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Based on J. L. Prince and J. M. Links, Medical Imaging Signals and 
Systems, and lecture notes by Prince. Figures are from the textbook. 
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Lecture Outline 
•  Instrumentation 

–  CT Generations 
–  X-ray source and collimation 
–  CT detectors   

•  Image Formation 
–  Line integrals 
–  Parallel Ray Reconstruction 

•  Radon transform 
•  Back projection 
•  Filtered backprojection 
•  Convolution backprojection 
•  Implementation issues 
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Limitation of Projection Radiography 
•  Projection radiography 

–  Projection of a 2D slice along one direction only 
–  Can only see the “shadow” of the 3D body 

•  CT: generating many 1D  projections in different angles 
–  When the angle spacing is sufficiently small, can reconstruct the 

2D slice very well 
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1st Generation CT: Parallel Projections 
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2nd Generation 
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3G: Fan Beam  

Much faster than 2G 
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4G 

Fast 
Cannot use 
collimator at 
detector, hence 
affected by 
scattering 
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5G: Electron Beam CT (EBCT)  

Stationary source and detector. 
Used for fast (cine) whole heart imaging 
Source of x-ray moves around by steering an electron 
beam around X-ray tube anode.  
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6G: Helical CT 

Entire abdomen or chest can be completed in 30 sec. 
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7G: Multislice 

From  http://www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf 
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Reduced scan time and increased Z-resolution (thin slices)  
Most modern MSCT systems generates 64 slices per rotation, can image 
whole body (1.5 m) in 30 sec.  

From  http://www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf 
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Generation Source Source Collimation Detector

1st Single X-ray Tube Pencil Beam Single

2nd Single X-ray Tube Fan Beam (not enough to cover FOV) Multiple

3rd Single X-ray Tube Fan Beam (enough to cover FOV) Many

4th Single X-ray Tube Fan Beam covers FOV

Stationary
Ring of

Detectors

5th

Many tungsten
anodes in single

large tube Fan Beam

Stationary
Ring of

Detectors

6th 3G/4G 3G/4G 3G/4G

7th Single X-ray Tube Cone Beam

Multiple
array of
detectors

From  http://www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf 
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From  http://www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf 



EL5823 CT-1 Yao Wang, NYU-Poly 14 

X-ray Source 
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X-ray Detectors 

Convert detected photons to lights 

Convert light to electric current 
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CT Measurement Model 
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CT Number 

Need 12 bits to represent 
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Parameterization of a Line 

s 

x 

y 

= l 

Option 1 (parameterized by s): 

Option 2: 

Each projection line is 
defined by (l,θ) 
 
A point on this line (x,y) can 
be specified with two options 
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Line Integral: parametric  form 
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Line Integral: set form 
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Physical meaning of “f” & “g” 
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What is g(l,θ)? 
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Example 
•  Example 1: Consider an image slice which contains a 

single square in the center. What is its projections along 
0, 45, 90, 135 degrees? 

•  Example 2: Instead of a square, we have a rectangle. 
Repeat.  
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Sinogram 
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Backprojection 
•  The simplest method for reconstructing an image from a 

projection along an angle is by backprojection 
–  Assigning every point in the image along the line defined by (l,θ) the 

projected value g(l, θ), repeat for all l for the given θ 
 

s 

x

y 
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Two Ways of Performing Backprojection 
•  Option 1: assigning value of g(l, θ) to all points on the line (l, θ)  

–  g(l, θ) is only measured at certain l: ln=n Δl  
–  If l is coarsely sampled (Δl is large), many points in an image will not be 

assigned a value 
–  Many points on the line may not be a sample point in a digital image 

•  Option 2: For each θ, go through all sampling points (x,y) in an 
image, find its corresponding “l=x cos θ+y sin θ”, take the g value 
for (l, θ) 

–  g(l, θ) is only measured at certain l: ln=n Δl 
–  must interpolate g(l, θ) for any l from given g(ln, θ) 

•  Option 2 is better, as it makes sure all sample points in an image are 
assigned a value 

•  For more accurate results, the backprojected value at each point 
should be divided by the length of the underlying image in the 
projection direction (if known) 
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Backprojection Summation 

Replaced by a 
sum in practice 
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Implementation Issues 

From L. Parra at CUNY, http://bme.ccny.cuny.edu/faculty/parra/teaching/med-imaging/lecture4.pdf 
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Implementation: Projection 
•  To create projection data using computers, also has similar problems. 

Possible l and q are both quantized. If you first specify (l,q), then find (x,y) 
that are on this line. It is not easy. Instead, for given q, you can go through 
all (x,y) and determine corresponding l, quantize l to one of those you want 
to collect data. 

