1. Let X represent the lifetime of a certain electric bulb, and Y that of its replacement after the failure of the first bulb. Suppose X and Y are independent random variables with exponential density function with common parameter λ. Find the probability that the combined lifetime exceeds 2λ. What is the probability that the replacement outlasts the original component by λ?

2. Let

$$f_{XY}(x, y) = \begin{cases} 2e^{-(x+y)}, & 0 < x < y < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Define $Z = \max(X, Y)$, $W = X/Y$. Determine the joint p.d.f of Z and W. Are Z and W independent random variables?

3. X and Y are independent random variables with Geometric probability marginal functions

$$P(X = k) = pq^k, \quad k = 0, 1, 2, \ldots, \quad P(Y = m) = pq^m, \quad m = 0, 1, 2, \ldots.$$

Find the condition probability marginal function of X given $X + Y$. (i.e., Determine $P(X = k | X + Y = n)$)

4. (a) The joint p.d.f of X and Y is given by

$$f_{XY}(x, y) = \begin{cases} 6x, & x > 0, \quad y > 0, \quad 0 < x + y \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find the conditional p.d.f of Y given X.

(b) X and Y are zero mean independent random variables with variances σ_1^2 and σ_2^2 respectively, i.e., $X \sim N(0, \sigma_1^2)$, $Y \sim N(0, \sigma_2^2)$. Let

$$Z = aX + bY + c, \quad c \neq 0.$$

Find the characteristic function $\Phi_Z(\omega)$ of Z.

(25)