EL736 Communications Networks II: Design and Algorithms

Class1: Introduction
Yong Liu
09/05/2007
From Telephone Networks to Data Networks

- voice calls vs. datagrams
- circuit switching vs. packet switching
- multiplexing/de-multiplexing at edge, shared network core
Network Service Providers

- multiple autonomous systems (ASes) managed by different network providers
- peering at gateway routers
- dealing with network design within one admin. domain
Traffic Networks vs. Transport Networks

- Traffic Networks: provide application services to end users
 - the Internet
 - telephone networks
 - private networks
- Transport Networks: provide physical facility to transport traffic for customer networks
 - setting up leased circuits/trunks (semi-)permanently
 - SONET, WDM, cross connects

FIGURE 17 An Administrative Domain Using Multiple Transport Providers

FIGURE 18 Multiple Service Networks Over One Transport Provider
Network Resource & Cost

- link capacity (bps, pps)
- router/switch
 - memory (bytes)
 - processing power (CPU, Hz)
- network cost:
 - provisioning cost ($, hours)
 - operational cost ($, hours)
Network Demand

- traffic characteristics
 - how much? point to point traffic volume
 - stationary+stochastic
 - + where? traffic demand matrix
- different natures for different networks
 - the Internet: packets
 - telephone network: calls
 - transport network: circuits
- demand of traffic networks generated by end users
- demand of transport network generated by its customer traffic networks
Traffic Demand in Internet

- bits, bytes, packets/second
- very “random”
 - controlled by end-users and protocol behaviors
 - highly variable, bursty, long-range-dependent, self-similar, ...
 - predictable? reasonable models?
- characteristics on a single link
 - packet arrival process: approximately Poisson :)
 - packet size distribution: non-exponential :(

Packet Delay on a Single Link

- **M/M/1 Approximation:** \(D(\lambda_p, \mu_p) = \frac{1}{\mu_p - \lambda_p} = \frac{1/\mu_p}{1 - \rho_p} \)
- Packet delay on a T1 (1.5Mbps) link
- Benefit of multiplexing
 - Ten 1.5Mbps links vs. one 15Mbps link

![Graph showing packet delay vs. link utilization](image)
Traffic in Telephone Network

- circuit switching
 - calls blocked if no available circuit
- call arrivals approximately Poisson :)
- call duration approximately exponential :)
- offered load unit -- Erlang: \(\alpha = \lambda_t \times \tau_t \)
- call blocking probability
 - Erlang-B loss formula \(B(\alpha, c) = \frac{\alpha^c / c!}{\sum_{k=0}^{c} \alpha^k / k!} \)
 - 24 Erls to link with capacity 24 --> 14.6% loss
 - 240 Erls to link with capacity 240 --> 4.9% loss
Demand in Transport Network

- demand to transport network is less dynamic
 - well specified start-end time
 - measured in modular data rates

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Bit Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS0 (voice)</td>
<td>0.064</td>
</tr>
<tr>
<td>T1</td>
<td>1.54</td>
</tr>
<tr>
<td>T3</td>
<td>45</td>
</tr>
<tr>
<td>OC-3</td>
<td>155.52</td>
</tr>
<tr>
<td>OC-48</td>
<td>2,488.32</td>
</tr>
<tr>
<td>OC-192</td>
<td>9,953.28</td>
</tr>
</tbody>
</table>
A Simple Design Example

- set up links to carry demand under link utilization constraint of 60%.

Demand matrix:

three T1 links, utili. = 19.5%

two T1 links, utili. = 39%
Logical vs. Physical Network View

- traffic networks runs on top of transport network
- two independent logical links might go through same physical link
- implications on failure recovery, restoration, network reliability
- multiple-layer network design
Network Management Timescale

<table>
<thead>
<tr>
<th>Time Scale</th>
<th>Micro-secs</th>
<th>Mili-secs</th>
<th>Seconds</th>
<th>Minutes</th>
<th>Hours</th>
<th>Days</th>
<th>Weeks</th>
<th>Months</th>
</tr>
</thead>
</table>
Network Management Cycle

Traffic Network (IP, circuit-switched)

- Capacity change
- Traffic data
- Routing update
- Various controls

Real-Time Traffic Management

- Capacity Management, Traffic Engineering
- Network Planning

Network Planning

- Months-years
- Days-weeks
- Secs-mins

Forecast adjustment, Marketing input

Transport Network

- New Transport Demand, Marketing input
- Network fill factor, loading
- Route loading
- Restoration
- Capacity expansion/protection

Near Real-Time Management

- Capacity Management, Network Engineering
- Network Planning

Network Management

- Months-years
- Days-weeks
- Mins-hours
Course Scope

- Network View
 - different routing, flow and link capacity representations
 - uncertainties: link/node failures, traffic variations
 - multi-layer interaction: traffic/transport, logical/physical
 - large scale problems

- Approaches/algorithms/theory view
 - model selection
 - solution with optimization tools
 - approximate/heuristic algorithms for large problems
 - fundamental principles

- Small timescale management not covered here
 - stochastic queueing analysis and simulation topics for EL735
List of Topics

- Network Design Problem Modeling
- Optimization Methods
- Multi-Commodity Flow Routing
- Location and Topological Design
- Fair Network
- Resilient Network Design
- Robust Network Design
- Multi-Layer Networks