•  Sample matlab code (for illustration purpose only) 
 
N=ceil(sqrt(I*I+J*J))+1; 
N0= floor((N-1)/2); 
ql=1; 
G=zeros(N,180); 
for phi=0:179 
for (x=-J/2:J/2-1; y=-I/2:I/2-1) 

          l=x*cos(phi*pi/180)+y*sin(phipi/180); 
l=round(l/ql)+N0+1; 
If (l>=1) && (l<=N) 

 G(l,phi+1)=G(l,phi+1)+f(x+J/2+1,y+I/2+1); 
End 
end 

end 
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Example 
•  Continue with the example of the image with a square in 

the center. Determine the backprojected image from 
each projection and the reconstruction by summing 
different number of backprojections 
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Problems with Backprojection 
à Blurring 
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Projection Slice Theorem 

The Fourier Transform of a projection at angle θ is a line in the 
Fourier transform of the image  at the same angle. 
If (l,θ) are sampled sufficiently dense, then from g (l,θ) we 
essentially know F(u,v) (on the polar coordinate), and by inverse 
transform can obtain f(x,y)! 

dlljlgG }2exp{),(),( πρθθρ −= ∫
∞

∞−
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Illustration of the Projection Slice 
Theorem 
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Proof 
•  Go through on the board 
•  Using the set form of the line integral 
•  See Prince&Links, P. 198 

dlljlgG }2exp{),(),( πρθθρ −= ∫
∞

∞−
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The Fourier Method 
•  The projection slice theorem leads to the following 

conceptually simple reconstruction method 
–  Take 1D FT of each projection to obtain G(ρ,θ) for all θ 	



–  Convert G(ρ,θ) to Cartesian grid F(u,v) 
–  Take inverse 2D FT to obtain f(x,y) 

•  Not used because 
–  Difficult to interpolate polar data onto a Cartesian grid 
–  Inverse 2D FT is time consuming 

•  But is important for conceptual understanding 
–  Take inverse 2D FT on G(ρ,θ) on the polar coordinate leads to 

the widely used Filtered Backprojection algorithm 
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Filtered Backprojection 
•  Inverse 2D FT in Cartesian coordinate: 

•  Inverse 2D FT in Polar coordinate: 

•  Proof of filtered backprojection algorithm  

Inverse FT 

∫ ∫ += dudvevuFyxf yvxuj )(2),(),( π

∫ ∫
>− ∞>−

+=
π

θθπρ θρρθρθρ
20 0

)sincos(2)sin,cos(),( ddeFyxf yxj

=l =G(ρ,θ) 
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Filtered Backprojection Algorithm 
•  Algorithm: 

–  For each θ 	


•  Take 1D FT of g(l,θ) for each θ -> G(ρ,θ) 
•  Frequency domain filtering: G(ρ,θ) -> Q(ρ,θ)=|ρ|G(ρ,θ) 
•  Take inverse 1D FT: Q(ρ,θ) -> q(l,θ)  
•  Backprojecting q(l,θ) to image domain -> bθ(x,y) 

–  Sum of backprojected images for all θ 
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Function of the Ramp Filter 
•  Filter response: 

–  c(ρ) =|ρ| 
–  High pass filter 

•  G(ρ,θ) is more densely 
sampled when ρ is small, and 
vice verse 

•  The ramp filter compensate 
for the sparser sampling at 
higher ρ	
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Convolution Backprojection 
•  The Filtered backprojection method requires taking 2 Fourier 

transforms (forward and inverse) for each projection 
•  Instead of performing filtering in the FT domain, perform convolution 

in the spatial domain 
•  Assuming c(l) is the spatial domain filter 

–  |ρ| <-> c(l) 
–  |ρ|G(ρ,θ) <-> c(l) * g(l,θ) 

•  For each θ: 
–  Convolve projection g(l,θ) with c(l): q(l,θ)= g(l,θ) * c(l) 
–  Backprojecting q(l,θ) to image domain -> bθ(x,y) 
–  Add bθ(x,y) to the backprojection sum 

•  Much faster if c(l) is short 
–  Used in most commercial CT scanners 
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Step 1: Convolution 
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Step 2: Backprojection 
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Step 3: Summation 
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Ramp Filter Design 
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Practical Implementation 
•  Projections g(l, θ) are only measured at finite intervals 

–  l=nτ;  
–  τ chosen based on maximum frequency in G(ρ,θ), W 

•  1/τ >=2W or τ <=1/2W   (Nyquist Sampling Theorem) 

•  W can be estimated by the number of cycles/cm in the projection direction  in the most detailed 
area in the slice to be scanned 

•  For filtered backprojection: 
–  Fourier transform G(ρ,θ) is obtained via FFT using samples  g(nτ, θ) 
–  If N sample are available in g, 2N point FFT is taken by zero padding g(nτ, θ) 

