 - x_{dps} flow allocated to path p of demand d in state s
 - Y_v capacity of node v of upper layer (state-independent)
 - yes capacity of link e in state s (situation-dependent)
 - $zeqs$ flow allocated to path q realizing capacity of link e in state s
 - u_g capacity of link g

- **objective**
 - minimize $F = \sum_g \kappa_g u_g + \sum_v \zeta_v Y_v$

- **constraints**
 - $\sum_p x_{dps} = h_{ds}, \quad d = 1, 2, \ldots, D \quad s = 1, 2, \ldots, S$
 - $\sum_d \sum_p \delta_{edp} x_{dps} \leq y_{es}, \quad e = 1, 2, \ldots, E \quad s = 1, 2, \ldots, S$
 - $\sum_e a_{ve} y_{es} \leq \beta_{vs} Y_v, \quad v = 1, 2, \ldots, V \quad s = 1, 2, \ldots, S$
 - $\sum_q z_{eqs} = y_{es}, \quad e = 1, 2, \ldots, E \quad s = 1, 2, \ldots, S$
 - $\sum_e \sum_q \gamma_{geq} z_{eqs} \leq \alpha_{gs} u_g, \quad g = 1, 2, \ldots, G \quad s = 1, 2, \ldots, S$.
Restoration Dimensioning with reconfiguration only at lower layer

- upper layer link capacities and flows required to be same under any failure state (no rerouting allowed)
- lower layer flow reconfigurable

additional constants

\[
H_d = \max \{ h_{ds}, \ s = 1, 2, \ldots, S \} \ \text{maximal value of demand } d
\]

variables (all variables are continuous and non-negative)

- \(x_{dp} \) flow allocated to path \(p \) of demand \(d \) in all states
- \(y_e \) capacity of link \(e \) in all states
- \(z_{eqs} \) flow allocated to path \(q \) realizing capacity of link \(e \) in state \(s \)
- \(u_g \) capacity of link \(g \)

objective

\[
\text{minimize } F = \sum_g \kappa_g u_g
\] \hspace{1cm} (12.2.4a)

constraints

\[
\sum_p x_{dp} = H_d, \quad d = 1, 2, \ldots, D
\] \hspace{1cm} (12.2.4b)

\[
\sum_d \sum_p \delta_{ep} x_{dp} \leq y_e, \quad e = 1, 2, \ldots, E
\] \hspace{1cm} (12.2.4c)

\[
\sum_q z_{eqs} = y_e, \quad e = 1, 2, \ldots, E \quad s = 1, 2, \ldots, S
\] \hspace{1cm} (12.2.4d)

\[
\sum_e \sum_q \gamma_{eqs} z_{eqs} \leq \alpha_{gs} u_g, \quad g = 1, 2, \ldots, G \quad s = 1, 2, \ldots, S.
\] \hspace{1cm} (12.2.4e)
Restoration Dimensioning with reconfiguration only at upper layer

- lower layer flows are not reconfigurable, lower layer path may not available after failure
- upper layer link capacities affected by failure, and flows can be reconfigured arbitrarily

variables
- \(x_{dps} \) flow allocated to path \(p \) of demand \(d \) in state \(s \)
- \(y_{es} \) capacity of link \(e \) in state \(s \)
- \(z_{eq} \) flow allocated to path \(q \) realizing capacity of link \(e \) in all state
- \(u_g \) capacity of link \(g \)

objective

\[
\text{minimize } F = \sum_g \kappa_g u_g \quad (12.2.5a)
\]

constraints

\[
\sum_p x_{dps} = h_{ds}, \quad d = 1, 2, \ldots, D \quad s = 1, 2, \ldots, S \quad (12.2.5b)
\]

\[
\sum_d \sum_p \delta_{edp} x_{dps} \leq y_{es}, \quad e = 1, 2, \ldots, E \quad s = 1, 2, \ldots, S \quad (12.2.5c)
\]

\[
\sum_q \theta_{eqs} z_{eq} \geq y_{es}, \quad e = 1, 2, \ldots, E \quad s = 1, 2, \ldots, S \quad (12.2.5d)
\]

\[
\sum_e \sum_q \gamma_{geq} z_{eq} \leq u_g, \quad g = 1, 2, \ldots, G. \quad (12.2.5e)
\]
Extension: Overlay/P2P Networks

- **Overlay Networks**
 - logical networks on top of physical networks
 - improved end user performance
 - new services:
 - Content distribution: Akamai
 - p2p file sharing: BitTorrent, EMule
 - Streaming/multicast: Skype/IPTV

- **Overlay Network Design**
 - efficiency: topologies, routing, scheduling, rate control
 - interaction with native IP networks

- **Reference**:
 "On the Interaction Between Overlay Routing and Traffic Engineering'",
 http://eeweb.poly.edu/faculty/yongliu/docs/info05.pdf