•  For convolution backprojection 
–  The ramp-filter is sampled at l=nτ 
–  Sampled Ram-Lak Filter  
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The Ram-Lak Filter (from [Kak&Slaney]) 
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Common Filters 
•  Ram-Lak: using the rectangular window 
•  Shepp-Logan: using a sinc window 
•  Cosine: using a cosine window 
•  Hamming: using a generalized Hamming window 
•  See Fig. B.5 in A. Webb, Introduction to biomedical 

imaging 
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Matlab Implementation  
•  MATLAB (image toolbox) has several built-in functions: 

–  phantom: create phantom images of size NxN 
I = PHANTOM(DEF,N) DEF=‘Shepp-Logan’,’Modified Shepp-Logan’ 

Can also construct your own phantom, or use an arbitrary image 

–  radon: generate projection data from a phantom 
•  Can specify sampling of θ	


R = RADON(I,THETA) 

The number of samples per projection angle = sqrt(2) N 

–  iradon: reconstruct an image from measured projections 
•  Uses the filtered backprojection method 
•  Can choose different filters and different interpolation methods for 

performing backprojection 
[I,H]=IRADON(R,THETA,INTERPOLATION,FILTER,FREQUENCY_SCALING,OUTPUT_SIZE) 

 

–  Use ‘help radon’ etc. to learn the specifics 
–  Other useful command: 

•  imshow, imagesc, colormap 
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Summary 
•  Different generations of CT machines: 

–  Difference and pros and cons of each 
•  X-ray source and detector design 

–  Require (close-to) monogenic x-ray source 
•  Relation between detector reading and absorption properties of the 

imaged slice 
–  Line integral of absorption coefficients (Radon transform) 

•  Reconstruction methods 
–  Backprojection summation 
–  Fourier method (projection slice theorem) 
–  Filtered backprojection 
–  Convolution backprojection 

•  Impact of number of projection angles on reconstruction image 
quality 

•  Matlab implementations 

Equivalent, but differ in 
computation 
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Reference 
•  Prince and Links, Medical Imaging Signals and Systems, 

Chap 6. 
•  Webb, Introduction to biomedical imaging, Appendix B. 
•  Kak and Slanley, Principles of Computerized 

Tomographic Imaging, IEEE Press, 1988. Chap. 3 
–  Electronic copy available at 

http://www.slaney.org/pct/pct-toc.html 

•  Good description of different generations of CT 
machines 
–  http://www.kau.edu.sa/Files/0008512/Files/

19500_2nd_presentation_final.pdf 
–  http://bme.ccny.cuny.edu/faculty/parra/teaching/med-imaging/

lecture4.pdf 
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Homework  
•  Reading:  

–  Prince and Links, Medical Imaging Signals and Systems, Chap 
6, Sec.6.1-6.3.3 

•  Note down all the corrections for Ch. 6 on your copy of 
the textbook based on the provided errata. 

•  Problems for Chap 6 of the text book: 
–  P6.5 
–  Consider a 4x4 image that contains a diagonal line 

I=[0,0,0,1;0,0,1,0;0,1,0,0;1,0,0,0];  
•  a) determine its projections in the directions: 0, 45,90,135 degrees.  
•  b) determine the backprojected image from each projection; 
•  c) determine the reconstructed images by using projections in the 0 

and 90 degrees only. 
•  d) determine the reconstructed images by using all projections. 

Comment on the difference from c). 
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Computer Assignment 
Due: Two weeks from lecture date 

1.  Learn how do ‘phantom’.’radon’,’iradon’ work; summarize their 
functionalities. Type ‘demos’ on the command line, then select ‘toolbox -
> image processing -> transform -> reconstructing an image from 
projection data’. Alternatively, you can use ‘help’ for each particular 
function. 

2.  Write a MATLAB program that 1) generate a phantom image (you can use 
a standard phantom provided by MATLAB or construct your own), 2) 
produce projections in a specified number of angle, 3) reconstruct the 
phantom using backprojection summation; Your program should allow the 
user to specify the number of projection angle. Run your program with 
different number of projections for the same view angle, and the different 
view angles, and compare the quality. You should NOT use the ‘radon( )’ 
and ‘iradon()’ function in MATLAB. 

3.  Repeat 1 but uses filter backprojection method for step 3). In addition to 
the number of projection angles, you should be able to specify the filter 
among several filters provided by Matlab and the interpolation filters used 
for backprojection. Compare the reconstructed image quality obtained with 
different filters and interpolation methods for the same view angle and 
number of projections. You can use the “iradon()” function in MATLAB 

4.  (Optional) Repeat 3 but uses convolution backprojection method. You 
have to do your own program. 


